BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Siqueira JH, Mill JG, Velasquez-Melendez G, Moreira AD, Barreto SM, Benseñor IM, Molina MDCB. Sugar-Sweetened Soft Drinks and Fructose Consumption Are Associated with Hyperuricemia: Cross-Sectional Analysis from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2018;10:E981. [PMID: 30060512 DOI: 10.3390/nu10080981] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Nie J, Deng MG, Wang K, Liu F, Xu H, Feng Q, Li X, Yang Y, Zhang R, Wang S. Higher HEI-2015 scores are associated with lower risk of gout and hyperuricemia: Results from the national health and nutrition examination survey 2007-2016. Front Nutr 2022;9:921550. [PMID: 35990332 DOI: 10.3389/fnut.2022.921550] [Reference Citation Analysis]
2 Elseweidy MM, Elesawy AE, Sobh MS, Elnagar GM. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: Focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase. Life Sci 2022;:120751. [PMID: 35780841 DOI: 10.1016/j.lfs.2022.120751] [Reference Citation Analysis]
3 Fang X, Qi L, Chen H, Gao P, Zhang Q, Leng R, Fan Y, Li B, Pan H, Ye D. The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Front Nutr 2022;9:890730. [DOI: 10.3389/fnut.2022.890730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Khimion L, Burianov O, Nayshtetik I, Rotova S, Smiyan S, Danylyuk S, Kicha N, Sytyuk T, Lebedeva T, Trophanchuk V. Is Renoprotection Real for Patients with Hyperuricemia? FM 2022. [DOI: 10.30841/2307-5112.1-2.2022.260499] [Reference Citation Analysis]
5 Coronati M, Baratta F, Pastori D, Ferro D, Angelico F, Del Ben M. Added Fructose in Non-Alcoholic Fatty Liver Disease and in Metabolic Syndrome: A Narrative Review. Nutrients 2022;14:1127. [PMID: 35334784 DOI: 10.3390/nu14061127] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
6 Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022;:1-26. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Margină D, Ungurianu A. Dietary sugar intake: Public health perspective. Reference Module in Biomedical Sciences 2022. [DOI: 10.1016/b978-0-12-824315-2.00071-3] [Reference Citation Analysis]
8 Coletro HN, Bressan J, Diniz AP, Hermsdorff HHM, Pimenta AM, Meireles AL, Mendonça RD, Carraro JCC. Total Polyphenol Intake, Polyphenol Subtypes, and Prevalence of Hypertension in the CUME Cohort. J Am Coll Nutr 2021;:1-12. [PMID: 34648393 DOI: 10.1080/07315724.2021.1977735] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Azarias HGA, Marques-Rocha JL, Miranda AEDS, Dos Santos LC, Gomes Domingos AL, Hermsdorff HHM, Bressan J, de Oliveira FLP, Leal ACG, Pimenta AM. Online Food Frequency Questionnaire From the Cohort of Universities of Minas Gerais (CUME Project, Brazil): Construction, Validity, and Reproducibility. Front Nutr 2021;8:709915. [PMID: 34631764 DOI: 10.3389/fnut.2021.709915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Briones-Avila LS, Moranchel-Hernández MA, Moreno-Riolobos D, Silva Pereira TS, Ortega Regules AE, Villaseñor López K, Islas Romero LM. Analysis of Caloric and Noncaloric Sweeteners Present in Dairy Products Aimed at the School Market and Their Possible Effects on Health. Nutrients 2021;13:2994. [PMID: 34578870 DOI: 10.3390/nu13092994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ando Y, Ohta Y, Munetsuna E, Yamada H, Nouchi Y, Kageyama I, Mizuno G, Yamazaki M, Fujii R, Ishikawa H, Suzuki K, Ohashi K. Laboratory analysis of glucose, fructose, and sucrose contents in Japanese common beverages for the exact assessment of beverage-derived sugar intake.. [DOI: 10.1101/2021.08.13.456286] [Reference Citation Analysis]
12 Keenan RT. The biology of urate. Semin Arthritis Rheum 2020;50:S2-S10. [PMID: 32620198 DOI: 10.1016/j.semarthrit.2020.04.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 33.0] [Reference Citation Analysis]
13 Shi YN, Liu YJ, Xie Z, Zhang WJ. Fructose and metabolic diseases: too much to be good. Chin Med J (Engl) 2021;134:1276-85. [PMID: 34010200 DOI: 10.1097/CM9.0000000000001545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Siqueira JH, Pereira TSS, Velasquez-Melendez G, Barreto SM, Benseñor IM, Mill JG, Molina MCB. Sugar-sweetened soft drinks consumption and risk of hyperuricemia: Results of the ELSA-Brasil study. Nutr Metab Cardiovasc Dis 2021;31:2004-13. [PMID: 34119374 DOI: 10.1016/j.numecd.2021.04.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Azevedo VZ, Dall'Alba V. Fructose intake is not associated to the risk of hepatic fibrosis in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). Clin Nutr 2021;40:4275-83. [PMID: 33551215 DOI: 10.1016/j.clnu.2021.01.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Lin WT, Kao YH, Lin HY, Li MS, Luo T, Fritz JM, Seal DW, Lee CH, Hu CY, Tseng TS. Age difference in the combined effect of soda drinks consumption and body adiposity on hyperuricaemia in US adults. Public Health Nutr 2021;:1-13. [PMID: 33541468 DOI: 10.1017/S1368980021000513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Beisner J, Gonzalez-Granda A, Basrai M, Damms-Machado A, Bischoff SC. Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients 2020;12:E3444. [PMID: 33182700 DOI: 10.3390/nu12113444] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
18 Zhang C, Li L, Zhang Y, Zeng C. Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother 2020;131:110795. [PMID: 33152951 DOI: 10.1016/j.biopha.2020.110795] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
19 Zhang T, Bian S, Gu Y, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Wang Y, Wang X, Cao X, Li H, Liu Y, Li X, Wang X, Sun S, Wang X, Zhou M, Jiao H, Jia Q, Song K, Wu X, Wu Y, Niu K. Sugar-containing carbonated beverages consumption is associated with hyperuricemia in general adults: A cross-sectional study. Nutrition, Metabolism and Cardiovascular Diseases 2020;30:1645-52. [DOI: 10.1016/j.numecd.2020.05.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Scuiller A, Pascart T, Bernard A, Oehler E. [Gout]. Rev Med Interne 2020;41:396-403. [PMID: 32201015 DOI: 10.1016/j.revmed.2020.02.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Liu Z, Su X, Xiao M, Zhou P, Guo J, Huang Y, Zhan Y. Association between Eating Away from Home and Hyperuricemia: A Population-Based Nationwide Cross-Sectional Study in China. Biomed Res Int 2019;2019:2792681. [PMID: 31687384 DOI: 10.1155/2019/2792681] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Taskinen MR, Packard CJ, Borén J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019;11:E1987. [PMID: 31443567 DOI: 10.3390/nu11091987] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 30.7] [Reference Citation Analysis]
23 Sánchez E, Betriu À, Salas-salvadó J, Pamplona R, Barbé F, Purroy F, Farràs C, Fernández E, López-cano C, Mizab C, Lecube A; the ILERVAS project investigators. Mediterranean diet, physical activity and subcutaneous advanced glycation end-products’ accumulation: a cross-sectional analysis in the ILERVAS project. Eur J Nutr 2020;59:1233-42. [DOI: 10.1007/s00394-019-01983-w] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
24 Sun Y, Sun J, Zhang P, Zhong F, Cai J, Ma A. Association of dietary fiber intake with hyperuricemia in U.S. adults. Food Funct 2019;10:4932-40. [DOI: 10.1039/c8fo01917g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
25 Gómez-Sámano MÁ, Almeda-Valdes P, Cuevas-Ramos D, Navarro-Flores MF, Espinosa-Salazar HD, Martínez-Saavedra M, León-Domínguez JA, Enríquez-Estrada VM, López-González AL, Sarmiento-Moreno AL, Rivera-González LA, Juárez-León ÓA, Pérez-González B, Ávila-Palacios Y, Sigala-Pedroza L, Huerta-Ávila E, Vargas-Álvarez MA, Sánchez-Jaimes C, Cárdenas-Vera M, Mehta R, López-Flores A La Torre MA, Manjarrez-Martínez I, Brito-Córdova GX, Zuarth-Vázquez JM, Vega-Beyhart A, López-Carrasco G, Johnson RJ, Gómez-Pérez FJ. A Higher Fructose Intake Is Associated with Greater Albuminuria in Subjects with Type 2 Diabetes Mellitus. Int J Nephrol 2018;2018:5459439. [PMID: 30416829 DOI: 10.1155/2018/5459439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Gonzalez-Vicente A, Hong NJ, Yang N, Cabral PD, Berthiaume JM, Dominici FP, Garvin JL. Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets. Nutrients 2018;10:E1244. [PMID: 30200571 DOI: 10.3390/nu10091244] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]