1 |
Qin L, Zhang Y, Yang X, Wang H. Development of the prediction model for hypertension in patients with idiopathic inflammatory myopathies. J Clin Hypertens (Greenwich) 2021;23:1556-66. [PMID: 33973700 DOI: 10.1111/jch.14267] [Reference Citation Analysis]
|
2 |
Deng X, Hou H, Wang X, Li Q, Li X, Yang Z, Wu H. Development and validation of a nomogram to better predict hypertension based on a 10-year retrospective cohort study in China. Elife 2021;10:e66419. [PMID: 34047697 DOI: 10.7554/eLife.66419] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Lin CC, Li CI, Liu CS, Lin CH, Wang MC, Yang SY, Li TC. A risk scoring system to predict the risk of new-onset hypertension among patients with type 2 diabetes. J Clin Hypertens (Greenwich) 2021;23:1570-80. [PMID: 34251744 DOI: 10.1111/jch.14322] [Reference Citation Analysis]
|
4 |
Silva GFS, Fagundes TP, Teixeira BC, Chiavegatto Filho ADP. Machine Learning for Hypertension Prediction: a Systematic Review. Curr Hypertens Rep 2022. [PMID: 35731335 DOI: 10.1007/s11906-022-01212-6] [Reference Citation Analysis]
|
5 |
Chowdhury MZI, Naeem I, Quan H, Leung AA, Sikdar KC, O'Beirne M, Turin TC. Prediction of hypertension using traditional regression and machine learning models: A systematic review and meta-analysis. PLoS One 2022;17:e0266334. [PMID: 35390039 DOI: 10.1371/journal.pone.0266334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Oishi E, Hata J, Honda T, Sakata S, Chen S, Hirakawa Y, Yoshida D, Shibata M, Ohara T, Furuta Y, Kitazono T, Ninomiya T. Development of a risk prediction model for incident hypertension in Japanese individuals: the Hisayama Study. Hypertens Res 2021;44:1221-9. [PMID: 34059807 DOI: 10.1038/s41440-021-00673-7] [Reference Citation Analysis]
|