BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raza F, Zafar H, Zhu Y, Ren Y, -Ullah A, Khan AU, He X, Han H, Aquib M, Boakye-Yiadom KO, Ge L. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers. Pharmaceutics 2018;10:E16. [PMID: 29346275 DOI: 10.3390/pharmaceutics10010016] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 2023. [DOI: 10.1080/00914037.2023.2167081] [Reference Citation Analysis]
2 Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023;12. [PMID: 36673441 DOI: 10.3390/foods12020350] [Reference Citation Analysis]
3 Qin D, Wang F, Sheng W, Chang S, Duan H, Wang L. Nanogel fabricated from oxidized sodium alginate and hydrophilic-modified chitosan exhibits great potential as pH-responsive drug delivery system. J IRAN CHEM SOC 2022. [DOI: 10.1007/s13738-022-02727-0] [Reference Citation Analysis]
4 Thivya P, Akalya S, Sinija VR. A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Applied Food Research 2022;2:100161. [DOI: 10.1016/j.afres.2022.100161] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. Materials Today Chemistry 2022;26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Reference Citation Analysis]
6 Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022;22:2571-88. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xu Y, Song D, Wang X. 3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers (Basel) 2022;14. [PMID: 36501537 DOI: 10.3390/polym14235143] [Reference Citation Analysis]
8 Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res 2022;26:50. [PMID: 36183134 DOI: 10.1186/s40824-022-00291-5] [Reference Citation Analysis]
9 Albiero M, Fullin A, Villano G, Biasiolo A, Quarta S, Bernardotto S, Turato C, Ruvoletto M, Fadini GP, Pontisso P, Morpurgo M. Semisolid Wet Sol–Gel Silica/Hydroxypropyl Methyl Cellulose Formulation for Slow Release of Serpin B3 Promotes Wound Healing In Vivo. Pharmaceutics 2022;14:1944. [DOI: 10.3390/pharmaceutics14091944] [Reference Citation Analysis]
10 Hu C, Yang L, Wang Y. Recent advances in smart‐responsive hydrogels for tissue repairing. MedComm – Biomaterials and Applications 2022;1. [DOI: 10.1002/mba2.23] [Reference Citation Analysis]
11 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
12 Shibakami M. Preparation of Paramylon Multifilament by Using the Viscose Method. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200494] [Reference Citation Analysis]
13 Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022;348:745-59. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Reference Citation Analysis]
14 Roy Biswas G, Mishra S, Sufian A. Gel Based Formulations in Oral Controlled Release Drug Delivery. RJPT 2022. [DOI: 10.52711/0974-360x.2022.00392] [Reference Citation Analysis]
15 Alenazi AS, El-bagory IM, Yassin AB, Alanazi FK, Alsarra IA, Haq N, Bayomi MA, Shakeel F. Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions. Journal of Drug Delivery Science and Technology 2022;71:103326. [DOI: 10.1016/j.jddst.2022.103326] [Reference Citation Analysis]
16 Klubthawee N, Bovone G, Marco-Dufort B, Guzzi EA, Aunpad R, Tibbitt MW. Biopolymer Nano-Network for Antimicrobial Peptide Protection and Local Delivery. Adv Healthc Mater 2022;11:e2101426. [PMID: 34936732 DOI: 10.1002/adhm.202101426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Lu K, Li Z, Hu Q, Sun J, Chen M. CRPC Membrane-Camouflaged, Biomimetic Nanosystem for Overcoming Castration-Resistant Prostate Cancer by Cellular Vehicle-Aided Tumor Targeting. Int J Mol Sci 2022;23:3623. [PMID: 35408983 DOI: 10.3390/ijms23073623] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Pearson JJ, Temenoff JS. Growth Factor Immobilization Strategies for Musculoskeletal Disorders. Curr Osteoporos Rep 2022. [PMID: 35118607 DOI: 10.1007/s11914-022-00718-x] [Reference Citation Analysis]
19 Shank-retzlaff M, Taverner YP, Joshi P, Renu S, Chitikela A, Koneru A, Wang Z, Bronsart L, Mohanty P. Capillary-Mediated Vitrification: A Novel Approach for Improving Thermal Stability of Enzymes and Proteins. Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.xphs.2022.02.015] [Reference Citation Analysis]
20 Wang J, Ayari MA, Khandakar A, Chowdhury MEH, Uz Zaman SA, Rahman T, Vaferi B. Estimating the Relative Crystallinity of Biodegradable Polylactic Acid and Polyglycolide Polymer Composites by Machine Learning Methodologies. Polymers 2022;14:527. [DOI: 10.3390/polym14030527] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
21 Ade C, Marcelino TF, Dulchavsky M, Wu K, Bardwell JCA, Städler B. Microreactor equipped with naturally acid-resistant histidine ammonia lyase from an extremophile. Mater Adv . [DOI: 10.1039/d2ma00051b] [Reference Citation Analysis]
22 Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with respect to their synthesis procedures, degradation properties, toxicity, stability and applications. Encyclopedia of Materials: Plastics and Polymers 2022. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Reference Citation Analysis]
23 Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. Mater Adv . [DOI: 10.1039/d1ma00961c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
24 Hersh J, Condor Capcha JM, Iansen Irion C, Lambert G, Noguera M, Singh M, Kaur A, Dikici E, Jiménez JJ, Shehadeh LA, Daunert S, Deo SK. Peptide-Functionalized Dendrimer Nanocarriers for Targeted Microdystrophin Gene Delivery. Pharmaceutics 2021;13:2159. [PMID: 34959441 DOI: 10.3390/pharmaceutics13122159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021;179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Mushtaq I, Akhter Z, Farooq M, Jabeen F, Rehman AU, Rehman S, Ayub S, Mirza B, Siddiq M, Zaman F. A unique amphiphilic triblock copolymer, nontoxic to human blood and potential supramolecular drug delivery system for dexamethasone. Sci Rep 2021;11:21507. [PMID: 34728694 DOI: 10.1038/s41598-021-00871-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Hahn D, Sonntag JM, Lück S, Maitz MF, Freudenberg U, Jordan R, Werner C. Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels-Expanding the Physicochemical Parameter Space of Biohybrid Materials. Adv Healthc Mater 2021;10:e2101327. [PMID: 34541827 DOI: 10.1002/adhm.202101327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Panchal SS, Vasava DV. Fabricating approaches for synthesis of miktoarm star-shaped polymers having tailored biodegradability. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1981319] [Reference Citation Analysis]
29 Di Muzio L, Paolicelli P, Brandelli C, Cesa S, Trilli J, Petralito S, Casadei MA. Injectable and In Situ Gelling Dextran Derivatives Containing Hydrolyzable Groups for the Delivery of Large Molecules. Gels 2021;7:150. [PMID: 34698160 DOI: 10.3390/gels7040150] [Reference Citation Analysis]
30 Raslan A, Ciriza J, Ochoa de Retana AM, Sanjuán ML, Toprak MS, Galvez-Martin P, Saenz-Del-Burgo L, Pedraz JL. Modulation of Conductivity of Alginate Hydrogels Containing Reduced Graphene Oxide through the Addition of Proteins. Pharmaceutics 2021;13:1473. [PMID: 34575549 DOI: 10.3390/pharmaceutics13091473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Ahmad Ruzaidi DA, Mahat MM, Mohamed Sofian Z, Nor Hashim NA, Osman H, Nawawi MA, Ramli R, Jantan KA, Aizamddin MF, Azman HH, Robin Chang YH, Hamzah HH. Synthesis and Characterization of Porous, Electro-Conductive Chitosan-Gelatin-Agar-Based PEDOT: PSS Scaffolds for Potential Use in Tissue Engineering. Polymers (Basel) 2021;13:2901. [PMID: 34502941 DOI: 10.3390/polym13172901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
32 Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, Zhu Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol Biosci 2021;21:e2100103. [PMID: 34405955 DOI: 10.1002/mabi.202100103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
33 Ostróżka-Cieślik A, Maciążek-Jurczyk M, Pożycka J, Dolińska B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. Pharmaceutics 2021;13:1215. [PMID: 34452176 DOI: 10.3390/pharmaceutics13081215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Chen YS, Gleaton J, Yang Y, Dhayalan B, Phillips NB, Liu Y, Broadwater L, Jarosinski MA, Chatterjee D, Lawrence MC, Hattier T, Michael MD, Weiss MA. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc Natl Acad Sci U S A 2021;118:e2103518118. [PMID: 34290145 DOI: 10.1073/pnas.2103518118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mansouri F, Chouchene K, Roche N, Ksibi M. Removal of Pharmaceuticals from Water by Adsorption and Advanced Oxidation Processes: State of the Art and Trends. Applied Sciences 2021;11:6659. [DOI: 10.3390/app11146659] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
36 Chen IC, Su CY, Nien WH, Huang TT, Huang CH, Lu YC, Chen YJ, Huang GC, Fang HW. Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and Mechanism. Polymers (Basel) 2021;13:2240. [PMID: 34300997 DOI: 10.3390/polym13142240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Feng H, Yang X, Zhang L, Liu Q, Feng Y, Wu D, Liu Y, Yang J. Mannose-Modified Chitosan Poly(lactic-co-glycolic acid) Microspheres Act as a Mannose Receptor-Mediated Delivery System Enhancing the Immune Response. Polymers (Basel) 2021;13:2208. [PMID: 34279352 DOI: 10.3390/polym13132208] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zafar H, Raza F, Ma S, Wei Y, Zhang J, Shen Q. Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomater Sci 2021;9:5092-115. [PMID: 34160488 DOI: 10.1039/d1bm00721a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
39 Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, Arizmendi-Grijalva A, Ochoa-Sánchez C, Larios-Rodríguez E, Martínez-Soto JM, Rodríguez-León E, Ibarra-Zazueta C, Mora-Monroy R, Borbón-Nuñez HA, García-Galaz A, Candia-Plata MDC, López-Soto LF, Iñiguez-Palomares R. Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Sci Rep 2021;11:11312. [PMID: 34050228 DOI: 10.1038/s41598-021-90763-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Gao L, Chen J, Feng W, Song Q, Huo J, Yu L, Liu N, Wang T, Li P, Huang W. A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. Biomater Sci 2020;8:6930-45. [PMID: 32964904 DOI: 10.1039/d0bm00800a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
41 Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021;32:448-65. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
42 Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan WE, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021;10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 16.5] [Reference Citation Analysis]
43 Letko Khait N, Ho E, Shoichet MS. Wielding the Double‐Edged Sword of Inflammation: Building Biomaterial‐Based Strategies for Immunomodulation in Ischemic Stroke Treatment. Adv Funct Mater 2021;31:2010674. [DOI: 10.1002/adfm.202010674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Joardar N, Mukherjee N, Sinha Babu SP. Nanopharmaceuticals to target antifilarials: Administration of old age drugs in a novel way. Applications of Nanobiotechnology for Neglected Tropical Diseases 2021. [DOI: 10.1016/b978-0-12-821100-7.00015-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Wu P, Chen D, Yang H, Lai C, Xuan C, Chen Y, Shi X. Antibacterial peptide-modified collagen nanosheet for infected wound repair. Smart Materials in Medicine 2021;2:172-81. [DOI: 10.1016/j.smaim.2021.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Engineered Regeneration 2021;2:1-18. [DOI: 10.1016/j.engreg.2020.12.001] [Cited by in Crossref: 54] [Cited by in F6Publishing: 31] [Article Influence: 27.0] [Reference Citation Analysis]
47 Shi Y, Li D, Ding J, He C, Chen X. Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. Polym Chem 2021;12:2832-9. [DOI: 10.1039/d1py00290b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Balandrán-quintana RR, Mendoza-wilson AM, Ramos-clamont Montfort G, Huerta-ocampo JÁ, Mazorra-manzano MA. Peptides and Proteins. Food Bioactives and Health 2021. [DOI: 10.1007/978-3-030-57469-7_3] [Reference Citation Analysis]
49 Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS Appl Bio Mater 2021;4:229-51. [PMID: 34250454 DOI: 10.1021/acsabm.0c01145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 Castillo-Díaz LA, Ruiz-Pacheco JA, Elsawy MA, Reyes-Martínez JE, Enríquez-Rodríguez AI. Self-Assembling Peptides as an Emerging Platform for the Treatment of Metabolic Syndrome. Int J Nanomedicine 2020;15:10349-70. [PMID: 33376325 DOI: 10.2147/IJN.S278189] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
51 Gholami A, Hashemi SA, Yousefi K, Mousavi SM, Chiang W, Ramakrishna S, Mazraedoost S, Alizadeh A, Omidifar N, Behbudi G, Babapoor A, Li X. 3D Nanostructures for Tissue Engineering, Cancer Therapy, and Gene Delivery. Journal of Nanomaterials 2020;2020:1-24. [DOI: 10.1155/2020/1852946] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
52 Gupta D, Gangwar A, Jyoti K, Sainaga Jyothi VG, Sodhi RK, Mehra NK, Singh SB, Madan J. Self healing hydrogels: A new paradigm immunoadjuvant for delivering peptide vaccine. Colloids and Surfaces B: Biointerfaces 2020;194:111171. [DOI: 10.1016/j.colsurfb.2020.111171] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
53 Feng JP, Zhu R, Jiang F, Xie J, Gao C, Li M, Jin H, Fu D. Melittin-encapsulating peptide hydrogels for enhanced delivery of impermeable anticancer peptides. Biomater Sci 2020;8:4559-69. [PMID: 32672773 DOI: 10.1039/c9bm02080b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
54 DeVallance E, Li Y, Jurczak MJ, Cifuentes-Pagano E, Pagano PJ. The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxid Redox Signal 2019;31:687-709. [PMID: 31250671 DOI: 10.1089/ars.2018.7674] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
55 Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020;326:419-41. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 10.7] [Reference Citation Analysis]
56 Lim JYC, Goh SS, Loh XJ. Bottom-Up Engineering of Responsive Hydrogel Materials for Molecular Detection and Biosensing. ACS Materials Lett 2020;2:918-50. [DOI: 10.1021/acsmaterialslett.0c00204] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
57 Siemiradzka W, Dolińska B, Ryszka F. Influence of Concentration on Release and Permeation Process of Model Peptide Substance-Corticotropin-From Semisolid Formulations. Molecules 2020;25:E2767. [PMID: 32549368 DOI: 10.3390/molecules25122767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
58 Mobaraki M, Ghaffari M, Yazdanpanah A, Luo Y, Mills D. Bioinks and bioprinting: A focused review. Bioprinting 2020;18:e00080. [DOI: 10.1016/j.bprint.2020.e00080] [Cited by in Crossref: 82] [Cited by in F6Publishing: 87] [Article Influence: 27.3] [Reference Citation Analysis]
59 Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020;8:504. [PMID: 32548101 DOI: 10.3389/fbioe.2020.00504] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
60 Liu D, Wang C, Yang J, An Y, Yang R, Teng G. CRGDK-Functionalized PAMAM-Based Drug-Delivery System with High Permeability. ACS Omega 2020;5:9316-23. [PMID: 32363282 DOI: 10.1021/acsomega.0c00202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
61 Lim H, Hong SH, Bae SM, Choi IY, Kim HH. A Liquid Formulation of a Long-acting Erythropoietin Conjugate. Biotechnol Bioproc E 2020;25:117-25. [DOI: 10.1007/s12257-019-0194-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
62 Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater 2020;103:52-67. [PMID: 31874224 DOI: 10.1016/j.actbio.2019.12.025] [Cited by in Crossref: 122] [Cited by in F6Publishing: 130] [Article Influence: 40.7] [Reference Citation Analysis]
63 Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020;8:7275-87. [DOI: 10.1039/d0tb00772b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
64 Guo R, Zhang X, Ji L, Wei Z, Duan Z, Qiao Z, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020;8:6175-89. [DOI: 10.1039/d0bm01358g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
65 Atienza-roca P, Kieser DC, Cui X, Bathish B, Ramaswamy Y, Hooper GJ, Clarkson AN, Rnjak-kovacina J, Martens PJ, Wise LM, Woodfield TBF, Lim KS. Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomater Sci 2020;8:5005-19. [DOI: 10.1039/d0bm00603c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
66 Yang Y, Chen J, Migliaresi C, Motta A. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin. Adv Exp Med Biol 2020;1249:39-49. [PMID: 32602089 DOI: 10.1007/978-981-15-3258-0_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
67 Pal P, Singh SK, Mishra S, Pandey JP, Sen G. Gum ghatti based hydrogel: Microwave synthesis, characterization, 5-Fluorouracil encapsulation and ‘in vitro’ drug release evaluation. Carbohydrate Polymers 2019;222:114979. [DOI: 10.1016/j.carbpol.2019.114979] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
68 Golabchi A, Wu B, Cao B, Bettinger CJ, Cui XT. Zwitterionic polymer/polydopamine coating reduce acute inflammatory tissue responses to neural implants. Biomaterials 2019;225:119519. [PMID: 31600673 DOI: 10.1016/j.biomaterials.2019.119519] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 12.5] [Reference Citation Analysis]
69 Bolhassani A. Improvements in chemical carriers of proteins and peptides. Cell Biol Int 2019;43:437-52. [PMID: 30672055 DOI: 10.1002/cbin.11108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
70 Flora T, de Torre IG, Alonso M, Rodríguez-Cabello JC. Tethering QK peptide to enhance angiogenesis in elastin-like recombinamer (ELR) hydrogels. J Mater Sci Mater Med 2019;30:30. [PMID: 30762134 DOI: 10.1007/s10856-019-6232-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
71 Raza F, Zhu Y, Chen L, You X, Zhang J, Khan A, Khan MW, Hasnat M, Zafar H, Wu J, Ge L. Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting. Biomater Sci 2019;7:2023-36. [DOI: 10.1039/c9bm00139e] [Cited by in Crossref: 84] [Cited by in F6Publishing: 90] [Article Influence: 21.0] [Reference Citation Analysis]
72 Gantumur E, Sakai S, Nakahata M, Taya M. Horseradish peroxidase-catalyzed hydrogelation consuming enzyme-produced hydrogen peroxide in the presence of reducing sugars. Soft Matter 2019;15:2163-9. [DOI: 10.1039/c8sm01839a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
73 Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019;7:7639-55. [DOI: 10.1039/c9tb01842e] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
74 Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2019;80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
75 Gopalakrishnan A, Shankarappa SA, Rajanikant GK. Hydrogel Scaffolds: Towards Restitution of Ischemic Stroke-Injured Brain. Transl Stroke Res 2019;10:1-18. [DOI: 10.1007/s12975-018-0655-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]