BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang M, Zhang H, Wang C, Ren Y, Wang B, Zhang L, Yang X, Zhao Y, Han C, Pang C, Yin L, Xue Y, Zhao J, Hu D. Development and Validation of a Risk-Score Model for Type 2 Diabetes: A Cohort Study of a Rural Adult Chinese Population. PLoS One 2016;11:e0152054. [PMID: 27070555 DOI: 10.1371/journal.pone.0152054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Gannar F, Rodriguez-Pérez MDC, Domínguez Coello S, Haouet K, Brito Díaz B, Cabrera de León A. Validation of DIABSCORE in screening for Type 2 Diabetes and prediabetes in Tunisian population. PLoS One 2018;13:e0200718. [PMID: 30110336 DOI: 10.1371/journal.pone.0200718] [Reference Citation Analysis]
2 Castela Forte J, Folkertsma P, Gannamani R, Kumaraswamy S, Mount S, de Koning TJ, van Dam S, Wolffenbuttel BHR. Development and Validation of Decision Rules Models to Stratify Coronary Artery Disease, Diabetes, and Hypertension Risk in Preventive Care: Cohort Study of Returning UK Biobank Participants. J Pers Med 2021;11:1322. [PMID: 34945794 DOI: 10.3390/jpm11121322] [Reference Citation Analysis]
3 Liu D, Zhao Y, Liu Y, Sun X, Li H, Yin Z, Li L, Wang B, Ren Y, Cheng C, Liu L, Chen X, Liu F, Zhou Q, Tian G, Li Q, Guo C, Wu X, Han M, Qie R, Huang S, Zhang M, Hu D, Lu J. Adiposity and insulin resistance as mediators between age at menarche and type 2 diabetes mellitus. Menopause 2020;27:579-85. [PMID: 32068689 DOI: 10.1097/GME.0000000000001504] [Reference Citation Analysis]
4 Xu F, Zhu J, Sun N, Wang L, Xie C, Tang Q, Mao X, Fu X, Brickell A, Hao Y, Sun C. Development and validation of prediction models for hypertension risks in rural Chinese populations. J Glob Health 2019;9:020601. [PMID: 31788232 DOI: 10.7189/jogh.09.020601] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Wu X, Yu Z, Su W, Isquith DA, Neradilek MB, Lu N, Gu F, Li H, Zhao XQ. Low levels of ApoA1 improve risk prediction of type 2 diabetes mellitus. J Clin Lipidol 2017;11:362-8. [PMID: 28502492 DOI: 10.1016/j.jacl.2017.01.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
6 Zhang M, Zhao Y, Sun L, Xi Y, Zhang W, Lu J, Hu F, Shi X, Hu D. Cohort Profile: The Rural Chinese Cohort Study. Int J Epidemiol 2021;50:723-724l. [PMID: 33367613 DOI: 10.1093/ije/dyaa204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Leung AY, Xu XY, Chau PH, Yu YTE, Cheung MK, Wong CK, Fong DY, Wong JY, Lam CL. A Mobile App for Identifying Individuals With Undiagnosed Diabetes and Prediabetes and for Promoting Behavior Change: 2-Year Prospective Study. JMIR Mhealth Uhealth 2018;6:e10662. [PMID: 29793901 DOI: 10.2196/10662] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Asgari S, Khalili D, Hosseinpanah F, Hadaegh F. Prediction Models for Type 2 Diabetes Risk in the General Population: A Systematic Review of Observational Studies. Int J Endocrinol Metab 2021;19:e109206. [PMID: 34567135 DOI: 10.5812/ijem.109206] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Pesaro AE, Bittencourt MS, Franken M, Carvalho JAM, Bernardes D, Tuomilehto J, Santos RD. The Finnish Diabetes Risk Score (FINDRISC), incident diabetes and low-grade inflammation. Diabetes Res Clin Pract 2021;171:108558. [PMID: 33242513 DOI: 10.1016/j.diabres.2020.108558] [Reference Citation Analysis]
10 Luijken K, Song J, Groenwold RHH. Quantitative prediction error analysis to investigate predictive performance under predictor measurement heterogeneity at model implementation. Diagn Progn Res 2022;6:7. [PMID: 35387683 DOI: 10.1186/s41512-022-00121-1] [Reference Citation Analysis]
11 Liu D, Qin P, Liu L, Liu Y, Sun X, Li H, Zhao Y, Zhou Q, Li Q, Guo C, Tian G, Wu X, Han M, Qie R, Huang S, Zhang M, Hu D, Lu J. Association of pulse pressure with all-cause and cause-specific mortality. J Hum Hypertens 2021;35:274-9. [PMID: 32265487 DOI: 10.1038/s41371-020-0333-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jin S, Chen Q, Han X, Liu Y, Cai M, Yao Z, Lu H. Comparison of the Finnish Diabetes Risk Score Model With the Metabolic Syndrome in a Shanghai Population. Front Endocrinol (Lausanne) 2022;13:725314. [PMID: 35273562 DOI: 10.3389/fendo.2022.725314] [Reference Citation Analysis]
13 Zhang M, Zhao Y, Wang G, Zhang H, Ren Y, Wang B, Zhang L, Yang X, Han C, Pang C, Yin L, Zhao J, Hu D. Body mass index and waist circumference combined predicts obesity-related hypertension better than either alone in a rural Chinese population. Sci Rep 2016;6:31935. [PMID: 27545898 DOI: 10.1038/srep31935] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
14 Sun C, Xu F, Liu X, Fang M, Zhou H, Lian Y, Xie C, Sun N, Wang C. Comparison of validation and application on various cardiovascular disease mortality risk prediction models in Chinese rural population. Sci Rep 2017;7:43227. [PMID: 28337999 DOI: 10.1038/srep43227] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
15 Liu D, Qin P, Liu Y, Sun X, Li H, Wu X, Zhang Y, Han M, Qie R, Huang S, Li Y, Wu Y, Yang X, Feng Y, Zhao Y, Hu F, Zhang M, Lu J, Hu D, Sun L. Association of age at menarche with hypertension in rural Chinese women. J Hypertens 2021;39:476-83. [PMID: 33044381 DOI: 10.1097/HJH.0000000000002672] [Reference Citation Analysis]