BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu L, Tseng C, Ju W, Yang R. Rapid Paper-Based System for Human Serum Creatinine Detection. Inventions 2018;3:34. [DOI: 10.3390/inventions3020034] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Ram R, Kumar D, Sarkar A. A smartphone-integrated portable rotating platform for estimation of concentration level of plasma-creatinine using whole human blood. Talanta 2022;253:123960. [PMID: 36195027 DOI: 10.1016/j.talanta.2022.123960] [Reference Citation Analysis]
2 Chattopadhyay S, Ram R, Sarkar A, Chakraborty S. Smartphone-based automated estimation of plasma creatinine from finger-pricked blood on a paper strip via single-user step sample-to-result integration. Measurement 2022;199:111492. [DOI: 10.1016/j.measurement.2022.111492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Dudala S, Dubey SK, Javed A, Ganguly A, Kapur S, Goel S. Portable Chemiluminescence Detection Platform and Its Application in Creatinine Detection. IEEE Sensors J 2022;22:7177-84. [DOI: 10.1109/jsen.2022.3151694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chen P, Chen K, Lin C, Yeh Y. Rapidly and simultaneously quantifying multiple biomarkers of L-tyrosine hydroxylase deficiency by using paper microfluidic devices and smartphone-based analysis system. Sensors and Actuators B: Chemical 2021;349:130722. [DOI: 10.1016/j.snb.2021.130722] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
5 Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021;21:1433-53. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
6 Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular‐based methods. Analytical Science Advances 2021;2:308-325. [DOI: 10.1002/ansa.202000074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Esmeryan KD, Chaushev TA. Complex characterization of human urine using super-nonwettable soot coated quartz crystal microbalance sensors. Sensors and Actuators A: Physical 2021;317:112480. [DOI: 10.1016/j.sna.2020.112480] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Liu Y, Cánovas R, Crespo GA, Cuartero M. Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences. Anal Chem 2020;92:3315-23. [PMID: 31971373 DOI: 10.1021/acs.analchem.9b05231] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
9 Kung C, Hou C, Wang Y, Fu L. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical 2019;301:126855. [DOI: 10.1016/j.snb.2019.126855] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 25.0] [Reference Citation Analysis]
10 Yang R. Microfluidics and Nanofluidics. Inventions 2019;4:12. [DOI: 10.3390/inventions4010012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Cánovas R, Cuartero M, Crespo GA. Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosens Bioelectron 2019;130:110-24. [PMID: 30731344 DOI: 10.1016/j.bios.2019.01.048] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]