BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nowak A, Zakłos-Szyda M, Żyżelewicz D, Koszucka A, Motyl I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020;25:E368. [PMID: 31963203 DOI: 10.3390/molecules25020368] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Su D, Lu J, Nie C, Guo Z, Li C, Yu Q, Xie J, Chen Y. Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells. Foods 2023;12:1318. [PMID: 36981244 DOI: 10.3390/foods12061318] [Reference Citation Analysis]
2 Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023;175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Reference Citation Analysis]
3 Guth S, Baum M, Cartus AT, Diel P, Engel KH, Engeli B, Epe B, Grune T, Haller D, Heinz V, Hellwig M, Hengstler JG, Henle T, Humpf HU, Jäger H, Joost HG, Kulling SE, Lachenmeier DW, Lampen A, Leist M, Mally A, Marko D, Nöthlings U, Röhrdanz E, Roth A, Spranger J, Stadler R, Steinberg P, Vieths S, Wätjen W, Eisenbrand G. Evaluation of the genotoxic potential of acrylamide: Arguments for the derivation of a tolerable daily intake (TDI value). Food Chem Toxicol 2023;173:113632. [PMID: 36708862 DOI: 10.1016/j.fct.2023.113632] [Reference Citation Analysis]
4 Lu J, Yang Y, Varga E, Marko D, Yu Q, Xie J, Li C, Chen Y. Molecular Mechanisms Associated with Protecting IEC-6 Cells from Acrylamide-Induced Tight Junction Damage by Ganoderma atrum Polysaccharide. Mol Nutr Food Res 2023;67:e2200774. [PMID: 36565056 DOI: 10.1002/mnfr.202200774] [Reference Citation Analysis]
5 Qiang S, Guo K, Zhang D, Sun W, Wang Z, Huang S, Li P, Fan Q. The damage mechanism of uranium(VI) to HK-2 cells. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08843-2] [Reference Citation Analysis]
6 Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. J Environ Sci Health B 2023;58:139-49. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Reference Citation Analysis]
7 Chen Y, Lu J, Nie C. Mitochondrial dysfunction and underlying molecular mechanisms in acrylamide-induced toxicity. Mitochondrial Intoxication 2023. [DOI: 10.1016/b978-0-323-88462-4.00028-6] [Reference Citation Analysis]
8 Gao Q, Xue Y, Yuan X, Gao H, Wu C. Dietary exposure to acrylamide of university students in Ningxia of Northwest China and the effect on their neurobehavioral performance and oxidative stress in serum. Food Sci Nutr 2023;11:661-7. [PMID: 36789069 DOI: 10.1002/fsn3.3101] [Reference Citation Analysis]
9 Křížkovská B, Viktorová J, Lipov J. Approved Genetically Modified Potatoes ( Solanum tuberosum ) for Improved Stress Resistance and Food Safety. J Agric Food Chem . [DOI: 10.1021/acs.jafc.2c03837] [Reference Citation Analysis]
10 Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022;11:2828. [DOI: 10.3390/foods11182828] [Reference Citation Analysis]
11 Chen P, Liu S, Yin Z, Liang P, Wang C, Zhu H, Liu Y, Ou S, Li G. Rutin alleviated acrolein-induced cytotoxicity in Caco-2 and GES-1 cells by forming a cyclic hemiacetal product. Front Nutr 2022;9:976400. [DOI: 10.3389/fnut.2022.976400] [Reference Citation Analysis]
12 Kovár M, Navrátilová A, Kolláthová R, Trakovická A, Požgajová M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022;27:4307. [DOI: 10.3390/molecules27134307] [Reference Citation Analysis]
13 Gil M, Gallego V, Jaramillo Y, Gil M, Uribe D. Advances on Acrylamide in cocoa and its derivates: a challenge to control from postharvest to the industrialization. Current Opinion in Food Science 2022. [DOI: 10.1016/j.cofs.2022.100903] [Reference Citation Analysis]
14 Pietropaoli F, Pantalone S, Cichelli A, d'Alessandro N. Acrylamide in widely consumed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;39:853-87. [PMID: 35286246 DOI: 10.1080/19440049.2022.2046292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Benford D, Bignami M, Chipman JK, Ramos Bordajandi L; European Food Safety Authority (EFSA). Assessment of the genotoxicity of acrylamide. EFS2 2022;20. [DOI: 10.2903/j.efsa.2022.7293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Nowak A, Zakłos-Szyda M, Rosicka-Kaczmarek J, Motyl I. Anticancer Potential of Post-Fermentation Media and Cell Extracts of Probiotic Strains: An In Vitro Study. Cancers (Basel) 2022;14:1853. [PMID: 35406625 DOI: 10.3390/cancers14071853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.112852] [Reference Citation Analysis]
18 Tiwary BN, Das R, Paul V. Bioremediation Technology: A Cumulative Study on Microbial Bioremediation of Heavy Metals, Aromatic Hydrocarbons, Acrylamide, and Polyacrylamide. Industrial Microbiology and Biotechnology 2022. [DOI: 10.1007/978-981-16-5214-1_20] [Reference Citation Analysis]
19 Sharma M, Anand P, Padwad YS, Dogra V, Acharya V. DNA damage response proteins synergistically affect the cancer prognosis and resistance. Free Radic Biol Med 2022;178:174-88. [PMID: 34848370 DOI: 10.1016/j.freeradbiomed.2021.11.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Roshanak S, Shahidi F, Tabatabaei Yazdi F, Javadmanesh A, Movaffagh J. Buforin I an alternative to conventional antibiotics: Evaluation of the antimicrobial properties, stability, and safety. Microb Pathog 2021;161:105301. [PMID: 34822969 DOI: 10.1016/j.micpath.2021.105301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Esposito F, Nolasco A, Caracciolo F, Velotto S, Montuori P, Romano R, Stasi T, Cirillo T. Acrylamide in Baby Foods: A Probabilistic Exposure Assessment. Foods 2021;10:2900. [PMID: 34945452 DOI: 10.3390/foods10122900] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
22 Petka K, Wajda Ł, Duda-Chodak A. The Utilisation of Acrylamide by Selected Microorganisms Used for Fermentation of Food. Toxics 2021;9:295. [PMID: 34822686 DOI: 10.3390/toxics9110295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Yin T, Xu F, Shi S, Liao S, Tang X, Zhang H, Zhou Y, Li X. Vitamin D mediates the association between acrylamide hemoglobin biomarkers and obesity. Environ Sci Pollut Res Int 2021. [PMID: 34661844 DOI: 10.1007/s11356-021-16798-8] [Reference Citation Analysis]
24 Salimi A, Hashemidanesh N, Seydi E, Baghal E, Khodaparast F, Ghobadi H. Restoration and stabilization of acrylamide-induced DNA, mitochondrial damages and oxidative stress by chrysin in human lymphocyte. Expert Opin Drug Metab Toxicol 2021;17:857-65. [PMID: 34102941 DOI: 10.1080/17425255.2021.1940951] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
25 Reshmitha T, Nisha P. Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative stress modulation in HepG2 cells. Journal of Functional Foods 2021;80:104390. [DOI: 10.1016/j.jff.2021.104390] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Shao X, Zhang F, Gao X, Xu F. Siomycin A induces reactive oxygen species-mediated cytotoxicity in ovarian cancer cells. Oncol Lett 2021;21:431. [PMID: 33868469 DOI: 10.3892/ol.2021.12692] [Reference Citation Analysis]
27 Mahdizade E, Baeeri M, Hodjat M, Rahimifard M, Navaei-Nigjeh M, Haghi-Aminjan H, Moeini-Nodeh S, Hassani S, Dehghan G, Hosseinpour-Feizi MA, Abdollahi M. Impact of Acrylamide on Cellular Senescence Response and Cell Cycle Distribution via an In-vitro Study. Iran J Pharm Res 2021;20:165-77. [PMID: 35194437 DOI: 10.22037/ijpr.2021.115117.15206] [Reference Citation Analysis]
28 Mishra A, Shaikh S, Kumar A. Redispersion of cryoaggregated gold nanoparticle by means of laser irradiation and effect on biological interactions. Nanotechnology 2020;31:435601. [PMID: 32619991 DOI: 10.1088/1361-6528/aba2a1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Yue FR, Wei ZB, Yan RZ, Guo QH, Liu B, Zhang JH, Li Z. SMYD3 promotes colon adenocarcinoma (COAD) progression by mediating cell proliferation and apoptosis. Exp Ther Med 2020;20:11. [PMID: 32934676 DOI: 10.3892/etm.2020.9139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
30 Yan F, Zhao L, Chen W, Lu Q, Tang C, Wang C, Liu R. Comparison of the inhibitory effects of procyanidins with different structures and their digestion products against acrylamide-induced cytotoxicity in IPEC-J2 cells. Journal of Functional Foods 2020;72:104073. [DOI: 10.1016/j.jff.2020.104073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kochan E, Nowak A, Zakłos-Szyda M, Szczuka D, Szymańska G, Motyl I. Panax quinquefolium L. Ginsenosides from Hairy Root Cultures and Their Clones Exert Cytotoxic, Genotoxic and Pro-Apoptotic Activity towards Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020;25:E2262. [PMID: 32403328 DOI: 10.3390/molecules25092262] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
32 Amirshahrokhi K. Acrylamide exposure aggravates the development of ulcerative colitis in mice through activation of NF-κB, inflammatory cytokines, iNOS, and oxidative stress. Iran J Basic Med Sci 2021;24:312-21. [PMID: 33995942 DOI: 10.22038/ijbms.2021.52233.11816] [Cited by in F6Publishing: 2] [Reference Citation Analysis]