1 |
Spleis H, Sandmeier M, Claus V, Bernkop-Schnürch A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv Colloid Interface Sci 2023;313:102848. [PMID: 36780780 DOI: 10.1016/j.cis.2023.102848] [Reference Citation Analysis]
|
2 |
Liu H, Wang B, Xing M, Meng F, Zhang S, Yang G, Cheng A, Yan C, Xu B, Gao Y. Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. International Journal of Pharmaceutics 2023. [DOI: 10.1016/j.ijpharm.2023.122863] [Reference Citation Analysis]
|
3 |
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022;12:621-36. [PMID: 35256935 DOI: 10.1016/j.apsb.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Arora M, Zou D, Ravi Kumar M. Nanoparticle-assisted oral delivery of small and large peptides. Oral Delivery of Therapeutic Peptides and Proteins 2022. [DOI: 10.1016/b978-0-12-821061-1.00007-1] [Reference Citation Analysis]
|
5 |
Friedl JD, Nele V, De Rosa G, Bernkop‐schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv Funct Materials 2021;31:2103347. [DOI: 10.1002/adfm.202103347] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
6 |
Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm 2021;601:120583. [PMID: 33839225 DOI: 10.1016/j.ijpharm.2021.120583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021;19:32. [PMID: 33499885 DOI: 10.1186/s12951-021-00770-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
8 |
Robla S, Alonso MJ, Csaba NS. Polyaminoacid-based nanocarriers: a review of the latest candidates for oral drug delivery. Expert Opinion on Drug Delivery 2020;17:1081-92. [DOI: 10.1080/17425247.2020.1776698] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020;157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 31.0] [Reference Citation Analysis]
|
10 |
Rewatkar P, Kumeria T, Popat A. Size, shape and surface charge considerations of orally delivered nanomedicines. Nanotechnology for Oral Drug Delivery. Elsevier; 2020. pp. 143-76. [DOI: 10.1016/b978-0-12-818038-9.00005-3] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Wen J, Liu Y, Li J, Lin H, Zheng Y, Chen Y, Fu X, Chen L. A label-free protamine-assisted colorimetric sensor for highly sensitive detection of S1 nuclease activity. Analyst 2020;145:2774-8. [DOI: 10.1039/d0an00060d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|