BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu L, Gutbrod SR, Ma Y, Petrossians A, Liu Y, Webb RC, Fan JA, Yang Z, Xu R, Whalen JJ 3rd, Weiland JD, Huang Y, Efimov IR, Rogers JA. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater 2015;27:1731-7. [PMID: 25641076 DOI: 10.1002/adma.201405017] [Cited by in Crossref: 102] [Cited by in F6Publishing: 71] [Article Influence: 14.6] [Reference Citation Analysis]
Number Citing Articles
1 Ji B, Xie Z, Hong W, Jiang C, Guo Z, Wang L, Wang X, Yang B, Liu J. Stretchable Parylene-C electrodes enabled by serpentine structures on arbitrary elastomers by silicone rubber adhesive. Journal of Materiomics 2020;6:330-8. [DOI: 10.1016/j.jmat.2019.11.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
2 Nyns ECA, Jin T, Fontes MS, van den Heuvel T, Portero V, Ramsey C, Bart CI, Zeppenfeld K, Schalij MJ, van Brakel TJ, Ramkisoensing AA, Qi Zhang G, Poelma RH, Ördög B, de Vries AAF, Pijnappels DA. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovasc Res 2021:cvab294. [PMID: 34528100 DOI: 10.1093/cvr/cvab294] [Reference Citation Analysis]
3 Xu R, Lee JW, Pan T, Ma S, Wang J, Han JH, Ma Y, Rogers JA, Huang Y. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials. Adv Funct Mater 2017;27:1604545. [PMID: 29046624 DOI: 10.1002/adfm.201604545] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
4 Li H, Liu H, Sun M, Huang Y, Xu L. 3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Adv Mater 2021;33:2004425. [DOI: 10.1002/adma.202004425] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Tao X, Liao S, Wang S, Wu D, Wang Y. Body Compatible Thermometer Based on Green Electrolytes. ACS Sens 2018;3:1338-46. [DOI: 10.1021/acssensors.8b00249] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
6 Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature 2016;540:379-85. [PMID: 27974769 DOI: 10.1038/nature21004] [Cited by in Crossref: 746] [Cited by in F6Publishing: 521] [Article Influence: 149.2] [Reference Citation Analysis]
7 Zhang H, Cao Y, Chee MOL, Dong P, Ye M, Shen J. Recent advances in micro-supercapacitors. Nanoscale 2019;11:5807-21. [PMID: 30869718 DOI: 10.1039/c9nr01090d] [Cited by in Crossref: 44] [Cited by in F6Publishing: 4] [Article Influence: 14.7] [Reference Citation Analysis]
8 Zhao Q, Liang Z, Lu B, Chen Y, Ma Y, Feng X. Toothed Substrate Design to Improve Stretchability of Serpentine Interconnect for Stretchable Electronics. Adv Mater Technol 2018;3:1800169. [DOI: 10.1002/admt.201800169] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
9 Choi S, Lee H, Ghaffari R, Hyeon T, Kim D. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv Mater 2016;28:4203-18. [DOI: 10.1002/adma.201504150] [Cited by in Crossref: 629] [Cited by in F6Publishing: 445] [Article Influence: 104.8] [Reference Citation Analysis]
10 Xie K, Yuan K, Zhang K, Shen C, Lv W, Liu X, Wang J, Wei B. Dual Functionalities of Carbon Nanotube Films for Dendrite-Free and High Energy–High Power Lithium–Sulfur Batteries. ACS Appl Mater Interfaces 2017;9:4605-13. [DOI: 10.1021/acsami.6b14039] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 10.4] [Reference Citation Analysis]
11 Sim K, Ershad F, Zhang Y, Yang P, Shim H, Rao Z, Lu Y, Thukral A, Elgalad A, Xi Y, Tian B, Taylor DA, Yu C. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat Electron 2020;3:775-84. [DOI: 10.1038/s41928-020-00493-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 9.5] [Reference Citation Analysis]
12 Gao D, Parida K, Lee PS. Emerging Soft Conductors for Bioelectronic Interfaces. Adv Funct Mater 2020;30:1907184. [DOI: 10.1002/adfm.201907184] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
13 Liu Y, Yang T, Zhang Y, Qu G, Wei S, Liu Z, Kong T. Ultrastretchable and Wireless Bioelectronics Based on All‐Hydrogel Microfluidics. Adv Mater 2019;31:1902783. [DOI: 10.1002/adma.201902783] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
14 Wu H, Sariola V, Zhao J, Ding H, Sitti M, Bettinger CJ. Composition‐dependent underwater adhesion of catechol‐bearing hydrogels. Polym Int 2016;65:1355-9. [DOI: 10.1002/pi.5246] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
15 Zheng Q, Shi B, Li Z, Wang ZL. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Adv Sci (Weinh) 2017;4:1700029. [PMID: 28725529 DOI: 10.1002/advs.201700029] [Cited by in Crossref: 230] [Cited by in F6Publishing: 148] [Article Influence: 46.0] [Reference Citation Analysis]
16 Yin Y, Li M, Yuan W, Chen X, Li Y. A widely adaptable analytical method for thermal analysis of flexible electronics with complex heat source structures. Proc Math Phys Eng Sci 2019;475:20190402. [PMID: 31534432 DOI: 10.1098/rspa.2019.0402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Pan T, Pharr M, Ma Y, Ning R, Yan Z, Xu R, Feng X, Huang Y, Rogers JA. Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. Adv Funct Mater 2017;27:1702589. [DOI: 10.1002/adfm.201702589] [Cited by in Crossref: 68] [Cited by in F6Publishing: 28] [Article Influence: 13.6] [Reference Citation Analysis]
18 Wang Z, Liu T, Jiang L, Asif M, Qiu X, Yu Y, Xiao F, Liu H. Assembling Metal–Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS Appl Mater Interfaces 2019;11:32310-9. [DOI: 10.1021/acsami.9b11726] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Wu H, Huang Y, Xu F, Duan Y, Yin Z. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Adv Mater 2016;28:9881-919. [DOI: 10.1002/adma.201602251] [Cited by in Crossref: 272] [Cited by in F6Publishing: 180] [Article Influence: 45.3] [Reference Citation Analysis]
20 Hong YJ, Jeong H, Cho KW, Lu N, Kim D. Wearable and Implantable Devices for Cardiovascular Healthcare: from Monitoring to Therapy Based on Flexible and Stretchable Electronics. Adv Funct Mater 2019;29:1808247. [DOI: 10.1002/adfm.201808247] [Cited by in Crossref: 138] [Cited by in F6Publishing: 64] [Article Influence: 46.0] [Reference Citation Analysis]
21 Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci Adv 2020;6:eaba0412. [PMID: 32494686 DOI: 10.1126/sciadv.aba0412] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Kim B, Soepriatna AH, Park W, Moon H, Cox A, Zhao J, Gupta NS, Park CH, Kim K, Jeon Y, Jang H, Kim DR, Lee H, Lee KS, Goergen CJ, Lee CH. Rapid custom prototyping of soft poroelastic biosensor for simultaneous epicardial recording and imaging. Nat Commun 2021;12:3710. [PMID: 34140475 DOI: 10.1038/s41467-021-23959-3] [Reference Citation Analysis]
23 Ma Y, Jang KI, Wang L, Jung HN, Kwak JW, Xue Y, Chen H, Yang Y, Shi D, Feng X Prof, Rogers JA Prof, Huang Y Prof. Design of Strain-Limiting Substrate Materials for Stretchable and Flexible Electronics. Adv Funct Mater 2016;26:5345-51. [PMID: 29033714 DOI: 10.1002/adfm.201600713] [Cited by in Crossref: 64] [Cited by in F6Publishing: 39] [Article Influence: 10.7] [Reference Citation Analysis]
24 Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics. Adv Mater 2020;32:e1902254. [PMID: 31348578 DOI: 10.1002/adma.201902254] [Cited by in Crossref: 55] [Cited by in F6Publishing: 30] [Article Influence: 18.3] [Reference Citation Analysis]
25 Choi S, Han SI, Kim D, Hyeon T, Kim DH. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem Soc Rev 2019;48:1566-95. [PMID: 30519703 DOI: 10.1039/c8cs00706c] [Cited by in Crossref: 200] [Cited by in F6Publishing: 29] [Article Influence: 66.7] [Reference Citation Analysis]
26 Xu K, Lu Y, Takei K. Multifunctional Skin-Inspired Flexible Sensor Systems for Wearable Electronics. Adv Mater Technol 2019;4:1800628. [DOI: 10.1002/admt.201800628] [Cited by in Crossref: 192] [Cited by in F6Publishing: 79] [Article Influence: 64.0] [Reference Citation Analysis]
27 Wu W. Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials 2019;20:187-224. [DOI: 10.1080/14686996.2018.1549460] [Cited by in Crossref: 110] [Cited by in F6Publishing: 38] [Article Influence: 36.7] [Reference Citation Analysis]
28 Lee YK, Xi Z, Lee YJ, Kim YH, Hao Y, Choi H, Lee MG, Joo YC, Kim C, Lien JM, Choi IS. Computational wrapping: A universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices. Sci Adv 2020;6:eaax6212. [PMID: 32300643 DOI: 10.1126/sciadv.aax6212] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
29 Rojas JP, Singh D, Inayat SB, Sevilla GAT, Fahad HM, Hussain MM. Review—Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications. ECS J Solid State Sci Technol 2017;6:N3036-44. [DOI: 10.1149/2.0081703jss] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 7.4] [Reference Citation Analysis]
30 Chen H, Zhu F, Jang KI, Feng X, Rogers JA, Zhang Y, Huang Y, Ma Y. The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. J Mech Phys Solids 2018;120:199-207. [PMID: 30140108 DOI: 10.1016/j.jmps.2017.11.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
31 Lee JH, Kim H, Kim JH, Lee SH. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 2016;16:959-76. [PMID: 26891410 DOI: 10.1039/c5lc00842e] [Cited by in Crossref: 71] [Cited by in F6Publishing: 16] [Article Influence: 11.8] [Reference Citation Analysis]
32 Yan Z, Pan T, Yao G, Liao F, Huang Z, Zhang H, Gao M, Zhang Y, Lin Y. Highly stretchable and shape-controllable three-dimensional antenna fabricated by "Cut-Transfer-Release" method. Sci Rep 2017;7:42227. [PMID: 28198812 DOI: 10.1038/srep42227] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 3.6] [Reference Citation Analysis]
33 Chen Y, Zhang Y, Liang Z, Cao Y, Han Z, Feng X. Flexible inorganic bioelectronics. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-0065-1] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 17.0] [Reference Citation Analysis]
34 Qu J, Garabedian N, Burris DL, Martin DC. Durability of Poly(3,4-ethylenedioxythiophene) (PEDOT) films on metallic substrates for bioelectronics and the dominant role of relative shear strength. Journal of the Mechanical Behavior of Biomedical Materials 2019;100:103376. [DOI: 10.1016/j.jmbbm.2019.103376] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
35 Long Y, Li J, Yang F, Wang J, Wang X. Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Adv Sci (Weinh) 2021;8:2004023. [PMID: 33898184 DOI: 10.1002/advs.202004023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
36 Ji B, Ge C, Guo Z, Wang L, Wang M, Xie Z, Xu Y, Li H, Yang B, Wang X, Li C, Liu J. Flexible and stretchable opto-electric neural interface for low-noise electrocorticogram recordings and neuromodulation in vivo. Biosensors and Bioelectronics 2020;153:112009. [DOI: 10.1016/j.bios.2020.112009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
37 Ma Y, Feng X, Rogers JA, Huang Y, Zhang Y. Design and application of 'J-shaped' stress-strain behavior in stretchable electronics: a review. Lab Chip 2017;17:1689-704. [PMID: 28470286 DOI: 10.1039/c7lc00289k] [Cited by in Crossref: 78] [Cited by in F6Publishing: 11] [Article Influence: 19.5] [Reference Citation Analysis]
38 Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater 2016;15:679-85. [PMID: 26974408 DOI: 10.1038/nmat4590] [Cited by in Crossref: 236] [Cited by in F6Publishing: 215] [Article Influence: 39.3] [Reference Citation Analysis]
39 Wang X, Ren Y, Liu J. Liquid Metal Enabled Electrobiology: A New Frontier to Tackle Disease Challenges. Micromachines (Basel) 2018;9:E360. [PMID: 30424293 DOI: 10.3390/mi9070360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Pu J, Wang X, Xu R, Komvopoulos K. Highly Stretchable Microsupercapacitor Arrays with Honeycomb Structures for Integrated Wearable Electronic Systems. ACS Nano 2016;10:9306-15. [DOI: 10.1021/acsnano.6b03880] [Cited by in Crossref: 84] [Cited by in F6Publishing: 61] [Article Influence: 14.0] [Reference Citation Analysis]
41 Mamun MAA, Yuce MR. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv Funct Mater 2020;30:2005703. [DOI: 10.1002/adfm.202005703] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 6.5] [Reference Citation Analysis]
42 Kang S, Pak JJ. A review: flexible, stretchable multifunctional sensors and actuators for heart arrhythmia therapy. Micro and Nano Syst Lett 2017;5. [DOI: 10.1186/s40486-017-0055-9] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
43 Cassar IR, Yu C, Sambangi J, Lee CD, Whalen JJ 3rd, Petrossians A, Grill WM. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Biomaterials 2019;205:120-32. [PMID: 30925400 DOI: 10.1016/j.biomaterials.2019.03.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
44 Hinchet R, Kim SW. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems. ACS Nano 2015;9:7742-5. [PMID: 26280752 DOI: 10.1021/acsnano.5b04855] [Cited by in Crossref: 89] [Cited by in F6Publishing: 70] [Article Influence: 12.7] [Reference Citation Analysis]
45 Sunwoo S, Han SI, Kang H, Cho YS, Jung D, Lim C, Lim C, Cha M, Lee S, Hyeon T, Kim D. Stretchable Low‐Impedance Nanocomposite Comprised of Ag–Au Core–Shell Nanowires and Pt Black for Epicardial Recording and Stimulation. Adv Mater Technol 2020;5:1900768. [DOI: 10.1002/admt.201900768] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
46 Dorovskikh SI, Vikulova ES, Kal'nyi DB, Shubin YV, Asanov IP, Maximovskiy EA, Gutakovskii AK, Morozova NB, Basova TV. Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications. J Mater Sci Mater Med 2019;30:69. [PMID: 31165268 DOI: 10.1007/s10856-019-6275-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
47 Wang C, Wang C, Huang Z, Xu S. Materials and Structures toward Soft Electronics. Adv Mater 2018;30:1801368. [DOI: 10.1002/adma.201801368] [Cited by in Crossref: 230] [Cited by in F6Publishing: 136] [Article Influence: 57.5] [Reference Citation Analysis]
48 Kim H, Kim MK, Jang H, Kim B, Kim DR, Lee CH. Sensor-Instrumented Scaffold Integrated with Microporous Spongelike Ultrabuoy for Long-Term 3D Mapping of Cellular Behaviors and Functions. ACS Nano 2019;13:7898-904. [DOI: 10.1021/acsnano.9b02291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67. [DOI: 10.1039/c8cs00595h] [Cited by in Crossref: 506] [Cited by in F6Publishing: 83] [Article Influence: 168.7] [Reference Citation Analysis]
50 Zhou C, Bette S, Schnakenberg U. Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates. Adv Mater 2015;27:6664-9. [DOI: 10.1002/adma.201502630] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
51 Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D Printed Stretchable Tactile Sensors. Adv Mater 2017;29. [PMID: 28474793 DOI: 10.1002/adma.201701218] [Cited by in Crossref: 200] [Cited by in F6Publishing: 117] [Article Influence: 40.0] [Reference Citation Analysis]
52 Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. Adv Mater 2021;:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Xiao L, Zhu C, Xiong W, Huang Y, Yin Z. The Conformal Design of an Island-Bridge Structure on a Non-Developable Surface for Stretchable Electronics. Micromachines (Basel) 2018;9:E392. [PMID: 30424325 DOI: 10.3390/mi9080392] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
54 Huang Y, Wu H, Xiao L, Duan Y, Zhu H, Bian J, Ye D, Yin Z. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater Horiz 2019;6:642-83. [DOI: 10.1039/c8mh01450g] [Cited by in Crossref: 66] [Cited by in F6Publishing: 2] [Article Influence: 22.0] [Reference Citation Analysis]
55 Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019;95:91-111. [PMID: 31004844 DOI: 10.1016/j.actbio.2019.04.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
56 Cantarella G, Vogt C, Hopf R, Münzenrieder N, Andrianakis P, Petti L, Daus A, Knobelspies S, Büthe L, Tröster G, Salvatore GA. Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics. ACS Appl Mater Interfaces 2017;9:28750-7. [PMID: 28795567 DOI: 10.1021/acsami.7b08153] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 6.4] [Reference Citation Analysis]
57 Lee JH, Kim H, Hwang JY, Chung J, Jang TM, Seo DG, Gao Y, Lee J, Park H, Lee S, Moon HC, Cheng H, Lee SH, Hwang SW. 3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human-Machine Interfaces. ACS Appl Mater Interfaces 2020;12:21424-32. [PMID: 32319751 DOI: 10.1021/acsami.0c03110] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
58 Lyu J, Hammig MD, Liu L, Xu L, Chi H, Uher C, Li T, Kotov NA. Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. Appl Phys Lett 2017;111:161901. [DOI: 10.1063/1.5001094] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 5.2] [Reference Citation Analysis]
59 Wang Y, Li Z, Xiao J. Stretchable Thin Film Materials: Fabrication, Application, and Mechanics. Journal of Electronic Packaging 2016;138:020801. [DOI: 10.1115/1.4032984] [Cited by in Crossref: 42] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
60 Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Reference Citation Analysis]
61 Kumar R, Shin J, Yin L, You J, Meng YS, Wang J. All‐Printed, Stretchable Zn‐Ag 2 O Rechargeable Battery via Hyperelastic Binder for Self‐Powering Wearable Electronics. Adv Energy Mater 2017;7:1602096. [DOI: 10.1002/aenm.201602096] [Cited by in Crossref: 143] [Cited by in F6Publishing: 90] [Article Influence: 23.8] [Reference Citation Analysis]
62 Dong W, Wang Y, Zhou Y, Bai Y, Ju Z, Guo J, Gu G, Bai K, Ouyang G, Chen S, Zhang Q, Huang Y. Soft human–machine interfaces: design, sensing and stimulation. Int J Intell Robot Appl 2018;2:313-38. [DOI: 10.1007/s41315-018-0060-z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 6.8] [Reference Citation Analysis]
63 Zhu M, Wang H, Li S, Liang X, Zhang M, Dai X, Zhang Y. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Adv Healthc Mater 2021;10:e2100646. [PMID: 34050635 DOI: 10.1002/adhm.202100646] [Reference Citation Analysis]
64 Wang J, Li Z, Zhang J, Guo X. Could personalized bio-3D printing rescue the cardiovascular system? International Journal of Cardiology 2016;223:561-3. [DOI: 10.1016/j.ijcard.2016.08.208] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
65 Nam J, Seo B, Lee Y, Kim DH, Jo S. Cross-buckled structures for stretchable and compressible thin film silicon solar cells. Sci Rep 2017;7:7575. [PMID: 28790374 DOI: 10.1038/s41598-017-08012-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Cao Y, Zhang G, Zhang Y, Yue M, Chen Y, Cai S, Xie T, Feng X. Direct Fabrication of Stretchable Electronics on a Polymer Substrate with Process‐Integrated Programmable Rigidity. Adv Funct Mater 2018;28:1804604. [DOI: 10.1002/adfm.201804604] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 8.8] [Reference Citation Analysis]
67 Son D, Koo JH, Lee J, Kim D. High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. In: Rogers JA, Ghaffari R, Kim D, editors. Stretchable Bioelectronics for Medical Devices and Systems. Cham: Springer International Publishing; 2016. pp. 151-71. [DOI: 10.1007/978-3-319-28694-5_8] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
68 Tommasini G, Dufil G, Fardella F, Strakosas X, Fergola E, Abrahamsson T, Bliman D, Olsson R, Berggren M, Tino A, Stavrinidou E, Tortiglione C. Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioact Mater 2022;10:107-16. [PMID: 34901533 DOI: 10.1016/j.bioactmat.2021.08.025] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Guo R, Wang X, Yu W, Tang J, Liu J. A highly conductive and stretchable wearable liquid metal electronic skin for long-term conformable health monitoring. Sci China Technol Sci 2018;61:1031-7. [DOI: 10.1007/s11431-018-9253-9] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 8.8] [Reference Citation Analysis]
70 Meng X, Liu B, Wang Y, Zhang T, Xiao J. Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics. Journal of Applied Mechanics 2016;83:081011. [DOI: 10.1115/1.4033754] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
71 Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. Adv Mater 2020;32:1902062. [DOI: 10.1002/adma.201902062] [Cited by in Crossref: 122] [Cited by in F6Publishing: 53] [Article Influence: 40.7] [Reference Citation Analysis]
72 Kim BH, Lee J, Won SM, Xie Z, Chang JK, Yu Y, Cho YK, Jang H, Jeong JY, Lee Y, Ryu A, Kim DH, Lee KH, Lee JY, Liu F, Wang X, Huo Q, Min S, Wu D, Ji B, Banks A, Kim J, Oh N, Jin HM, Han S, Kang D, Lee CH, Song YM, Zhang Y, Huang Y, Jang KI, Rogers JA. Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano 2018;12:4164-71. [PMID: 29641889 DOI: 10.1021/acsnano.8b00180] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
73 Zhu F, Xiao H, Li H, Huang Y, Ma Y. Irregular Hexagonal Cellular Substrate for Stretchable Electronics. Journal of Applied Mechanics 2019;86:034501. [DOI: 10.1115/1.4042288] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
74 Goto H, Komae H, Sekine H, Homma J, Lee S, Yokota T, Matsuura K, Someya T, Ono M, Shimizu T. Continuous measurement of surface electrical potentials from transplanted cardiomyocyte tissue derived from human-induced pluripotent stem cells under physiological conditions in vivo. Heart Vessels 2021;36:899-909. [PMID: 33683408 DOI: 10.1007/s00380-021-01824-z] [Reference Citation Analysis]
75 Zhang C, Hsieh M, Wu S, Li S, Wu J, Liu S, Wei H, Weisel RD, Sung H, Li R. A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials 2020;231:119672. [DOI: 10.1016/j.biomaterials.2019.119672] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
76 Rich SI, Jiang Z, Fukuda K, Someya T. Well-rounded devices: the fabrication of electronics on curved surfaces - a review. Mater Horiz 2021;8:1926-58. [PMID: 34846471 DOI: 10.1039/d1mh00143d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Song K, Han JH, Yang HC, Nam KI, Lee J. Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices. Biosensors and Bioelectronics 2017;92:364-71. [DOI: 10.1016/j.bios.2016.10.095] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
78 Liu Y, He K, Chen G, Leow WR, Chen X. Nature-Inspired Structural Materials for Flexible Electronic Devices. Chem Rev 2017;117:12893-941. [DOI: 10.1021/acs.chemrev.7b00291] [Cited by in Crossref: 328] [Cited by in F6Publishing: 225] [Article Influence: 65.6] [Reference Citation Analysis]