1
|
Choi HJ, Jeong YJ, Kim J, Hoe HS. EGFR is a potential dual molecular target for cancer and Alzheimer's disease. Front Pharmacol 2023; 14:1238639. [PMID: 37601068 PMCID: PMC10433764 DOI: 10.3389/fphar.2023.1238639] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Many researchers are attempting to identify drugs that can be repurposed as effective therapies for Alzheimer's disease (AD). Several recent studies have highlighted epidermal growth factor receptor (EGFR) inhibitors approved for use as anti-cancer drugs as potential candidates for repurposing as AD therapeutics. In cancer, EGFR inhibitors target cell proliferation and angiogenesis, and studies in AD mouse models have shown that EGFR inhibitors can attenuate amyloid-beta (Aβ) pathology and improve cognitive function. In this review, we discuss the different functions of EGFR in cancer and AD and the potential of EGFR as a dual molecular target for AD diseases. In addition, we describe the effects of anti-cancer EGFR tyrosine kinase inhibitors (TKIs) on AD pathology and their prospects as therapeutic interventions for AD. By summarizing the physiological functions of EGFR in cancer and AD, this review emphasizes the significance of EGFR as an important molecular target for these diseases.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoo Joo Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
2
|
[STE029 Overcomes EGFR-TKI Resistance in Human Lung Adenocarcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:771-781. [PMID: 36419390 PMCID: PMC9720680 DOI: 10.3779/j.issn.1009-3419.2022.102.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Acquired and primary resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is still the bottleneck of clinical treatment of advanced non-small cell lung cancer (NSCLC). STE029 is a novel anticancer drug which consists of 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGCR) inhibitor and novel cancer cell membrane targeting molecular. This study aimed to investigate the reversal mechanism of EGFR-TKI resistance by STE029 in lung adenocarcinoma. METHODS CCK8 test was used to test the cell viability and survival rate of EGFR mutated PC9 cell (Gefitinib sensitive), PC9/BB4 cell (acquired Gefitinib resistant), and EGFR wild type A549 cell after treatment of STE029, Gefitinib or combination of both. EdU test was applied to detect changes in cell cycle and Hoechst 33258 was applied to detect apoptosis rate in overcoming the EGFR-TKI resistance. The activity of EGFR/PI3K/Akt, cell cycle and apoptosis signal pathways were examined. In vivo, nude mice were exposed to STE029, Gefitinib and STE029+Gefitinib for 5 wk. And the the tumor volume was measured and tumor weight was obtained on the last day. RESULTS (1) PC9 cells was highly sensitive to Gefitinib, while PC9/BB4 and A549 cell showed significant resistance to Gefitinib treatment; (2) STE029+Gefitinib treatment could significantly decrease the 50% inhibitory concentrarion (IC₅₀) of Gefitinib in PC9, PC9/BB4 and A549 cells (P<0.05, respectively); (3) In PC9 and PC9/BB4 cells, STE029+Gefitinib can block cell cycle and inhibit cell proliferation (P<0.001), while there was no significant difference in apoptosis rate among three drug intervention groups (P>0.05); However, apoptosis rate was increased in STE029+Gefitinib group in A549 cell (P<0.01), while no significance detected in cell proliferation (P>0.05). (4) In PC9 and PC9/BB4 cells, the combination of STE029 and Gefitinib could downregulate p-EGFR, p-Akt, p-Cyclin D1 and Cyclin D1 (P<0.001), and upregulate the expression of GSK-3β (P<0.001), and the expression of cleaved caspase-8, caspase-8 cleaved caspase-9, caspase-9 showed no difference among groups (P>0.05). In A549 cells, the combination of STE029 and Gefitinib could downregulate p-Akt (P<0.001) and upregulate cleaved caspase-8 and cleaved caspase-9 (P<0.001); (5)In vivo, the combination of STE029 and Gefitinib effectively inhibited tumor development and progression compared to STE029 alone or Gefitinib alone, with significant difference (P<0.05) in PC9 and PC9/BB4 xenografted tumor. CONCLUSIONS STE029 could sensitize Gefitinib by inhibiting EGFR/PI3K/Akt pathway, blocking the tumor cell cycle and proliferation and inducing apoptosis through caspase-8 and caspase-9 dependent pathway. STE029 deserves further investigations in overcoming EGFR-TKI resistance in lung cancer.
Collapse
|
3
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
4
|
Liu Z, Dong H, Chen W, Wang B, Ji D, Zhang W, Shi X, Feng X. Case Report: Heterogeneity of Resistance Mechanisms in Different Lesions Co-Mediate Acquired Resistance to First-Line Icotinib in EGFR Mutant Non-Small Cell Lung Cancer. Front Med (Lausanne) 2022; 9:906364. [PMID: 35872785 PMCID: PMC9302584 DOI: 10.3389/fmed.2022.906364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-activating mutations are major oncogenic mechanisms in non-small cell lung cancer (NSCLC). Most patients with NSCLC with EGFR mutations benefit from targeted therapy with EGFR- tyrosine kinase inhibitors (TKIs). One of the main limitations of targeted therapy is that the tumor response is not durable, with the inevitable development of drug resistance. Previous studies demonstrated that the potential resistance mechanisms are diverse, including the presence of EGFR T790M, MET amplification, mesenchymal transformation, and anaplastic lymphoma kinase (ALK) rearrangement. The patient in our report was diagnosed with stage IA lung adenocarcinoma harboring the EGFR L858R mutation and underwent radical surgery. The patient received icotinib for 12 months after recurrence. Subsequent molecular analysis of the left pleural effusion indicated that LCLAT1-ALK fusion might be an underlying mechanism contributing to the acquired resistance to icotinib. Ensartinib was prescribed, but the lesion in the right lung continued to progress. Hence, a re-biopsy and molecular analysis of lesions in the right lung was performed to solve this problem. In contrast to the left pleural effusion, EGFR exon 20 T790M might have mediated the acquired resistance in lesions in the right lung of this patient. The combination of osimertinib and ensartinib has achieved a rapid partial response until now. The complexity and heterogeneity in our case may provide new insights into the resistance mechanisms of targeted therapy.
Collapse
Affiliation(s)
- Zhicong Liu
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Hui Dong
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wenyan Chen
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Dongxiang Ji
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Wei Zhang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Wei Zhang
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- Xuefei Shi
| | - Xueren Feng
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
- *Correspondence: Xueren Feng
| |
Collapse
|
5
|
Gao N, Zhang X, Hu X, Kong Q, Cai J, Hu G, Qian J. The Influence of CYP3A4 Genetic Polymorphism and Proton Pump Inhibitors on Osimertinib Metabolism. Front Pharmacol 2022; 13:794931. [PMID: 35359868 PMCID: PMC8960255 DOI: 10.3389/fphar.2022.794931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to 1) investigate the effects of 27 CYP3A4 variants on the metabolism of osimertinib and 2) study the interactions between osimertinib and others as well as the underlying mechanism. A recombinant human CYP3A4 enzymatic incubation system was developed and employed to determine the kinetic profile of CYP3A4 variants. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) was applied to detect the concentration of the main metabolite, AZ5104. The results demonstrated that the relative clearance rates of CYP3A4.19, 10, 18, 5, 16, 14, 11, 2, 13, 12, 7, 8, and 17 in catalyzing osimertinib were significantly reduced to a minimum of 25.68% compared to CYP3A4.1, while those of CYP3A4.29, 32, 33, 28, 15, 34, and 3 were obviously enhanced, ranging from 114.14% to 284.52%. The activities of the remaining variants were almost equal to those of CYP3A4.1. In addition, 114 drugs were screened to determine the potential interaction with osimertinib based on the rat liver microsome (RLM) reaction system. Sixteen of them inhibited the production of AZ5104 to 20% or less, especially proton pump inhibitors, among which the IC50 of rabeprazole was 6.49 ± 1.17 μM in RLM and 20.39 ± 2.32 μM in human liver microsome (HLM), with both following competitive and non-competitive mixed mechanism. In an in vivo study, Sprague–Dawley (SD) rats were randomly divided into groups, with six animals per group, receiving osimertinib with or without rabeprazole, omeprazole, and lansoprazole. We found that the AUC(0–t), AUC(0–∞), and Cmax of osimertinib decreased significantly after co-administration with rabeprazole orally, but they increased remarkably when osimertinib was administered through intraperitoneal injection. Taken together, our data demonstrate that the genetic polymorphism and proton pump inhibitors remarkably influence the disposition of osimertinib, thereby providing basic data for the precise application of osimertinib.
Collapse
Affiliation(s)
- Nanyong Gao
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaodan Zhang
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Seventh People’s Hospital of Wenzhou, Wenzhou, China
| | - Xiaoqin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qihui Kong
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianping Cai
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| | - Guoxin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| | - Jianchang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianchang Qian, ; Guoxin Hu, ; Jianping Cai,
| |
Collapse
|
6
|
BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med 2021; 53:1877-1887. [PMID: 34876693 PMCID: PMC8741967 DOI: 10.1038/s12276-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022] Open
Abstract
BIX01294 (BIX), an inhibitor of the G9a histone methyltransferase, has been reported to have antitumor activity against a variety of cancers. However, the molecular mechanisms underlying its anticancer effects, particularly those against lung cancer, remain unclear. Here, we report that BIX induces apoptotic cell death in EGFR-mutant non-small cell lung cancer (NSCLC) cells but not in their wild-type counterparts. Treatment with BIX resulted in a significant reduction in the EGFR level and inhibition of EGFR signaling only in EGFR-mutant NSCLC cells, leading to apoptosis. BIX also inhibited mitochondrial metabolic function and decreased the cellular energy levels that are critical for maintaining the EGFR level. Furthermore, BIX transcriptionally downregulated the transcription of branched-chain α-keto acid dehydrogenase (BCKDHA), which is essential for fueling the tricarboxylic acid (TCA) cycle. Interestingly, this BCKDHA downregulation was due to inhibition of Jumanji-domain histone demethylases but not the G9a histone methyltransferase. We observed that KDM3A, a Jumonji histone demethylase, epigenetically regulates BCKDHA expression by binding to the BCKDHA gene promoter. BIX exposure also led to a significant decrease in the EGFR level, causing apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Taken together, our current data suggest that BIX triggers apoptosis only in EGFR-mutant NSCLC cells via inhibition of BCKDHA-mediated mitochondrial metabolic function. A drug known as BIX that is effective against bladder and breast cancers may also be effective in fighting non-small cell lung cancer (NSCLC). Although advances have been made in treatment of NSCLC, one of the most effective drugs targets a protein called EGFR, and EGFR gene mutations that lead to acquired drug resistance are common. Jaekyoung Son at the University of Ulsan, Seoul, South Korea, and colleagues investigated whether BIX is effective against NSCLC and attempted to elucidate its mechanism of action. The researchers found that BIX caused death of NSCLC cells, especially those with mutations in the EGFR gene. Further investigation showed that BIX was effective even against drug-resistant NSCLC cells, by acting via a different metabolic pathway. BIX shows promise as an alternative therapy for lung cancer, to overcome drug resistance.
Collapse
|
7
|
Shen HC, Hsu YF, Chiang CL. Successful Treatment of Nonbacterial Thrombotic Endocarditis and Disseminated Intravascular Coagulation in a Patient With Advanced Lung Adenocarcinoma Using Osimertinib. JTO Clin Res Rep 2020; 1:100066. [PMID: 34589949 PMCID: PMC8474395 DOI: 10.1016/j.jtocrr.2020.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hsiao-Chin Shen
- Division of Thoracic Oncology, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Fu Hsu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Lu Chiang
- Division of Thoracic Oncology, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
8
|
Gil HI, Um SW. The impact of age and performance status on the efficacy of osimertinib in patients with EGFR T790M-positive non-small cell lung cancer. J Thorac Dis 2020; 12:153-155. [PMID: 32274079 PMCID: PMC7139039 DOI: 10.21037/jtd.2019.12.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyun-Il Gil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Saraon P, Snider J, Kalaidzidis Y, Wybenga-Groot LE, Weiss K, Rai A, Radulovich N, Drecun L, Vučković N, Vučetić A, Wong V, Thériault B, Pham NA, Park JH, Datti A, Wang J, Pathmanathan S, Aboualizadeh F, Lyakisheva A, Yao Z, Wang Y, Joseph B, Aman A, Moran MF, Prakesch M, Poda G, Marcellus R, Uehling D, Samaržija M, Jakopović M, Tsao MS, Shepherd FA, Sacher A, Leighl N, Akhmanova A, Al-Awar R, Zerial M, Stagljar I. A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nat Chem Biol 2020; 16:577-586. [PMID: 32094923 DOI: 10.1038/s41589-020-0484-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.
Collapse
Affiliation(s)
- Punit Saraon
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Konstantin Weiss
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nika Vučković
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adriana Vučetić
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Brigitte Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jin H Park
- Department of Pharmacology and Cancer Biology Institute, Yale University, New Haven, CT, USA.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro Datti
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jenny Wang
- Network Biology Collaborative Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shivanthy Pathmanathan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Lyakisheva
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael F Moran
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Miroslav Samaržija
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Marko Jakopović
- Department for Lung Diseases Jordanovac, Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. .,Mediterranean Institute for Life Sciences, Split, Croatia.
| |
Collapse
|
10
|
He W, Lu J. MiR-338 regulates NFATc1 expression and inhibits the proliferation and epithelial-mesenchymal transition of human non-small-cell lung cancer cells. Mol Genet Genomic Med 2019; 8:e1091. [PMID: 31823518 PMCID: PMC7005663 DOI: 10.1002/mgg3.1091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It is well known that nuclear factor of activated T cells c1 (NFATc1) expression is closely associated with progression of many cancers. And we found that miR-338 could directly target the NFATc1. However, the precise mechanisms of miR-338 in non-small-cell lung cancer (NSCLC) have not been well clarified. Our study aimed to explore the interaction between NFATc1 and miR-338 in NSCLC. METHODS Quantitative RT-PCR was utilized to determine the expressions of NFATc1 and miR-338 in NSCLC tissues and cell lines. And the cell proliferation and epithelial-mesenchymal transition (EMT) were assessed to determine the functional roles of miR-338 and NFATc1 in NSCLC cells. NFATc1 expression was detected using quantitative RT-PCR and western blotting, respectively. Luciferase reporter assays were performed to validate NFATc1 as a target of miR-338 in NSCLC cells. RESULTS In this study, our results showed that NFATc1 expression was significantly up-regulated in NSCLC tissues and cell lines, and the miR-338 level was dramatically down-regulated. Moreover high NFATc1 expression was closely associated with low miR-338 level in NSCLC tissues. Moreover introduction of miR-338 significantly inhibited proliferation and EMT of NSCLC cells. Bioinformatics analysis predicted that the NFATc1 was a potential target gene of miR-338. We demonstrated that miR-338 could directly target NFATc1 by using luciferase reporter assay. Besides, knockdown of NFATc1 had the similar effects with miR-338 overexpression on NSCLC cells. Up-regulation of NFATc1 in NSCLC cells partially abolished the inhibitory effects of miR-338 mimic. CONCLUSIONS Overexpression of miR-338 inhibited cell proliferation and EMT of NSCLC cells by directly down-regulating NFATc1 expression.
Collapse
Affiliation(s)
- Wei He
- Second Thoracic Surgery Ward, Shengjing Hospital Affiliated to China Medical University, Liaoning, People's Republic of China
| | - Jibin Lu
- First Thoracic Surgery Ward, Shengjing Hospital Affiliated to China Medical University, Liaoning, People's Republic of China
| |
Collapse
|
11
|
Ayeni D, Miller B, Kuhlmann A, Ho PC, Robles-Oteiza C, Gaefele M, Levy S, de Miguel FJ, Perry C, Guan T, Krystal G, Lockwood W, Zelterman D, Homer R, Liu Z, Kaech S, Politi K. Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. J Immunother Cancer 2019; 7:172. [PMID: 31291990 PMCID: PMC6617639 DOI: 10.1186/s40425-019-0643-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) like erlotinib are effective for treating patients with EGFR mutant lung cancer; however, drug resistance inevitably emerges. Approaches to combine immunotherapies and targeted therapies to overcome or delay drug resistance have been hindered by limited knowledge of the effect of erlotinib on tumor-infiltrating immune cells. Methods Using mouse models, we studied the immunological profile of mutant EGFR-driven lung tumors before and after erlotinib treatment. Results We found that erlotinib triggered the recruitment of inflammatory T cells into the lungs and increased maturation of alveolar macrophages. Interestingly, this phenotype could be recapitulated by tumor regression mediated by deprivation of the EGFR oncogene indicating that tumor regression alone was sufficient for these immunostimulatory effects. We also found that further efforts to boost the function and abundance of inflammatory cells, by combining erlotinib treatment with anti-PD-1 and/or a CD40 agonist, did not improve survival in an EGFR-driven mouse model. Conclusions Our findings lay the foundation for understanding the effects of TKIs on the tumor microenvironment and highlight the importance of investigating targeted and immuno-therapy combination strategies to treat EGFR mutant lung cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0643-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah Ayeni
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Braden Miller
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Department of Fundamental Oncology, University of Lausanne, Ludwig Cancer Research Lausanne Branch, Lausanne, Switzerland
| | | | - Mmaserame Gaefele
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Curtis Perry
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Gerald Krystal
- British Columbia Cancer Agency, B.C, Vancouver, V5Z 1L3, Canada
| | | | - Daniel Zelterman
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA.,VA Connecticut Healthcare System, Pathology and Laboratory Medicine Service, 950 Campbell Ave, West Haven, CT, 06516, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Susan Kaech
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA. .,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Jeong BH, Um SW. Current role and future direction of osimertinib in epidermal growth factor receptor-mutant non-small cell lung cancer. J Thorac Dis 2019; 11:39-41. [PMID: 30863565 DOI: 10.21037/jtd.2018.12.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Jiang T, Su C, Ren S, Cappuzzo F, Rocco G, Palmer JD, van Zandwijk N, Blackhall F, Le X, Pennell NA, Zhou C. A consensus on the role of osimertinib in non-small cell lung cancer from the AME Lung Cancer Collaborative Group. J Thorac Dis 2018; 10:3909-3921. [PMID: 30174832 DOI: 10.21037/jtd.2018.07.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first- and second-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have brought substantial clinical benefit to patients with advanced non-small cell lung cancer (NSCLC) and sensitizing EGFR mutation. However, acquired resistance is inevitable since the vast majority of patients experience disease relapse within ~1-2 years. Osimertinib is a novel irreversible, covalent third-generation EGFR-TKI and potent inhibitor of EGFR T790M mutation, the most common mechanism of acquired resistance to first-generation EGFR-TKIs. Several trials have consistently demonstrated the superior clinical activity and safety of osimertinib in patients with advanced NSCLC and acquired EGFR T790M mutation after treatment with a first-generation EGFR-TKI. Recently, the efficacy of osimertinib in a first-line setting was demonstrated to be clearly superior to standard-first line treatment in patients with EGFR-mutant NSCLC regardless of T790M mutation status. Nevertheless, this advance, several unresolved issues of osimertinib should be emphasized including the molecular mechanisms of acquired resistance to osimertinib, the feasibility of testing EGFR T790M mutation from plasma circulating tumor DNA, its efficacy to patients with central nervous system (CNS) metastases or exon 20 mutations, its combination with other therapeutic strategies such as immune checkpoint inhibitors and its role in adjuvant therapy.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | - Federico Cappuzzo
- Director Oncology and Hematology Department, AUSL Romagna, Viale Randi 5, Ravenna, Italy
| | - Gaetano Rocco
- Department of Thoracic Surgery and Oncology, National Cancer Institute, Pascale Foundation, Naples, Italy
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute at the Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nico van Zandwijk
- University of Sydney, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Fiona Blackhall
- Institute of Cancer Sciences, University of Manchester, and Christie Hospital National Health Service Foundation Trust, Manchester, UK
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nathan A Pennell
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China
| | | |
Collapse
|
14
|
Jin T, Hu B, Chen S, Wang Q, Dong X, Zhang Y, Zhu Y, Zhang Z. An in Vitro Assay of hERG K + Channel Potency for a New EGFR Inhibitor FHND004. Front Pharmacol 2018; 9:577. [PMID: 29904349 PMCID: PMC5990611 DOI: 10.3389/fphar.2018.00577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
FHND004 is a newly synthesized epidermal growth factor receptor (EGFR) inhibitor for the treatment of non-small cell lung cancer (NSCLC). The aim of the present study was to investigate the impacts of FHND004 on human ether-à-go-go-related gene (hERG) K+ channels and the molecular mechanisms underlying of its action. Whole-cell patch clamp recording was performed on wild type (WT), mutant hERG channels heterologously expressed in human embryonic kidney (HEK) 293 cells or IKr endogenously expressed in HL-1 cells, respectively. FHND004 inhibited hERG K+ currents in a concentration-dependent manner with IC50 values of 8.46 ± 0.33 μM in HEK293 cells and 7.52 ± 1.27 μM in HL-1 cells, respectively. However, the inhibitory potency of FHND004 on hERG channels was significantly less than its precursor AZD9291. FHND004-induced inhibition was state-dependent with a preference within open state, but did not alter other kinetics including activation, inactivation, and recovery from inactivation or deactivation. In addition, FHND004 exhibited more potent inhibitory effects on WT/A422T and WT/H562P-hERG, two known long QT syndrome (LQTS) associated KCNH2 mutations, than WT alone. Mutations of the residues at pore regions (F656C, Y652A, S624A, and F557L) in hERG channels attenuated block effects of FHND004. Taken together, our results demonstrate the evidence that FHND004 is a less potent hERG blocker than its precursor AZD9291. There is, however, a need for caution in the potential use of FHND004 for treating NSCLC patients, especially in those with other concurrent triggering factors.
Collapse
Affiliation(s)
- Tao Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Bingxue Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shanshan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,Jiangsu Chia Tai Fenghai Pharmaceutical Co., Ltd., Nanjing, China
| | - Qiang Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xue Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yongqiang Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Vollbrecht C, Lehmann A, Lenze D, Hummel M. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget 2018; 9:18529-18539. [PMID: 29719623 PMCID: PMC5915090 DOI: 10.18632/oncotarget.24908] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.
Collapse
Affiliation(s)
- Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika Lehmann
- Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Dido Lenze
- Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Michael Hummel
- Charité-Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
16
|
Mutational Profiling of Non-Small-Cell Lung Cancer Resistant to Osimertinib Using Next-Generation Sequencing in Chinese Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9010353. [PMID: 29713646 PMCID: PMC5866881 DOI: 10.1155/2018/9010353] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 12/29/2022]
Abstract
Purpose To identify the somatic mutated genes for optimal targets of non-small-cell lung cancer after resistance to osimertinib treatment. Patients and Methods Study patients all had advanced lung adenocarcinoma and acquired resistance to osimertinib as a second- or third-line treatment. These patients had harboring EGFR T790M mutation before osimertinib treatment, which was confirmed by Amplification Refractory Mutation System (ARMS) PCR or Next-Generation Sequencing (NGS). After resistance to osimertinib treatment, tumor tissue was collected by core needle biopsy. DNA was extracted from 15 × 5 um sliced section of formalin-fixed paraffin-embedded (FFPE) material and NGS was done. The genetic changes were analyzed. Results A total of 9 Chinese patients were studied, 5 females and 4 males, age 51–89 years. After progression with osimertinib treatment, core needle biopsy was performed and next-generation sequencing was performed. Nine patients had harboring 62 point mutations, 2 altered gene copies, 2 amplifications, and 1 EML4-ALK gene fusion. No MET or HER2 amplification was found in this cohort study. Nine patients still maintained initial EGFR 19 del or L858R activating mutations, while 7 of them kept EGFR T790M mutations. Among the 7 patients, 5 had secondary EGFR C797S and/or C797G mutations, which all happened in the same allele with T790M mutation. All patients were treated with targets therapies, chemotherapy, or best supportive care (BSC) in accordance with NGS genetic results and patients' performance status; 7 of them are still alive and 2 of them died of disease progression at last follow-up. Conclusions EGFR C797S/G mutation and the same one presented on the same allele with EGFR T790M mutation were the most common mutation feature and played a key role in resistance to osimertinib in Chinese patients with NSCLC. Tumor cells losing T790M mutation and maintaining EGFR activating mutation might benefit from first-generation EGFR-TKI treatment.
Collapse
|
17
|
Jeong BH, Um SW. First-line osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:62. [PMID: 29610752 DOI: 10.21037/atm.2017.12.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Park JH, Choi YJ, Kim SY, Lee JE, Sung KJ, Park S, Kim WS, Song JS, Choi CM, Sung YH, Rho JK, Lee JC. Activation of the IGF1R pathway potentially mediates acquired resistance to mutant-selective 3rd-generation EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 2017; 7:22005-15. [PMID: 26980747 PMCID: PMC5008340 DOI: 10.18632/oncotarget.8013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Mutant-selective, 3rd-generation EGFR-TKIs were recently developed to control lung cancer cells harboring T790M-mediated resistance. However, the development of resistance to these novel drugs seems inevitable. Thus, we investigated the mechanism of acquired resistance to the mutant-selective EGFR-TKI WZ4002. We established five WZ4002-resistant cells, derived from cells harboring both EGFR and T790M mutations by long-term exposure to increasing doses of WZ4002. Compared with the parental cells, all resistant cells showed 10-100-folds higher resistance to WZ4002, as well as cross-resistance to other mutant-selective inhibitors. Among them, three resistant cells (HCC827/WR, PC-9/WR and H1975/WR) showed dependency on EGFR signaling, but two other cells (PC-9/GR/WR and PC-9/ER/WR) were not. Notably, insulin-like growth factor-1 receptor (IGF1R) was aberrantly activated in PC-9/GR/WR cells in phospho-receptor tyrosine kinase array, consistently accompanied by loss of IGF binding protein-3 (IGFBP3). Down-regulation of IGF1R by shRNA, as well as inhibition of IGF1R activity either by AG-1024 (a small molecule IGF1R inhibitor) or BI 836845 (a monoclonal anti-IGF1/2 blocking antibody), restored the sensitivity to WZ4002 both in vitro and xenograft. Taken together, these results suggest that activation of the IGF1R pathway associated with IGFBP3 loss can induce an acquired resistance to the mutant-selective EGFR-TKI, WZ4002. Therefore, a combined therapy of IGF1R inhibitors and mutant-selective EGFR-TKIs might be a viable treatment strategy for overcoming acquired resistance.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Yun Jung Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Seon Ye Kim
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jung-Eun Lee
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Ki Jung Sung
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Sojung Park
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Woo Sung Kim
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jin Kyung Rho
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Bui N, Woodward B, Johnson A, Husain H. Novel Treatment Strategies for Brain Metastases in Non-small-cell Lung Cancer. Curr Treat Options Oncol 2017; 17:25. [PMID: 27085533 DOI: 10.1007/s11864-016-0400-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OPINION STATEMENT Brain metastases are common in patients with non-small cell lung cancer (NSCLC), and due to associated poor prognosis, this field is an important area of need for the development of innovative medical therapies. Therapies including local approaches through surgical intervention and/or radiation and evolving systemic therapies have led to improvements in the treatment of brain metastases in patients with lung cancer. Strategies that consider applying advanced radiation techniques to minimize toxicity, intervening early with effective systemic therapies to spare radiation/surgery, testing radiosensitization combinations, and developing drug penetrant molecules have and will continue to define new practice patterns. We believe that in carefully considered asymptomatic patients, first-line systemic therapy may be considered before radiation therapy and small-molecule targeted therapy may provide an opportunity to defer radiation therapy for recurrence or progression of disease. The next several years in oncology drug development will see the reporting on of brain penetrant molecules in oncogene-defined non-small cell lung cancer. Ongoing studies will evaluate immunotherapies in patients with brain metastases with associated endpoints. We hope that continued drug development and carefully designed clinical trials may afford an opportunity to improve the lives of patients with brain metastases.
Collapse
Affiliation(s)
- Nam Bui
- Division of Hematology and Oncology, University of California, San Diego School of Medicine, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Brian Woodward
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Anna Johnson
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, San Diego, CA, USA
| | - Hatim Husain
- Division of Hematology and Oncology, University of California, San Diego School of Medicine, UCSD Moores Cancer Center, San Diego, CA, USA. .,Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, San Diego, CA, USA. .,, 3855 Health Sciences Dr. #0987, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Dong L, Lei D, Zhang H. Clinical strategies for acquired epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small-cell lung cancer patients. Oncotarget 2017; 8:64600-64606. [PMID: 28969097 PMCID: PMC5610029 DOI: 10.18632/oncotarget.19925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations (EGFRm+) occur in 10–35% of non-small-cell lung cancer (NSCLC) cases and confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs are standard treatments for NSCLC patients harboring EGFR exon 19 deletions or exon 21 L858R point mutations. Despite initial benefit, most patients develop drug resistance, posing a challenge to oncologists. The secondary T790M point mutation in EGFR exon 20 contributes to approximately 60% of resistance cases. Optimum strategies for overcoming acquired EGFR TKI resistance are not clearly defined, although current common practice is to switch to platinum-based chemotherapy following resistance onset. While the second-generation EGFR TKIs, including afatinib, dacomitinib, and neratinib, exhibit promising preclinical activity against T790M mutants, dose-limiting toxicities in patients have limited clinical success. However, third generation EGFR TKIs appear able to overcome this mutation. Other treatment options aimed at EGFR TKI resistance include use of an EGFR TKI beyond progression, and chemotherapy plus an EGFR TKI. This review focuses on improved anticancer agents and therapy options for NSCLC patients with acquired EGFR TKI resistance.
Collapse
Affiliation(s)
- Lijun Dong
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dan Lei
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Yu Q, Huang F, Zhang M, Ji H, Wu S, Zhao Y, Zhang C, Wu J, Wang B, Pan B, Zhang X, Guo W. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients. Mol Med Rep 2017; 16:1157-1166. [PMID: 29067441 PMCID: PMC5562084 DOI: 10.3892/mmr.2017.6712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/13/2017] [Indexed: 12/30/2022] Open
Abstract
To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.
Collapse
Affiliation(s)
- Qian Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Meilin Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shenchao Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ying Zhao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jiong Wu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Baisheng Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xin Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Paradigm shift of therapeutic management of brain metastases in EGFR-mutant non-small cell lung cancer in the era of targeted therapy. Med Oncol 2017; 34:121. [PMID: 28555261 DOI: 10.1007/s12032-017-0978-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations commonly present brain metastases (BM) at the time of NSCLC diagnosis or during the clinical course. Conventionally, the prognosis of BM has been extremely poor, but the advent of EGFR-tyrosine kinase inhibitors (TKIs) has drastically improved the prognosis in these patients. Despite the presence of the blood-brain barrier, EGFR-TKIs have dramatic therapeutic effects on both BM and extracranial disease. In addition, recent systemic chemotherapies reportedly play a role in controlling BM. These treatment modalities can potentially replace whole brain radiotherapy (WBRT) to prevent or delay neurocognitive decline. Therefore, how to utilize these treatments is one issue. The other issue is what kind of treatment is best for recurrence after TKI therapy. Recent reports have shown a positive effect of a combination therapy of EGFR-TKI and radiotherapy on BM. Although neurocognitive decline is underscored when WBRT is considered, a survival benefit from WBRT has been proven especially in the potential long survivors with good prognostic index, especially disease-specific graded prognostic index (DS-GPA). In this review, treatment strategy including chemotherapeutic agents and radiotherapy is discussed in terms of risk-benefit balance in conjunction with DS-GPA.
Collapse
|
23
|
Wan Y, Yuan Y, Pan Y, Zhang Y. Antitumor activity of high-dose pulsatile gefitinib in non-small-cell lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Exp Ther Med 2017; 13:3067-3074. [PMID: 28587381 DOI: 10.3892/etm.2017.4356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated efficacy in the treatment of advanced non-small cell lung cancer (NSCLC). However, their clinical efficacy is limited by acquired resistance. Drug resistance may be mediated by EGFR transduction, and a number of clinical trials have demonstrated that high-dose pulsatile TKIs may be effective at treating patients with acquired resistance, though their underlying mechanisms of action remain unknown. The aim of the present study was to investigate the antitumor activity of high-dose pulsatile gefitinib in NSCLC model cell lines, namely the EGFR-TKI-sensitive cell line PC9, as a control group, and the EGFR-TKI-resistant cell lines H1975 and H1650. The cell lines were administered with different doses of gefitinib and cell viability was measured using an MTT assay. Cell apoptosis and cycling were also determined by flow cytometry and the expression of phospho (p)-EGFR, EGFR, p-AKT and AKT were measured by western blot analysis. It was observed that the apoptotic rate of H1975 cells treated with high-dose pulsatile gefitinib significantly increased, while levels of p-EGFR and p-AKT were decreased. However, there was no significant difference in the apoptotic rate or level of p-AKT in gefitinib-treated H1650 cells, while p-EGFR levels decreased. By contrast, the EGFR-TKI-sensitive cell line PC9 exhibited sensitivity to gefitinib. It was demonstrated that the apoptosis rates were markedly increased when treated with high dose pulsatile gefitinib in PC9 cell line, while a decrease was noted in p-EGFR and p-AKT. These data suggest that high-dose pulsatile gefitinib treatment may overcome acquired resistance in NSCLC, though its efficacy is dependent on the type of drug resistance mutation(s) present. Furthermore, high-dose pulsatile gefitinib may inhibit tumor growth and induce cell apoptosis by blocking the EGFR signaling pathway. Therefore, if the signaling pathways involved in drug resistance are not activated by the EGFR gene, high-dose pulsatile gefitinib may have little efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yitao Wan
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuan Yuan
- Central Laboratory of Binhu Hospital, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ying Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
24
|
Nie KK, Zou X, Geng CX, Zhang L, Liu SC, Zhang CL, Ji YX. AZD9291-induced Acute Interstitial Lung Disease. Chin Med J (Engl) 2017; 129:1507-8. [PMID: 27270553 PMCID: PMC4910381 DOI: 10.4103/0366-6999.183426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ke-Ke Nie
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - Xiao Zou
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - Chuan-Xin Geng
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - Ling Zhang
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - Shi-Chao Liu
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - Chun-Ling Zhang
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| | - You-Xin Ji
- Department of Oncology, Qingdao Central Hospital, Second Affiliated Hospital of Qingdao University, Qingdao, Shandong 266042, China
| |
Collapse
|
25
|
Gudernova I, Foldynova-Trantirkova S, Ghannamova BE, Fafilek B, Varecha M, Balek L, Hruba E, Jonatova L, Jelinkova I, Kunova Bosakova M, Trantirek L, Mayer J, Krejci P. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. eLife 2017; 6. [PMID: 28199182 PMCID: PMC5310841 DOI: 10.7554/elife.21536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/31/2017] [Indexed: 12/05/2022] Open
Abstract
In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI:http://dx.doi.org/10.7554/eLife.21536.001
Collapse
Affiliation(s)
- Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lukas Balek
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Eva Hruba
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Lucie Jonatova
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
26
|
Randomized phase II study of sequential carboplatin plus paclitaxel and gefitinib in chemotherapy-naïve patients with advanced or metastatic non-small-cell lung cancer: Long-term follow-up results. Mol Clin Oncol 2017; 6:56-62. [PMID: 28123729 DOI: 10.3892/mco.2016.1076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/12/2016] [Indexed: 01/29/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib was initially approved in Japan in 2002 for the treatment of advanced or metastatic non-small-cell lung cancer (NSCLC); however, the optimal order of conventional cytotoxic chemotherapy (carboplatin and paclitaxel) and gefitinib administration has not been determined. We conducted a randomized phase II study of carboplatin and paclitaxel followed by gefitinib vs. gefitinib followed by carboplatin and paclitaxel to select a candidate for further development in a phase III study of chemotherapy-naïve patients with advanced or metastatic NSCLC, regardless of their EGFR mutation status. A total of 97 patients meeting this description were randomly assigned to arm A (carboplatin and paclitaxel followed by gefitinib; n=49) or B (gefitinib followed by carboplatin and paclitaxel; n=48) from June, 2003 to October, 2005. Carboplatin and paclitaxel were administered in 4 cycles every 3 weeks; gefitinib was continued until disease progression or development of unacceptable toxicity. The primary endpoint was overall survival; the secondary endpoints were response rate and adverse event prevalence. The median overall follow-up was 65.1 months (range, 28.7-75.1 months). The major toxicities were hematological (carboplatin and paclitaxel) or skin rash, diarrhea and hepatic dysfunction (gefitinib). Interstitial lung disease was observed in 1 patient from each arm. In arms A and B, the carboplatin and paclitaxel response rate, gefitinib response rate, and median survival durations were 34.8 and 26.5%, 33.3 and 35.7%, and 18.8 and 17.2 months, respectively. Arm A was selected for a subsequent phase III study.
Collapse
|
27
|
Zhang H. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3867-3872. [PMID: 27920501 PMCID: PMC5125803 DOI: 10.2147/dddt.s119162] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC), is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR) gene (EGFRm+), such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs) have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Liu Y, Xing Z, Zhan P, Liu H, Ye W, Lv T, Song Y. Is it feasible to detect epidermal growth factor receptor mutations in circulating tumor cells in nonsmall cell lung cancer?: A meta-analysis. Medicine (Baltimore) 2016; 95:e5115. [PMID: 27893656 PMCID: PMC5134849 DOI: 10.1097/md.0000000000005115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The value of circulating tumor cells (CTCs) in detecting epidermal growth factor receptor (EGFR) mutations in patients with nonsmall cell lung cancer (NSCLC) is controversial. We performed a meta-analysis to investigate the diagnostic significance of CTCs with tumor tissues as the standard control. METHODS A systematic literature search, including papers published until November 26, 2015, was performed using PubMed, Medline, Embase, Web of Science, and the China National Knowledge Infrastructure, and the references of retrieved articles were screened. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated according to the data selection from the included studies. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve (SROC) and area under the SROC (AUSROC). RESULTS Eight eligible articles with a total of 170 participants were identified in our meta-analysis. The pooled sensitivity and specificity were 0.91 [95% CI: 0.55-0.99] and 0.99 [95% CI: 0.59-1.00]. The positive likelihood ratio and negative likelihood ratio were 68 [95% CI: 1.4-3364] and 0.09 [95% CI: 0.01-0.64], respectively. The DOR was 788 [95% CI: 9-71884]. The high diagnostic performance of CTCs in detecting EGFR mutations was indicated by the AUSROC of 0.99 [95% CI: 0.98-1.00]. CONCLUSIONS CTCs are a feasible and highly specific biomarker for detecting the EGFR mutation status in NSCLC patients.
Collapse
Affiliation(s)
- Yafang Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| | - Ze Xing
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| | - Hongbing Liu
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| | - Wei Ye
- Department of Orthopedics Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Southern Medical University
| |
Collapse
|
29
|
朱 以, 邢 镨, 李 峻. [Treatment of Advanced Squamous Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:687-691. [PMID: 27760600 PMCID: PMC5973417 DOI: 10.3779/j.issn.1009-3419.2016.10.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 12/29/2022]
Abstract
Lung cancer is the deadliest cancer in the worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of lung tumor diagnoses. Squamous cell lung cancer (SQCLC) is a common pathological type, almost 20%-30% of NSCLC. Surgery, chemotherapy, and molecular targeted therapies are the mainstay of treatment for patients with SQCLC. But most patients are diagnosed at advanced stage so that they miss the chance of operation. While noteworthy outcomes have improved with adenocarcinoma of lung with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), a therapeutic plateau for advanced squamous cell lung cancer patients are still not solved. EGFR-TKIs are unsuitable for or mostly ineffective in advanced SQCLC. Patients with advanced SQCLC ramain treated with platinum based chemotherapy. This reciew systematicly describe the treatment of squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
- 以香 朱
- />100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - 镨元 邢
- />100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - 峻岭 李
- />100021 北京,国家癌症中心/中国医学科学院北京协和医学院肿瘤医院National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
30
|
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for advanced non-small-cell lung cancer that harbors sensitizing EGFR mutations (EGFRm(+)) such as exon 19 deletions and L858R substitutions in exon 21. However, acquired resistance to EGFR TKIs is mostly driven by a second-site EGFR T790M mutation, which negates their inhibitory activity. Osimertinib (AZD9291, Tagrisso™), an oral, third-generation EGFR TKI, has been designed to target the EGFR T790M mutation, while sparing wild-type EGFR. In this up-to-date review, focus is not only on the structure, mechanisms, and pharmacokinetics of osimertinib but also on summarizing clinical trials and making recommendations of osimertinib for patients with non-small-cell lung cancer.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Wang Y, Guo Z, Li Y, Zhou Q. Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma. Open Med (Wars) 2016; 11:68-77. [PMID: 28352770 PMCID: PMC5329801 DOI: 10.1515/med-2016-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 11/15/2022] Open
Abstract
Individualized therapies targeting epidermal growth factor receptor (EGFR) mutations show promises for the treatment of non small-cell lung carcinoma (NSCLC). However, disease progression almost invariably occurs 1 year after tyrosine kinase inhibitor (TKI) treatment. The most prominent mechanism of acquired resistance involves the secondary EGFR mutation, namely EGFR T790M, which accounts for 50%-60% of resistant tumors. A large amount of studies have focused on the development of effective strategies to treat TKI-resistant EGFR T790M mutation in lung tumors. Novel generations of EGFR inhibitors are producing encouraging results in patients with acquired resistance against EGFR T790M mutation. This review will summarize the novel inhibitors, which might overcome resistance against EGFR T790M mutation.
Collapse
Affiliation(s)
- Yuli Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhitao Guo
- Orthopedics Sector 1, Tianjin Xiqing hospital, Tianjin, 300380, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
32
|
Takahashi K, Saito H. Is epidermal growth factor receptor tyrosine kinase inhibitor in combination with cytotoxic chemotherapy a better treatment option for patients with EGFR-mutated non-small-cell lung cancer? Transl Lung Cancer Res 2016; 5:98-101. [PMID: 26958501 DOI: 10.3978/j.issn.2218-6751.2015.08.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) combined with cytotoxic chemotherapy achieved a high disease control rate and favorable progression-free survival (PFS) for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. This combination therapy might circumvent de novo resistance to EGFR-TKI. Randomized phase III studies are required to confirm the survival benefit of this combination therapy in NSCLC patients. In addition, there are some other promising strategies including the combination of EGFR-TKI plus bevacizumab, third-generation EGFR-TKIs, and immune checkpoint inhibitors that remain a future challenge for lung cancer treatment.
Collapse
Affiliation(s)
- Kosuke Takahashi
- Department of Respiratory Medicine, Aichi Cancer Center Aichi Hospital, Okazaki, Japan
| | - Hiroshi Saito
- Department of Respiratory Medicine, Aichi Cancer Center Aichi Hospital, Okazaki, Japan
| |
Collapse
|
33
|
Song Z, Ge Y, Wang C, Huang S, Shu X, Liu K, Zhou Y, Ma X. Challenges and Perspectives on the Development of Small-Molecule EGFR Inhibitors against T790M-Mediated Resistance in Non-Small-Cell Lung Cancer. J Med Chem 2016; 59:6580-94. [PMID: 26882288 DOI: 10.1021/acs.jmedchem.5b00840] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of the development of drug-resistance mutations, particularly the "gatekeeper" threonine(790)-to-methionine(790) (T790M) mutation in the ATP-binding pocket of the epidermal growth factor receptor (EGFR), the current generation of EGFR tyrosine kinase inhibitors lost their clinical efficacy. Recently, a large number of small-molecule inhibitors with striking inhibitory potency against EGFR mutants with the T790M change have been identified. In particular, the inhibitors rociletinib and osimertinib, which can selectively target both sensitizing mutations and the T790M resistance while sparing the wild-type (WT) form of the receptor, have been designated as breakthrough therapies in the treatment of mutant non-small-cell lung cancer (NSCLC) by the U.S. FDA in 2014. We hope that this review on the small-molecule EGFR T790M inhibitors, along with their discovery strategies, will assist in the design of future T790M-containing EGFR inhibitors with high levels of selectivity over WT EGFR, broad kinase selectivity, and desirable physicochemical properties.
Collapse
Affiliation(s)
- Zhendong Song
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Yang Ge
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Shanshan Huang
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| | - Youwen Zhou
- Department of Dermatology and Skin Science, University of British Columbia , Vancouver, BC, V5Z 4E8, Canada
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University , Dalian 116044, P. R. China
| |
Collapse
|
34
|
Nishiya N, Sakamoto Y, Oku Y, Nonaka T, Uehara Y. JAK3 inhibitor VI is a mutant specific inhibitor for epidermal growth factor receptor with the gatekeeper mutation T790M. World J Biol Chem 2015; 6:409-418. [PMID: 26629323 PMCID: PMC4657120 DOI: 10.4331/wjbc.v6.i4.409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR).
METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs.
RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M.
CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.
Collapse
|