BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metal-Free Luminophores for Biomedical Applications. Adv Sci (Weinh) 2021;8:e2102970. [PMID: 34705318 DOI: 10.1002/advs.202102970] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Fang F, Wang S, Song Y, Sun M, Chen WC, Zhao D, Zhang J. Continuous Spatiotemporal Therapy of A Full-API Nanodrug via Multi-Step Tandem Endogenous Biosynthesis. Nat Commun 2023;14:1660. [PMID: 36966149 DOI: 10.1038/s41467-023-37315-0] [Reference Citation Analysis]
2 Wang S, Lan M, Peng H, Zhang J. Editorial for Special Issue: “Supramolecular Nanomaterials for Biomedical Application”. Nanomaterials 2023;13:1054. [DOI: 10.3390/nano13061054] [Reference Citation Analysis]
3 Elgadi SA, Mayder DM, Hojo R, Hudson ZM. Thermally Activated Delayed Fluorescence and Room‐Temperature Phosphorescence in Sulfidoazatriangulene‐Based Materials and their S‐oxides. Advanced Optical Materials 2023. [DOI: 10.1002/adom.202202754] [Reference Citation Analysis]
4 Shin Y, Park Y, Lee H, Choi Y, Eom JB. Real-Time Monitoring of Colorectal Cancer Location and Lymph Node Metastasis and Photodynamic Therapy Using Fucoidan-Based Therapeutic Nanogel and Near-Infrared Fluorescence Diagnostic–Therapy System. Pharmaceutics 2023;15:930. [DOI: 10.3390/pharmaceutics15030930] [Reference Citation Analysis]
5 Wang H, Chen T, Ren H, Liu W, Nan F, Ge J, Wang P. Metal-Organic Frameworks@Au Nanoreactor as an Oxidative Stress Amplifier for Enhanced Tumor Photodynamic Therapy through the Alleviation of Hypoxemia and the Depletion of Glutathione. ACS Appl Bio Mater 2023. [PMID: 36912885 DOI: 10.1021/acsabm.2c01090] [Reference Citation Analysis]
6 Yang CZ, Pan ZH, Zhang K, Tai JW, Wang CK, Ding L, Fung MK, Fan J. Intramolecular charge transfer effect for highly efficient deep red and near infrared thermally activated delayed fluorescence. Mater Horiz 2023;10:945-51. [PMID: 36598051 DOI: 10.1039/d2mh01015a] [Reference Citation Analysis]
7 Su R, Huang Z. A Series of Singlet‐Triplet InVerted TADF Fluorescent Probes with High Stability, Low Molecular Weight, and Synthesis Accessibility. Advcd Theory and Sims 2023. [DOI: 10.1002/adts.202200863] [Reference Citation Analysis]
8 Xiao T, Tang L, Ren D, Diao K, Li ZY, Sun XQ. Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry 2023;29:e202203463. [PMID: 36428221 DOI: 10.1002/chem.202203463] [Reference Citation Analysis]
9 Wang X, Wu X, Wang T, Wu Y, Shu H, Cheng Z, Zhao L, Tian H, Tong H, Wang L. A high-contrast polymorphic difluoroboron luminogen with efficient RTP and TADF emissions. Chem Commun (Camb) 2023;59:1377-80. [PMID: 36649148 DOI: 10.1039/d2cc05849a] [Reference Citation Analysis]
10 Li B, Liu M, Sang L, Li Z, Wan X, Zhang Y. Role of the Intramolecular‐Locking Strategy in the Construction of Organic Thermally Activated Delayed Fluorescence Emitters with Rotation‐Restricted Acceptors. Advanced Optical Materials 2023. [DOI: 10.1002/adom.202202610] [Reference Citation Analysis]
11 Yu YJ, Liu FM, Meng XY, Ding LY, Liao LS, Jiang ZQ. Carbonyl-Containing Thermally Activated Delayed Fluorescence Emitters for Narrow-Band Electroluminescence. Chemistry 2023;29:e202202628. [PMID: 36250810 DOI: 10.1002/chem.202202628] [Reference Citation Analysis]
12 Wang X, Wei R, Cai L, Hu HY. Thermally activated delayed fluorescence emitters: a thionation approach toward next-generation photosensitizers. J Mater Chem B 2023;11:576-80. [PMID: 36541089 DOI: 10.1039/d2tb02144g] [Reference Citation Analysis]
13 Sun H, Guo R, Guo Y, Song J, Li Z, Song F. Boosting Type-I and Type-II ROS Production of Water-Soluble Porphyrin for Efficient Hypoxic Tumor Therapy. Mol Pharm 2023;20:606-15. [PMID: 36398863 DOI: 10.1021/acs.molpharmaceut.2c00822] [Reference Citation Analysis]
14 Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coordination Chemistry Reviews 2023;475:214875. [DOI: 10.1016/j.ccr.2022.214875] [Reference Citation Analysis]
15 Tong K, Zhao L, Sun W, Li Y. Investigation on potential applications of thermal activated delayed fluorescence materials in organic electroluminescent devices. HSET 2022;26:259-269. [DOI: 10.54097/hset.v26i.3983] [Reference Citation Analysis]
16 Dulov DA, Bogdanov AV, Dorofeev SG, Magdesieva TV. N,N'-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones. Molecules 2022;28. [PMID: 36615415 DOI: 10.3390/molecules28010221] [Reference Citation Analysis]
17 Li Y, Baryshnikov GV, Siddique F, Wei P, Wu H, Yi T. Vibration‐Regulated Multi‐State Long‐Lived Emission from Star‐Shaped Molecules. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202213051] [Reference Citation Analysis]
18 Rezende TKL, Barbosa HP, dos Santos LF, de O. Lima K, Alves de Matos P, Tsubone TM, Gonçalves RR, Ferrari JL. Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1035449] [Reference Citation Analysis]
19 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Huang B, Yu W, Yang L, Li Y, Gu N. A simple molecular design towards the conversion of a MCL backbone to a multifunctional emitter exhibiting polymorphism, AIE, TADF and MCL. Heliyon 2022;8:e11221. [DOI: 10.1016/j.heliyon.2022.e11221] [Reference Citation Analysis]
21 Yamada S, Uto E, Yoshida K, Sakurai T, Konno T. Development of photoluminescent liquid-crystalline dimers bearing two fluorinated tolane-based luminous mesogens. Journal of Molecular Liquids 2022;363:119884. [DOI: 10.1016/j.molliq.2022.119884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01613-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Dai M, Zhou B, Fang X, Yan D. Two-Dimensional Hybrid Perovskitoid Micro/nanosheets: Colorful Ultralong Phosphorescence, Delayed Fluorescence, and Anisotropic Optical Waveguide. ACS Appl Mater Interfaces 2022. [PMID: 35998354 DOI: 10.1021/acsami.2c11164] [Reference Citation Analysis]
24 Phan Huu DKA, Saseendran S, Dhali R, Franca LG, Stavrou K, Monkman A, Painelli A. Thermally Activated Delayed Fluorescence: Polarity, Rigidity, and Disorder in Condensed Phases. J Am Chem Soc 2022. [PMID: 35944182 DOI: 10.1021/jacs.2c05537] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Li Z, Jin G, Yuan W, Huang B, Liang X, Tao Y. Solvent-induced polymorphism, thermally activated delayed fluorescence, and mechanochromic luminescence of a single compound. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110605] [Reference Citation Analysis]
26 Cao M, Zhu T, Zhao M, Meng F, Liu Z, Wang J, Niu G, Yu X. Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Anal Chem . [DOI: 10.1021/acs.analchem.2c00964] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Li M, Fang F, Sun M, Zhang Y, Hu M, Zhang J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022;12:4879-903. [PMID: 35836815 DOI: 10.7150/thno.72812] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Wu H, Fan X, Wang H, Huang F, Xiong X, Shi Y, Wang K, Yu J, Zhang X. Conformational isomerization: A novel mechanism to realize the AIE‐TADF behaviors. Aggregate. [DOI: 10.1002/agt2.243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sun D, Wen Y, Jin J, Zhou L, Liu Q, Liu B, Wu X, Tang N, Zhou Y, Ji S, Huo Y. Locally twisted donor-π-acceptor fluorophore based on phenanthroimidazole-phenoxazine hybrid for electroluminescence. Journal of Molecular Structure 2022. [DOI: 10.1016/j.molstruc.2022.133531] [Reference Citation Analysis]
30 Zhang P, Li M, Chen WC. A Perspective on Perovskite Solar Cells: Emergence, Progress, and Commercialization. Front Chem 2022;10:802890. [PMID: 35480386 DOI: 10.3389/fchem.2022.802890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhu L, Zhao D, Xu L, Sun M, Song Y, Liu M, Li M, Zhang J. A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterials 2022;12:1262. [DOI: 10.3390/nano12081262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 42.0] [Reference Citation Analysis]
33 Xiao YF, Chen WC, Chen JX, Lu G, Tian S, Cui X, Zhang Z, Chen H, Wan Y, Li S, Lee CS. Amplifying Free Radical Generation of AIE Photosensitizer with Small Singlet-Triplet Splitting for Hypoxia-Overcoming Photodynamic Therapy. ACS Appl Mater Interfaces 2022;14:5112-21. [PMID: 35048696 DOI: 10.1021/acsami.1c23797] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
34 Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, Zhao D, Chi Y, Li M, Lee CS, Zhang J. Near-Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metal-Free Photosensitizer for Two-Photon-Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small 2022;18:e2106215. [PMID: 35018711 DOI: 10.1002/smll.202106215] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 19.0] [Reference Citation Analysis]
35 Polgar AM, Huang SH, Hudson ZM. Donor modification of thermally activated delayed fluorescence photosensitizers for organocatalyzed atom transfer radical polymerization. Polym Chem . [DOI: 10.1039/d2py00470d] [Reference Citation Analysis]
36 Zhou L, Chen J, Ji S, Chen W, Huo Y. Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline. Acta Chimica Sinica 2022;80:359. [DOI: 10.6023/a21120587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sun X, Peng L, Gao Y, Ye J, Cui G. Theoretical studies on boron dimesityl-based thermally activated delayed fluorescence organic emitters: excited-state properties and mechanisms. New J Chem . [DOI: 10.1039/d2nj02516g] [Reference Citation Analysis]