BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qu N, Lee RJ, Sun Y, Cai G, Wang J, Wang M, Lu J, Meng Q, Teng L, Wang D, Teng L. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer. Int J Nanomedicine 2016;11:3451-9. [PMID: 27555767 DOI: 10.2147/IJN.S105420] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 7.2] [Reference Citation Analysis]
Number Citing Articles
1 Sun B, Lovell JF, Zhang Y. Current development of cabazitaxel drug delivery systems. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1854] [Reference Citation Analysis]
2 Ashrafizadeh M, Aghamiri S, Tan SC, Zarrabi A, Sharifi E, Rabiee N, Kadumudi FB, Pirouz AD, Delfi M, Byrappa K, Thakur VK, Sharath Kumar KS, Girish YR, Zandsalimi F, Zare EN, Orive G, Tay F, Hushmandi K, Kumar AP, Karaman C, Karimi-maleh H, Mostafavi E, Makvandi P, Wang Y. Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today 2022;45:101532. [DOI: 10.1016/j.nantod.2022.101532] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Du YB, Wang XF, Liu XJ, Li Y, Miao QF, Jiang M, Sheng WJ, Zhen YS. The recombinant defensin/HSA fusion protein that inhibits NF-κb associated with intensive macropinocytosis shows potent efficacy against pancreatic cancer. Biochem Pharmacol 2022;:115057. [PMID: 35489393 DOI: 10.1016/j.bcp.2022.115057] [Reference Citation Analysis]
4 Sun B, Ghosh S, He X, Huang W, Quinn B, Tian M, Jahagirdar D, Mabrouk MT, Ortega J, Zhang Y, Shao S, Lovell JF. Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel. Nano Res . [DOI: 10.1007/s12274-022-4090-3] [Reference Citation Analysis]
5 Nayak AK, Hasnain MS, Behera A, Dhara AK, Pal D. Biological macromolecules in drug delivery. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00015-4] [Reference Citation Analysis]
6 Padhi S, Pradhan SP, Behera A. Methods to Formulate Polymeric Nanoparticles. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_2] [Reference Citation Analysis]
7 Zwain T, Taneja N, Zwayen S, Shidhaye A, Palshetkar A, Singh KK. Albumin nanoparticles—A versatile and a safe platform for drug delivery applications. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00008-9] [Reference Citation Analysis]
8 Cohen L, Assaraf YG, Livney YD. Novel Selectively Targeted Multifunctional Nanostructured Lipid Carriers for Prostate Cancer Treatment. Pharmaceutics 2021;14:88. [PMID: 35056984 DOI: 10.3390/pharmaceutics14010088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
9 Solanki R, Rostamabadi H, Patel S, Jafari SM. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int J Biol Macromol 2021;193:528-40. [PMID: 34655592 DOI: 10.1016/j.ijbiomac.2021.10.040] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
10 Chen Y, Lu Y, Hu D, Peng J, Xiao Y, Hao Y, Pan M, Yuan L, Qian Z. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy. Applied Materials Today 2021;25:101210. [DOI: 10.1016/j.apmt.2021.101210] [Reference Citation Analysis]
11 Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Gajda P, Czopek A, Zagórska A, Jaromin A, Gubernator J, Makara A, Tyliszczak B. The Development of the Innovative Synthesis Methodology of Albumin Nanoparticles Supported by Their Physicochemical, Cytotoxic and Hemolytic Evaluation. Materials (Basel) 2021;14:4386. [PMID: 34442909 DOI: 10.3390/ma14164386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ranjitha VR, Ravishankar Rai V. Bioassisted Synthesis of Gold Nanoparticles from Saccharomonospora glauca: Toxicity and Biocompatibility Study. BioNanoSci 2021;11:371-379. [DOI: 10.1007/s12668-021-00830-9] [Reference Citation Analysis]
13 Subjakova V, Oravczova V, Hianik T. Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers (Basel) 2021;13:341. [PMID: 33494545 DOI: 10.3390/polym13030341] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
14 Zhang G, Cheng W, Du L, Xu C, Li J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J Nanobiotechnology 2021;19:9. [PMID: 33407570 DOI: 10.1186/s12951-020-00749-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
15 Kandar CC, Hasnain MS, Nayak AK. Natural polymers as useful pharmaceutical excipients. Advances and Challenges in Pharmaceutical Technology 2021. [DOI: 10.1016/b978-0-12-820043-8.00012-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Jitta SR, Kumar L. Salting Out and Ionic Gelation Manufacturing Techniques for Nanoparticles. Emerging Technologies for Nanoparticle Manufacturing 2021. [DOI: 10.1007/978-3-030-50703-9_7] [Reference Citation Analysis]
17 Tarhini M, Badri W, Greige-gerges H, Fessi H, Elaissari A. Nanoparticles/nanoplatform to carry and deliver the drug molecules to the target site. Drug Delivery Devices and Therapeutic Systems 2021. [DOI: 10.1016/b978-0-12-819838-4.00009-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yu Z, Li X, Duan J, Yang XD. Targeted Treatment of Colon Cancer with Aptamer-Guided Albumin Nanoparticles Loaded with Docetaxel. Int J Nanomedicine 2020;15:6737-48. [PMID: 32982230 DOI: 10.2147/IJN.S267177] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
19 Barve A, Jain A, Liu H, Zhao Z, Cheng K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater 2020;113:501-11. [PMID: 32562805 DOI: 10.1016/j.actbio.2020.06.019] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
20 Wan Z, Xie F, Wang L, Zhang G, Zhang H. Preparation and Evaluation of Cabazitaxel-Loaded Bovine Serum Albumin Nanoparticles for Prostate Cancer. Int J Nanomedicine 2020;15:5333-44. [PMID: 32801692 DOI: 10.2147/IJN.S258856] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
21 Tazhbayev Y, Mukashev O, Burkeyev M, Lozinsky VI. Synthesis and Comparative Study of Nanoparticles Derived from Bovine and Human Serum Albumins. Polymers (Basel) 2020;12:E1301. [PMID: 32517219 DOI: 10.3390/polym12061301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Sennoune SR, Nelius T, Jarvis C, Pruitt K, Kottapalli KR, Filleur S. The Wnt non-canonical signaling modulates cabazitaxel sensitivity in prostate cancer cells. PLoS One 2020;15:e0234078. [PMID: 32484838 DOI: 10.1371/journal.pone.0234078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano 2020;14:3075-95. [PMID: 32078303 DOI: 10.1021/acsnano.9b08142] [Cited by in Crossref: 79] [Cited by in F6Publishing: 58] [Article Influence: 39.5] [Reference Citation Analysis]
24 Nouri A, Jelkmann M, Khoee S, Bernkop-Schnürch A. Diaminated Starch: A Competitor of Chitosan with Highly Mucoadhesive Properties due to Increased Local Cationic Charge Density. Biomacromolecules 2020;21:999-1008. [PMID: 31940199 DOI: 10.1021/acs.biomac.9b01665] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
25 Hasnain MS, Ahmed SA, Alkahtani S, Milivojevic M, Kandar CC, Dhara AK, Nayak AK. Biopolymers for Drug Delivery. Advanced Biopolymeric Systems for Drug Delivery 2020. [DOI: 10.1007/978-3-030-46923-8_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Meng F, Sun Y, Lee RJ, Wang G, Zheng X, Zhang H, Fu Y, Yan G, Wang Y, Deng W, Parks E, Kim BYS, Yang Z, Jiang W, Teng L. Folate Receptor-Targeted Albumin Nanoparticles Based on Microfluidic Technology to Deliver Cabazitaxel. Cancers (Basel) 2019;11:E1571. [PMID: 31623082 DOI: 10.3390/cancers11101571] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
27 Tazhbayev Y, Mukashev O, Burkeev M, Kreuter J. Hydroxyurea-Loaded Albumin Nanoparticles: Preparation, Characterization, and In Vitro Studies. Pharmaceutics 2019;11:E410. [PMID: 31409024 DOI: 10.3390/pharmaceutics11080410] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
28 Kommineni N, Mahira S, Domb AJ, Khan W. Cabazitaxel-Loaded Nanocarriers for Cancer Therapy with Reduced Side Effects. Pharmaceutics. 2019;11. [PMID: 30934535 DOI: 10.3390/pharmaceutics11030141] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
29 Cai G, Wang S, Zhao L, Sun Y, Yang D, Lee RJ, Zhao M, Zhang H, Zhou Y. Thiophene Derivatives as Anticancer Agents and Their Delivery to Tumor Cells Using Albumin Nanoparticles. Molecules 2019;24:E192. [PMID: 30621360 DOI: 10.3390/molecules24010192] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
30 Sun Y, Zhao Y, Teng S, Hao F, Zhang H, Meng F, Zhao X, Zheng X, Bi Y, Yao Y, Lee RJ, Teng L. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine 2019;14:135-48. [PMID: 30613142 DOI: 10.2147/IJN.S181296] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
31 Wang B, Li P, Shangguan L, Ma J, Mao K, Zhang Q, Wang Y, Liu Z, Mao K. A novel bacterial cellulose membrane immobilized with human umbilical cord mesenchymal stem cells-derived exosome prevents epidural fibrosis. Int J Nanomedicine 2018;13:5257-73. [PMID: 30237713 DOI: 10.2147/IJN.S167880] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
32 Deng W, Qiu J, Wang S, Yuan Z, Jia Y, Tan H, Lu J, Zheng R. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo. Int J Nanomedicine 2018;13:439-53. [PMID: 29403275 DOI: 10.2147/IJN.S150977] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 9.3] [Reference Citation Analysis]
33 Bhushan B, Khanadeev V, Khlebtsov B, Khlebtsov N, Gopinath P. Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017;246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 69] [Article Influence: 12.2] [Reference Citation Analysis]
34 Zhong T, He B, Cao HQ, Tan T, Hu HY, Li YP, Zhang ZW. Treating breast cancer metastasis with cabazitaxel-loaded polymeric micelles. Acta Pharmacol Sin 2017;38:924-30. [PMID: 28504249 DOI: 10.1038/aps.2017.36] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]