BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ohashi Y, Munro S. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell. 2010;21:3998-4008. [PMID: 20861302 DOI: 10.1091/mbc.e10-05-0457] [Cited by in Crossref: 126] [Cited by in F6Publishing: 133] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Reference Citation Analysis]
2 Chen Y, Wu Z, Dong L, You X, Ji Y, Liang Y. Yeast phospholipase D, Spo14, is not required for macroautophagy. Yeast 2022. [PMID: 35711110 DOI: 10.1002/yea.3803] [Reference Citation Analysis]
3 Marquardt L, Taylor M, Kramer F, Schmitt K, Braus GH, Valerius O, Thumm M. Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Autophagy. [DOI: 10.1080/15548627.2022.2072656] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Wang R, Miao G, Shen JL, Fortier TM, Baehrecke EH. ESCRT dysfunction compromises endoplasmic reticulum maturation and autophagosome biogenesis in Drosophila. Current Biology 2022. [DOI: 10.1016/j.cub.2022.01.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022:S0896-6273(21)01076-X. [PMID: 35065714 DOI: 10.1016/j.neuron.2021.12.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
6 Coudevylle N, Banaś B, Baumann V, Schuschnig M, Zawadzka-Kazimierczuk A, Koźmiński W, Martens S. Mechanism of Atg9 recruitment by Atg11 in the cytoplasm-to-vacuole targeting pathway. J Biol Chem 2022;298:101573. [PMID: 35007534 DOI: 10.1016/j.jbc.2022.101573] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mailler E, Guardia CM, Bai X, Jarnik M, Williamson CD, Li Y, Maio N, Golden A, Bonifacino JS. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat Commun 2021;12:6750. [PMID: 34799570 DOI: 10.1038/s41467-021-26999-x] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
8 Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021;10:3124. [PMID: 34831348 DOI: 10.3390/cells10113124] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Guardia CM, Jain A, Mattera R, Friefeld A, Li Y, Bonifacino JS. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery. Mol Biol Cell 2021;32:ar25. [PMID: 34432492 DOI: 10.1091/mbc.E21-06-0295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ahsan A, Liu M, Zheng Y, Yan W, Pan L, Li Y, Ma S, Zhang X, Cao M, Wu Z, Hu W, Chen Z, Zhang X. Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021;11:1708-20. [PMID: 34386317 DOI: 10.1016/j.apsb.2020.10.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
11 Wu Z, Xu H, Liu J, Zhou F, Liang Y. The ESCRT-III complex contributes to macromitophagy in yeast. Traffic 2021;22:258-73. [PMID: 34089296 DOI: 10.1111/tra.12805] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Jo YH, Lee JH, Patnaik BB, Keshavarz M, Lee YS, Han YS. Autophagy in Tenebrio molitor Immunity: Conserved Antimicrobial Functions in Insect Defenses. Front Immunol 2021;12:667664. [PMID: 34135896 DOI: 10.3389/fimmu.2021.667664] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
13 Sheehan BK, Orefice NS, Peng Y, Shapiro SL, Puglielli L. ATG9A regulates proteostasis through reticulophagy receptors FAM134B and SEC62 and folding chaperones CALR and HSPB1. iScience 2021;24:102315. [PMID: 33870132 DOI: 10.1016/j.isci.2021.102315] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Sawa-Makarska J, Baumann V, Coudevylle N, von Bülow S, Nogellova V, Abert C, Schuschnig M, Graef M, Hummer G, Martens S. Reconstitution of autophagosome nucleation defines Atg9 vesicles as seeds for membrane formation. Science 2020;369:eaaz7714. [PMID: 32883836 DOI: 10.1126/science.aaz7714] [Cited by in Crossref: 30] [Cited by in F6Publishing: 55] [Article Influence: 15.0] [Reference Citation Analysis]
15 Ding S, Hong Y. The fluorescence toolbox for visualizing autophagy. Chem Soc Rev 2020;49:8354-89. [PMID: 33156302 DOI: 10.1039/d0cs00913j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
16 Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, Otomo T. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol 2020;27:1194-201. [PMID: 33106659 DOI: 10.1038/s41594-020-00520-2] [Cited by in Crossref: 42] [Cited by in F6Publishing: 76] [Article Influence: 21.0] [Reference Citation Analysis]
17 Deng S, Liu J, Wu X, Lu W. Golgi Apparatus: A Potential Therapeutic Target for Autophagy-Associated Neurological Diseases. Front Cell Dev Biol 2020;8:564975. [PMID: 33015059 DOI: 10.3389/fcell.2020.564975] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
18 Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020;36:101679. [PMID: 32818797 DOI: 10.1016/j.redox.2020.101679] [Cited by in Crossref: 16] [Cited by in F6Publishing: 59] [Article Influence: 8.0] [Reference Citation Analysis]
19 Antón Z, Betin VMS, Simonetti B, Traer CJ, Attar N, Cullen PJ, Lane JD. A heterodimeric SNX4--SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly. J Cell Sci 2020;133:jcs246306. [PMID: 32513819 DOI: 10.1242/jcs.246306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020;21:E3689. [PMID: 32456258 DOI: 10.3390/ijms21103689] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
21 Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21:439-458. [PMID: 32372019 DOI: 10.1038/s41580-020-0241-0] [Cited by in Crossref: 95] [Cited by in F6Publishing: 188] [Article Influence: 47.5] [Reference Citation Analysis]
22 Lv W, Xu Z, Talbot NJ, Wang Z. The sorting nexin FgAtg20 is involved in the Cvt pathway, non-selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cell Microbiol 2020;22:e13208. [PMID: 32281734 DOI: 10.1111/cmi.13208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
23 Shiozaki Y, Miyazaki-Anzai S, Okamura K, Keenan AL, Masuda M, Miyazaki M. GPAT4-Generated Saturated LPAs Induce Lipotoxicity through Inhibition of Autophagy by Abnormal Formation of Omegasomes. iScience 2020;23:101105. [PMID: 32408172 DOI: 10.1016/j.isci.2020.101105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
24 Besemer AS, Maus J, Ax MDA, Stein A, Vo S, Freese C, Nalbach K, von Hilchen C, Pfalzgraf IF, Koziollek-Drechsler I, Silva B, Huesmann H, Boukhallouk F, Florin L, Kern A, Behl C, Clement AM. Receptor-mediated endocytosis 8 (RME-8)/DNAJC13 is a novel positive modulator of autophagy and stabilizes cellular protein homeostasis. Cell Mol Life Sci 2021;78:645-60. [PMID: 32322926 DOI: 10.1007/s00018-020-03521-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lőrincz P, Juhász G. Autophagosome-Lysosome Fusion. Journal of Molecular Biology 2020;432:2462-82. [DOI: 10.1016/j.jmb.2019.10.028] [Cited by in Crossref: 38] [Cited by in F6Publishing: 71] [Article Influence: 19.0] [Reference Citation Analysis]
26 Haijes HA, Jaeken J, van Hasselt PM. Hypothesis: determining phenotypic specificity facilitates understanding of pathophysiology in rare genetic disorders. J Inherit Metab Dis 2020;43:701-11. [PMID: 31804708 DOI: 10.1002/jimd.12201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
27 Gross AS, Graef M. Mechanisms of Autophagy in Metabolic Stress Response. Journal of Molecular Biology 2020;432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
28 Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020;40:256-66. [PMID: 31744863 DOI: 10.1523/JNEUROSCI.1066-19.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
29 Ma M, Burd CG. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2020;21:45-59. [PMID: 31471931 DOI: 10.1111/tra.12693] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
30 Zientara-Rytter K, Subramani S. Mechanistic Insights into the Role of Atg11 in Selective Autophagy. J Mol Biol 2020;432:104-22. [PMID: 31238043 DOI: 10.1016/j.jmb.2019.06.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
31 Singh S, Kumari R, Chinchwadkar S, Aher A, Matheshwaran S, Manjithaya R. Exocyst Subcomplex Functions in Autophagosome Biogenesis by Regulating Atg9 Trafficking. J Mol Biol 2019;431:2821-34. [PMID: 31103773 DOI: 10.1016/j.jmb.2019.04.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
32 Li W, Wu Z, Liang Y. Vrl1 relies on its VPS9-domain to play a role in autophagy in Saccharomyces cerevisiae. Cell Biol Int 2019;43:875-89. [PMID: 31038239 DOI: 10.1002/cbin.11156] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Ravenhill BJ, Boyle KB, von Muhlinen N, Ellison CJ, Masson GR, Otten EG, Foeglein A, Williams R, Randow F. The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria. Mol Cell 2019;74:320-329.e6. [PMID: 30853402 DOI: 10.1016/j.molcel.2019.01.041] [Cited by in Crossref: 117] [Cited by in F6Publishing: 134] [Article Influence: 39.0] [Reference Citation Analysis]
34 Farrugia MA, Puglielli L. Nε-lysine acetylation in the endoplasmic reticulum - a novel cellular mechanism that regulates proteostasis and autophagy. J Cell Sci 2018;131:jcs221747. [PMID: 30446507 DOI: 10.1242/jcs.221747] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
35 Moparthi SB, Wollert T. Reconstruction of destruction – in vitro reconstitution methods in autophagy research. Journal of Cell Science 2019;132:jcs223792. [DOI: 10.1242/jcs.223792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
36 Zhu X, Cai J, Zhou F, Wu Z, Li D, Li Y, Xie Z, Zhou Y, Liang Y. Genome-wide screening of budding yeast with honokiol to associate mitochondrial function with lipid metabolism. Traffic 2018;19:867-78. [PMID: 30120820 DOI: 10.1111/tra.12611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
37 Ayala CI, Kim J, Neufeld TP. Rab6 promotes insulin receptor and cathepsin trafficking to regulate autophagy induction and activity in Drosophila. J Cell Sci 2018;131:jcs216127. [PMID: 30111579 DOI: 10.1242/jcs.216127] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
38 Feng D, Amgalan D, Singh R, Wei J, Wen J, Wei TP, McGraw TE, Kitsis RN, Pessin JE. SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy. J Clin Invest 2018;128:3941-56. [PMID: 30102258 DOI: 10.1172/JCI99217] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
39 Gao J, Reggiori F, Ungermann C. A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J Cell Biol 2018;217:3670-82. [PMID: 30097515 DOI: 10.1083/jcb.201804039] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
40 Ungermann C, Reggiori F. Atg9 proteins, not so different after all. Autophagy 2018;14:1456-9. [PMID: 29966469 DOI: 10.1080/15548627.2018.1477382] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
41 Rothe S, Prakash A, Tyedmers J. The Insoluble Protein Deposit (IPOD) in Yeast. Front Mol Neurosci 2018;11:237. [PMID: 30050408 DOI: 10.3389/fnmol.2018.00237] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
42 Ma M, Kumar S, Purushothaman L, Babst M, Ungermann C, Chi RJ, Burd CG. Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion. Mol Biol Cell 2018;29:2190-200. [PMID: 29949447 DOI: 10.1091/mbc.E17-12-0743] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
43 Gómez-Sánchez R, Rose J, Guimarães R, Mari M, Papinski D, Rieter E, Geerts WJ, Hardenberg R, Kraft C, Ungermann C, Reggiori F. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol 2018;217:2743-63. [PMID: 29848619 DOI: 10.1083/jcb.201710116] [Cited by in Crossref: 103] [Cited by in F6Publishing: 112] [Article Influence: 25.8] [Reference Citation Analysis]
44 Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep 2017;50:345-54. [PMID: 28454606 DOI: 10.5483/bmbrep.2017.50.7.069] [Cited by in Crossref: 38] [Cited by in F6Publishing: 48] [Article Influence: 9.5] [Reference Citation Analysis]
45 Takahashi Y, Tsotakos N, Liu Y, Young MM, Serfass J, Tang Z, Abraham T, Wang HG. The Bif-1-Dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget 2016;7:20855-68. [PMID: 26980706 DOI: 10.18632/oncotarget.8028] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
46 Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018;14:207-215. [PMID: 28933638 DOI: 10.1080/15548627.2017.1378838] [Cited by in Crossref: 422] [Cited by in F6Publishing: 578] [Article Influence: 84.4] [Reference Citation Analysis]
47 Noda T. Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles. Biochem Soc Trans 2017;45:1323-31. [PMID: 29150528 DOI: 10.1042/BST20170128] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 8.4] [Reference Citation Analysis]
48 Nemec AA, Howell LA, Peterson AK, Murray MA, Tomko RJ Jr. Autophagic clearance of proteasomes in yeast requires the conserved sorting nexin Snx4. J Biol Chem 2017;292:21466-80. [PMID: 29109144 DOI: 10.1074/jbc.M117.817999] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
49 Davis S, Wang J, Ferro-Novick S. Crosstalk between the Secretory and Autophagy Pathways Regulates Autophagosome Formation. Dev Cell 2017;41:23-32. [PMID: 28399396 DOI: 10.1016/j.devcel.2017.03.015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
50 Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. Dev Cell 2017;41:10-22. [PMID: 28399394 DOI: 10.1016/j.devcel.2017.02.016] [Cited by in Crossref: 274] [Cited by in F6Publishing: 309] [Article Influence: 54.8] [Reference Citation Analysis]
51 Kumar R, Neuser N, Tyedmers J. Hitchhiking vesicular transport routes to the vacuole: Amyloid recruitment to the Insoluble Protein Deposit (IPOD). Prion 2017;11:71-81. [PMID: 28277942 DOI: 10.1080/19336896.2017.1293226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
52 Molino D, Zemirli N, Codogno P, Morel E. The Journey of the Autophagosome through Mammalian Cell Organelles and Membranes. Journal of Molecular Biology 2017;429:497-514. [DOI: 10.1016/j.jmb.2016.12.013] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
53 Reggiori F, Ungermann C. Autophagosome Maturation and Fusion. Journal of Molecular Biology 2017;429:486-96. [DOI: 10.1016/j.jmb.2017.01.002] [Cited by in Crossref: 113] [Cited by in F6Publishing: 119] [Article Influence: 22.6] [Reference Citation Analysis]
54 Ma M, Burd CG, Chi RJ. Distinct complexes of yeast Snx4 family SNX-BARs mediate retrograde trafficking of Snc1 and Atg27. Traffic 2017;18:134-44. [PMID: 28026081 DOI: 10.1111/tra.12462] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
55 Zhou C, Ma K, Gao R, Mu C, Chen L, Liu Q, Luo Q, Feng D, Zhu Y, Chen Q. Regulation of mATG9 trafficking by Src- and ULK1-mediated phosphorylation in basal and starvation-induced autophagy. Cell Res 2017;27:184-201. [PMID: 27934868 DOI: 10.1038/cr.2016.146] [Cited by in Crossref: 90] [Cited by in F6Publishing: 99] [Article Influence: 15.0] [Reference Citation Analysis]
56 Martens S, Nakamura S, Yoshimori T. Phospholipids in Autophagosome Formation and Fusion. J Mol Biol 2016:S0022-2836(16)30455-7. [PMID: 27984040 DOI: 10.1016/j.jmb.2016.10.029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
57 Huang Y, Yang P, Liu T, Chen H, Chu X, Ahmad N, Zhang Q, Li Q, Hu L, Liu Y, Chen Q. Subcellular Evidence for Biogenesis of Autophagosomal Membrane during Spermiogenesis In vivo. Front Physiol 2016;7:470. [PMID: 27803675 DOI: 10.3389/fphys.2016.00470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
58 Hegedűs K, Takáts S, Boda A, Jipa A, Nagy P, Varga K, Kovács AL, Juhász G. The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol Biol Cell 2016;27:3132-42. [PMID: 27559127 DOI: 10.1091/mbc.E16-03-0205] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 17.5] [Reference Citation Analysis]
59 Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol 2016;60:97-104. [PMID: 27422330 DOI: 10.1016/j.semcdb.2016.07.009] [Cited by in Crossref: 49] [Cited by in F6Publishing: 64] [Article Influence: 8.2] [Reference Citation Analysis]
60 Brunet S, Saint-Dic D, Milev MP, Nilsson T, Sacher M. The TRAPP Subunit Trs130p Interacts with the GAP Gyp6p to Mediate Ypt6p Dynamics at the Late Golgi. Front Cell Dev Biol 2016;4:48. [PMID: 27252941 DOI: 10.3389/fcell.2016.00048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
61 Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol 2016;428:1681-99. [PMID: 26908221 DOI: 10.1016/j.jmb.2016.02.021] [Cited by in Crossref: 130] [Cited by in F6Publishing: 139] [Article Influence: 21.7] [Reference Citation Analysis]
62 Peng Y, Kim MJ, Hullinger R, O'Riordan KJ, Burger C, Pehar M, Puglielli L. Improved proteostasis in the secretory pathway rescues Alzheimer's disease in the mouse. Brain 2016;139:937-52. [PMID: 26787453 DOI: 10.1093/brain/awv385] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
63 Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 2015;11:28-45. [PMID: 25484070 DOI: 10.4161/15548627.2014.984267] [Cited by in Crossref: 168] [Cited by in F6Publishing: 179] [Article Influence: 24.0] [Reference Citation Analysis]
64 Ghavidel A, Baxi K, Ignatchenko V, Prusinkiewicz M, Arnason TG, Kislinger T, Carvalho CE, Harkness TA. A Genome Scale Screen for Mutants with Delayed Exit from Mitosis: Ire1-Independent Induction of Autophagy Integrates ER Homeostasis into Mitotic Lifespan. PLoS Genet 2015;11:e1005429. [PMID: 26247883 DOI: 10.1371/journal.pgen.1005429] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
65 Rubinsztein DC, Bento CF, Deretic V. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. J Exp Med 2015;212:979-90. [PMID: 26101267 DOI: 10.1084/jem.20150956] [Cited by in Crossref: 125] [Cited by in F6Publishing: 132] [Article Influence: 17.9] [Reference Citation Analysis]
66 Chi RJ, Harrison MS, Burd CG. Biogenesis of endosome-derived transport carriers. Cell Mol Life Sci 2015;72:3441-55. [PMID: 26022064 DOI: 10.1007/s00018-015-1935-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
67 Tian X, Gala U, Zhang Y, Shang W, Nagarkar Jaiswal S, di Ronza A, Jaiswal M, Yamamoto S, Sandoval H, Duraine L, Sardiello M, Sillitoe RV, Venkatachalam K, Fan H, Bellen HJ, Tong C. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLoS Biol 2015;13:e1002103. [PMID: 25811491 DOI: 10.1371/journal.pbio.1002103] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 8.1] [Reference Citation Analysis]
68 Segarra VA, Boettner DR, Lemmon SK. Atg27 tyrosine sorting motif is important for its trafficking and Atg9 localization. Traffic 2015;16:365-78. [PMID: 25557545 DOI: 10.1111/tra.12253] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
69 Shpilka T, Welter E, Borovsky N, Amar N, Shimron F, Peleg Y, Elazar Z. Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci U S A 2015;112:1434-9. [PMID: 25605918 DOI: 10.1073/pnas.1409476112] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
70 Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, Ma Y, Zhao B, Kovács AL, Zhang Z, Feng D, Chen S, Zhang H. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol 2014;16:1215-26. [PMID: 25419848 DOI: 10.1038/ncb3066] [Cited by in Crossref: 149] [Cited by in F6Publishing: 162] [Article Influence: 18.6] [Reference Citation Analysis]
71 Peng Y, Li M, Clarkson BD, Pehar M, Lao PJ, Hillmer AT, Barnhart TE, Christian BT, Mitchell HA, Bendlin BB, Sandor M, Puglielli L. Deficient import of acetyl-CoA into the ER lumen causes neurodegeneration and propensity to infections, inflammation, and cancer. J Neurosci 2014;34:6772-89. [PMID: 24828632 DOI: 10.1523/JNEUROSCI.0077-14.2014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
72 Tooze SA, Abada A, Elazar Z. Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb Perspect Biol 2014;6:a018358. [PMID: 24789822 DOI: 10.1101/cshperspect.a018358] [Cited by in Crossref: 115] [Cited by in F6Publishing: 119] [Article Influence: 14.4] [Reference Citation Analysis]
73 Nuttall JM, Motley AM, Hettema EH. Deficiency of the exportomer components Pex1, Pex6, and Pex15 causes enhanced pexophagy in Saccharomyces cerevisiae. Autophagy 2014;10:835-45. [PMID: 24657987 DOI: 10.4161/auto.28259] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 5.5] [Reference Citation Analysis]
74 Popovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 2014;15:392-401. [PMID: 24603492 DOI: 10.1002/embr.201337995] [Cited by in Crossref: 108] [Cited by in F6Publishing: 107] [Article Influence: 13.5] [Reference Citation Analysis]
75 Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 2014;25:1327-37. [PMID: 24554770 DOI: 10.1091/mbc.E13-08-0447] [Cited by in Crossref: 266] [Cited by in F6Publishing: 277] [Article Influence: 33.3] [Reference Citation Analysis]
76 Reggiori F, Klionsky DJ. Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 2013;194:341-61. [PMID: 23733851 DOI: 10.1534/genetics.112.149013] [Cited by in Crossref: 254] [Cited by in F6Publishing: 250] [Article Influence: 28.2] [Reference Citation Analysis]
77 Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res 2014;24:58-68. [PMID: 24296784 DOI: 10.1038/cr.2013.159] [Cited by in Crossref: 221] [Cited by in F6Publishing: 218] [Article Influence: 24.6] [Reference Citation Analysis]
78 Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 2013;25:4596-615. [PMID: 24249832 DOI: 10.1105/tpc.113.118307] [Cited by in Crossref: 117] [Cited by in F6Publishing: 138] [Article Influence: 13.0] [Reference Citation Analysis]
79 Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol. 2013;14:759-774. [PMID: 24201109 DOI: 10.1038/nrm3696] [Cited by in Crossref: 822] [Cited by in F6Publishing: 809] [Article Influence: 91.3] [Reference Citation Analysis]
80 Stanley RE, Ragusa MJ, Hurley JH. The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol 2014;24:73-81. [PMID: 23999079 DOI: 10.1016/j.tcb.2013.07.008] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
81 Ge L, Melville D, Zhang M, Schekman R. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013;2:e00947. [PMID: 23930225 DOI: 10.7554/eLife.00947] [Cited by in Crossref: 248] [Cited by in F6Publishing: 250] [Article Influence: 27.6] [Reference Citation Analysis]
82 Graef M, Friedman JR, Graham C, Babu M, Nunnari J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol Biol Cell 2013;24:2918-31. [PMID: 23904270 DOI: 10.1091/mbc.E13-07-0381] [Cited by in Crossref: 226] [Cited by in F6Publishing: 214] [Article Influence: 25.1] [Reference Citation Analysis]
83 Ispolatov I, Müsch A. A model for the self-organization of vesicular flux and protein distributions in the Golgi apparatus. PLoS Comput Biol 2013;9:e1003125. [PMID: 23874173 DOI: 10.1371/journal.pcbi.1003125] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
84 Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács AL, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol 2013;201:531-9. [PMID: 23671310 DOI: 10.1083/jcb.201211160] [Cited by in Crossref: 204] [Cited by in F6Publishing: 202] [Article Influence: 22.7] [Reference Citation Analysis]
85 Krämer H. Route to destruction: autophagosomes SNARE lysosomes. J Cell Biol 2013;201:495-7. [PMID: 23671308 DOI: 10.1083/jcb.201304065] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
86 Pinar M, Pantazopoulou A, Peñalva MA. Live-cell imaging of Aspergillus nidulans autophagy: RAB1 dependence, Golgi independence and ER involvement. Autophagy 2013;9:1024-43. [PMID: 23722157 DOI: 10.4161/auto.24483] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
87 Reggiori F. Autophagy: New Questions from Recent Answers. ISRN Mol Biol 2012;2012:738718. [PMID: 27335669 DOI: 10.5402/2012/738718] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
88 Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012;11:4613-25. [PMID: 23187805 DOI: 10.4161/cc.22885] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
89 Zou S, Chen Y, Liu Y, Segev N, Yu S, Liu Y, Min G, Ye M, Zeng Y, Zhu X, Hong B, Björn LO, Liang Y, Li S, Xie Z. Trs130 participates in autophagy through GTPases Ypt31/32 in Saccharomyces cerevisiae. Traffic 2013;14:233-46. [PMID: 23078654 DOI: 10.1111/tra.12024] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
90 Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709-730. [PMID: 22935804 DOI: 10.1038/nrd3802] [Cited by in Crossref: 985] [Cited by in F6Publishing: 993] [Article Influence: 98.5] [Reference Citation Analysis]
91 Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 2012;198:219-33. [PMID: 22826123 DOI: 10.1083/jcb.201202061] [Cited by in Crossref: 370] [Cited by in F6Publishing: 363] [Article Influence: 37.0] [Reference Citation Analysis]
92 Reggiori F, Tooze SA. Autophagy regulation through Atg9 traffic. J Cell Biol 2012;198:151-3. [PMID: 22826119 DOI: 10.1083/jcb.201206119] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 4.3] [Reference Citation Analysis]
93 Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 2012;31:4304-17. [PMID: 23064152 DOI: 10.1038/emboj.2012.278] [Cited by in Crossref: 249] [Cited by in F6Publishing: 265] [Article Influence: 24.9] [Reference Citation Analysis]
94 Klionsky DJ. Look people, "Atg" is an abbreviation for "autophagy-related." That's it. Autophagy 2012;8:1281-2. [PMID: 22889836 DOI: 10.4161/auto.21812] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 1.7] [Reference Citation Analysis]
95 Nickerson DP, Russell MRG, Lo SY, Chapin HC, Milnes J, Merz AJ. Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3. Traffic 2012;13:1411-28. [PMID: 22748138 DOI: 10.1111/j.1600-0854.2012.01390.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
96 Pehar M, Jonas MC, Hare TM, Puglielli L. SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway. J Biol Chem 2012;287:29921-30. [PMID: 22787145 DOI: 10.1074/jbc.M112.363911] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.2] [Reference Citation Analysis]
97 Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM, Phadwal K, Simon AK, Moutschen M, Etzioni A, Mory A, Srugo I, Melamed D, Hultenby K, Liu C, Baronio M, Vitali M, Philippet P, Dideberg V, Aghamohammadi A, Rezaei N, Enright V, Du L, Salzer U, Eibel H, Pfeifer D, Veelken H, Stauss H, Lougaris V, Plebani A, Gertz EM, Schäffer AA, Hammarström L, Grimbacher B. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet 2012;90:986-1001. [PMID: 22608502 DOI: 10.1016/j.ajhg.2012.04.015] [Cited by in Crossref: 334] [Cited by in F6Publishing: 287] [Article Influence: 33.4] [Reference Citation Analysis]
98 Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 2012;197:659-75. [PMID: 22613832 DOI: 10.1083/jcb.201111079] [Cited by in Crossref: 250] [Cited by in F6Publishing: 250] [Article Influence: 25.0] [Reference Citation Analysis]
99 Reggiori F, Komatsu M, Finley K, Simonsen A. Autophagy: more than a nonselective pathway. Int J Cell Biol. 2012;2012:219625. [PMID: 22666256 DOI: 10.1155/2012/219625] [Cited by in Crossref: 74] [Cited by in F6Publishing: 93] [Article Influence: 7.4] [Reference Citation Analysis]
100 Shpilka T, Mizushima N, Elazar Z. Ubiquitin-like proteins and autophagy at a glance. Journal of Cell Science 2012;125:2343-8. [DOI: 10.1242/jcs.093757] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
101 Lipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A 2012;109:6981-6. [PMID: 22509044 DOI: 10.1073/pnas.1121299109] [Cited by in Crossref: 92] [Cited by in F6Publishing: 90] [Article Influence: 9.2] [Reference Citation Analysis]
102 Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23:1860-1873. [PMID: 22456507 DOI: 10.1091/mbc.e11-09-0746] [Cited by in Crossref: 348] [Cited by in F6Publishing: 319] [Article Influence: 34.8] [Reference Citation Analysis]
103 Abounit K, Scarabelli TM, McCauley RB. Autophagy in mammalian cells. World J Biol Chem 2012; 3(1): 1-6 [PMID: 22312452 DOI: 10.4331/wjbc.v3.i1.1] [Cited by in CrossRef: 61] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
104 Pereira L, Girardi JP, Bakovic M. Forms, crosstalks, and the role of phospholipid biosynthesis in autophagy. Int J Cell Biol 2012;2012:931956. [PMID: 22291708 DOI: 10.1155/2012/931956] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
105 Mari M, Tooze SA, Reggiori F. The puzzling origin of the autophagosomal membrane. F1000 Biol Rep 2011;3:25. [PMID: 22162728 DOI: 10.3410/B3-25] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]
106 Dikicioglu D, Karabekmez E, Rash B, Pir P, Kirdar B, Oliver SG. How yeast re-programmes its transcriptional profile in response to different nutrient impulses. BMC Syst Biol 2011;5:148. [PMID: 21943358 DOI: 10.1186/1752-0509-5-148] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
107 Avin-Wittenberg T, Honig A, Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 2012;249:285-99. [PMID: 21660427 DOI: 10.1007/s00709-011-0296-z] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 6.3] [Reference Citation Analysis]
108 Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J 2011;30:636-51. [PMID: 21169990 DOI: 10.1038/emboj.2010.338] [Cited by in Crossref: 113] [Cited by in F6Publishing: 104] [Article Influence: 9.4] [Reference Citation Analysis]
109 Webster MT, McCaffery JM, Cohen-Fix O. Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. J Cell Biol 2010;191:1079-88. [PMID: 21135138 DOI: 10.1083/jcb.201006083] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]