BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park J, Guan Y, Sheng X, Gluck C, Seasock MJ, Hakimi AA, Qiu C, Pullman J, Verma A, Li H, Palmer M, Susztak K. Functional methylome analysis of human diabetic kidney disease. JCI Insight 2019;4:128886. [PMID: 31167971 DOI: 10.1172/jci.insight.128886] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Jin J, Yang Y, Gong Q, Wang J, Ni W, Wen J, Meng X. Role of epigenetically regulated inflammation in renal diseases. Seminars in Cell & Developmental Biology 2022. [DOI: 10.1016/j.semcdb.2022.10.005] [Reference Citation Analysis]
2 Yang J, Li C, Liu Y, Han Y, Zhao H, Luo S, Zhao C, Jiang N, Yang M, Sun L. Using network pharmacology to explore the mechanism of Danggui-Shaoyao-San in the treatment of diabetic kidney disease. Front Pharmacol 2022;13:832299. [DOI: 10.3389/fphar.2022.832299] [Reference Citation Analysis]
3 Rico-fontalvo J, Aroca G, Cabrales J, Daza-arnedo R, Yánez-rodríguez T, Martínez-ávila MC, Uparella-gulfo I, Raad-sarabia M. Molecular Mechanisms of Diabetic Kidney Disease. IJMS 2022;23:8668. [DOI: 10.3390/ijms23158668] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Hill C, Avila-palencia I, Maxwell AP, Hunter RF, Mcknight AJ. Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. Front Nephrol 2022;2. [DOI: 10.3389/fneph.2022.923068] [Reference Citation Analysis]
5 Hishikawa A, Hayashi K, Kubo A, Miyashita K, Hashiguchi A, Kinouchi K, Yoshimoto N, Nakamichi R, Akashio R, Sugita E, Azegami T, Monkawa T, Suematsu M, Itoh H. DNA repair factor KAT5 prevents ischemic acute kidney injury through glomerular filtration regulation. iScience 2021;24:103436. [PMID: 34877495 DOI: 10.1016/j.isci.2021.103436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tin A, Schlosser P, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Yu Z, Weihs A, Hoppmann A, Grundner-Culemann F, Min JL, Kuhns VLH, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Bressler J, Breteler MMB, Carmeli C, Chaker L, Coresh J, Corre T, Correa A, Cox SR, Delgado GE, Eckardt KU, Ekici AB, Endlich K, Floyd JS, Fraszczyk E, Gao X, Gào X, Gelber AC, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kronenberg F, Kühnel B, Ladd-Acosta C, Lehtimäki T, Lind L, Liu D, Lloyd-Jones DM, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Völker U, Winkelmann J, Wolffenbuttel BHR, Zhao W, Zheng Y, Loh M, Snieder H, Waldenberger M, Levy D, Akilesh S, Woodward OM, Susztak K, Teumer A, Köttgen A; Estonian Biobank Research Team., Genetics of DNA Methylation Consortium. Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nat Commun 2021;12:7173. [PMID: 34887389 DOI: 10.1038/s41467-021-27198-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Schlosser P, Tin A, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Weihs A, Yu Z, Hoppmann A, Grundner-Culemann F, Min JL, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Breteler MMB, Carmeli C, Chaker L, Chambers JC, Cole SA, Coresh J, Corre T, Correa A, Cox SR, de Klein N, Delgado GE, Domingo-Relloso A, Eckardt KU, Ekici AB, Endlich K, Evans KL, Floyd JS, Fornage M, Franke L, Fraszczyk E, Gao X, Gào X, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Jarvelin MR, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kramer H, Kronenberg F, Kühnel B, Lehtimäki T, Lind L, Liu D, Liu Y, Lloyd-Jones DM, Lohman K, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Navas-Acien A, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Rosas SE, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, Tellez-Plaza M, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Verweij N, Walker RM, Wielscher M, Winkelmann J, Wolffenbuttel BHR, Zhao W, Zheng Y, Loh M, Snieder H, Levy D, Waldenberger M, Susztak K, Köttgen A, Teumer A; Estonian Biobank Research Team., Genetics of DNA Methylation Consortium. Meta-analyses identify DNA methylation associated with kidney function and damage. Nat Commun 2021;12:7174. [PMID: 34887417 DOI: 10.1038/s41467-021-27234-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. Curr Res Microb Sci 2021;2:100079. [PMID: 34725650 DOI: 10.1016/j.crmicr.2021.100079] [Reference Citation Analysis]
9 Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic Alterations in Podocytes in Diabetic Nephropathy. Front Pharmacol 2021;12:759299. [PMID: 34630127 DOI: 10.3389/fphar.2021.759299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Guan Y, Liang X, Ma Z, Hu H, Liu H, Miao Z, Linkermann A, Hellwege JN, Voight BF, Susztak K. A single genetic locus controls both expression of DPEP1/CHMP1A and kidney disease development via ferroptosis. Nat Commun 2021;12:5078. [PMID: 34426578 DOI: 10.1038/s41467-021-25377-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
11 Al-dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Nazir S, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin J, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory by targeting sustained tubular p21 expression.. [DOI: 10.1101/2021.07.05.450846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jung SW, Moon JY. The role of inflammation in diabetic kidney disease. Korean J Intern Med 2021;36:753-66. [PMID: 34237822 DOI: 10.3904/kjim.2021.174] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
13 Barrera-Chimal J, Jaisser F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes Obes Metab 2020;22 Suppl 1:16-31. [PMID: 32267077 DOI: 10.1111/dom.13969] [Cited by in Crossref: 43] [Cited by in F6Publishing: 49] [Article Influence: 43.0] [Reference Citation Analysis]
14 Pagliaroli L, Fothi A, Nespoli E, Liko I, Veto B, Devay P, Szeri F, Hengerer B, Barta C, Aranyi T. Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021;10:1442. [PMID: 34207710 DOI: 10.3390/cells10061442] [Reference Citation Analysis]
15 Shao BY, Zhang SF, Li HD, Meng XM, Chen HY. Epigenetics and Inflammation in Diabetic Nephropathy. Front Physiol 2021;12:649587. [PMID: 34025445 DOI: 10.3389/fphys.2021.649587] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
16 Zheng W, Guo J, Liu ZS. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective. Clin Epigenetics 2021;13:87. [PMID: 33883002 DOI: 10.1186/s13148-021-01079-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
17 Li Y, Jin L, Yan J, Zhang H, Zhang R, Hu C. CD28 Genetic Variants Increase Susceptibility to Diabetic Kidney Disease in Chinese Patients with Type 2 Diabetes: A Cross-Sectional Case Control Study. Mediators Inflamm 2021;2021:5521050. [PMID: 33958973 DOI: 10.1155/2021/5521050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Levin A, Reznichenko A, Witasp A, Liu P, Greasley PJ, Sorrentino A, Blondal T, Zambrano S, Nordström J, Bruchfeld A, Barany P, Ebefors K, Erlandsson F, Patrakka J, Stenvinkel P, Nyström J, Wernerson A. Novel insights into the disease transcriptome of human diabetic glomeruli and tubulointerstitium. Nephrol Dial Transplant 2020;35:2059-72. [PMID: 32853351 DOI: 10.1093/ndt/gfaa121] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
19 Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains "Inflamed" Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Front Physiol 2021;12:637480. [PMID: 33737884 DOI: 10.3389/fphys.2021.637480] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Kazi TA, Biswas SR. CRISPR/dCas system as the modulator of gene expression. Prog Mol Biol Transl Sci 2021;178:99-122. [PMID: 33685602 DOI: 10.1016/bs.pmbts.2020.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Nakamichi R, Hayashi K, Itoh H. Effects of High Glucose and Lipotoxicity on Diabetic Podocytes. Nutrients 2021;13:241. [PMID: 33467659 DOI: 10.3390/nu13010241] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
22 Wang Y, Liu T, Ma F, Lu X, Mao H, Zhou W, Yang L, Li P, Zhan Y. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. J Diabetes Res 2020;2020:2421631. [PMID: 33274236 DOI: 10.1155/2020/2421631] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Smyth LJ, Patterson CC, Swan EJ, Maxwell AP, McKnight AJ. DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Front Cell Dev Biol 2020;8:561907. [PMID: 33178681 DOI: 10.3389/fcell.2020.561907] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Sheng X, Qiu C, Liu H, Gluck C, Hsu JY, He J, Hsu CY, Sha D, Weir MR, Isakova T, Raj D, Rincon-Choles H, Feldman HI, Townsend R, Li H, Susztak K. Systematic integrated analysis of genetic and epigenetic variation in diabetic kidney disease. Proc Natl Acad Sci U S A 2020;117:29013-24. [PMID: 33144501 DOI: 10.1073/pnas.2005905117] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
25 Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 2021;16:447-61. [PMID: 33003971 DOI: 10.1080/17460441.2021.1832077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2021;35:1025-44. [PMID: 32748033 DOI: 10.1007/s10557-020-07019-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Bansal A, Balasubramanian S, Dhawan S, Leung A, Chen Z, Natarajan R. Integrative Omics Analyses Reveal Epigenetic Memory in Diabetic Renal Cells Regulating Genes Associated With Kidney Dysfunction. Diabetes 2020;69:2490-502. [PMID: 32747424 DOI: 10.2337/db20-0382] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
28 Guan Y, Liu H, Ma Z, Li SY, Park J, Sheng X, Susztak K. Dnmt3a and Dnmt3b-Decommissioned Fetal Enhancers are Linked to Kidney Disease. J Am Soc Nephrol 2020;31:765-82. [PMID: 32127410 DOI: 10.1681/ASN.2019080797] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Soler MJ, Batlle D. Single-cell RNA profiling of glomerular cells in diabetic kidney: a step forward for understanding diabetic nephropathy. Ann Transl Med 2019;7:S340. [PMID: 32016058 DOI: 10.21037/atm.2019.09.104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
30 Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 2019;20:E6041. [PMID: 31801211 DOI: 10.3390/ijms20236041] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
31 Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D'Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021;131:141279. [PMID: 33998601 DOI: 10.1172/JCI141279] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Reference Citation Analysis]