BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gong W, Mao S, Yu J, Song J, Jia Z, Huang S, Zhang A. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. American Journal of Physiology-Renal Physiology 2016;310:F1081-8. [DOI: 10.1152/ajprenal.00534.2015] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 He Z, Zhang M, Xu H, Zhou W, Xu C, Wang Z, He M, Wang X. Yiqi Huoxue Tongluo recipe regulates NR4A1 to improve renal mitochondrial function in unilateral ureteral obstruction (UUO) rats. Pharmaceutical Biology 2022;60:2308-2318. [DOI: 10.1080/13880209.2022.2148168] [Reference Citation Analysis]
2 Speer T, Dimmeler S, Schunk SJ, Fliser D, Ridker PM. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 2022. [PMID: 36064794 DOI: 10.1038/s41581-022-00621-9] [Reference Citation Analysis]
3 Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022;237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 You D, Weng M, Wu X, Nie K, Cui J, Chen Y, Yang L, Wan J. C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the activation of the NLRP3 inflammasome. Life Sci 2022;:120905. [PMID: 36041502 DOI: 10.1016/j.lfs.2022.120905] [Reference Citation Analysis]
5 Feng J, Wen J, Zhang Y, Dong B, Tao J, Yu S, Yan S, Liu E, Lv L, Zhang X. Erythropoietin prevented the decreased expression of aquaporin1–3 in ureteral obstructive kidneys in juvenile rats. Pediatr Res. [DOI: 10.1038/s41390-022-02224-3] [Reference Citation Analysis]
6 Thomas JM, Huuskes BM, Sobey CG, Drummond GR, Vinh A. The IL-18/IL-18R1 signalling axis: Diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacol Ther 2022;239:108191. [PMID: 35461924 DOI: 10.1016/j.pharmthera.2022.108191] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Ram C, Gairola S, Syed AM, Kulhari U, Kundu S, Mugale MN, Murty US, Sahu BD. Biochanin A alleviates unilateral ureteral obstruction-induced renal interstitial fibrosis and inflammation by inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis in mice. Life Sci 2022;298:120527. [PMID: 35378138 DOI: 10.1016/j.lfs.2022.120527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Xie Y, Hu X, Li S, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J. Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022;10:796066. [DOI: 10.3389/fcell.2022.796066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Wu M, Xia W, Jin Q, Zhou A, Wang Q, Li S, Huang S, Zhang A, Zhang Y, Li Y, Jia Z. Gasdermin E Deletion Attenuates Ureteral Obstruction- and 5/6 Nephrectomy-Induced Renal Fibrosis and Kidney Dysfunction. Front Cell Dev Biol 2021;9:754134. [PMID: 34746148 DOI: 10.3389/fcell.2021.754134] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, Ma Z, Beckerman P, Laczkó D, Palmer MB, Kopp JB, Kuo JJ, Pullen SS, Boustany-Kari CM, Linkermann A, Susztak K. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest 2021;131:e136329. [PMID: 34651582 DOI: 10.1172/JCI136329] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
12 Qiu Y, Cao Y, Tu G, Li J, Su Y, Fang F, Zhang X, Cang J, Rong R, Luo Z. Myeloid-Derived Suppressor Cells Alleviate Renal Fibrosis Progression via Regulation of CCL5-CCR5 Axis. Front Immunol 2021;12:698894. [PMID: 34566958 DOI: 10.3389/fimmu.2021.698894] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Mihajlovic M, Krebber MM, Yang Y, Ahmed S, Lozovanu V, Andreeva D, Verhaar MC, Masereeuw R. Protein-Bound Uremic Toxins Induce Reactive Oxygen Species-Dependent and Inflammasome-Mediated IL-1β Production in Kidney Proximal Tubule Cells. Biomedicines 2021;9:1326. [PMID: 34680443 DOI: 10.3390/biomedicines9101326] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Xiong W, Meng XF, Zhang C. NLRP3 Inflammasome in Metabolic-Associated Kidney Diseases: An Update. Front Immunol 2021;12:714340. [PMID: 34305953 DOI: 10.3389/fimmu.2021.714340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
15 Jin L, Yu B, Armando I, Han F. Mitochondrial DNA-Mediated Inflammation in Acute Kidney Injury and Chronic Kidney Disease. Oxid Med Cell Longev 2021;2021:9985603. [PMID: 34306320 DOI: 10.1155/2021/9985603] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
16 Shin S, Ibeh C, Awuah Boadi E, Choi B, Roy SK, Bandyopadhyay BC. Hypercalciuria switches Ca2+ signaling in proximal tubular cells, induces oxidative damage to promote calcium nephrolithiasis. Genes & Diseases 2021. [DOI: 10.1016/j.gendis.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chen TT, Xiao F, Li N, Shan S, Qi M, Wang ZY, Zhang SN, Wei W, Sun WY. Inflammasome as an Effective Platform for Fibrosis Therapy. J Inflamm Res 2021;14:1575-90. [PMID: 33907438 DOI: 10.2147/JIR.S304180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 2021;21:66. [PMID: 33365066 DOI: 10.3892/etm.2020.9498] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
19 Song SJ, Kim SM, Lee SH, Moon JY, Hwang HS, Kim JS, Park SH, Jeong KH, Kim YG. Rhabdomyolysis-Induced AKI Was Ameliorated in NLRP3 KO Mice via Alleviation of Mitochondrial Lipid Peroxidation in Renal Tubular Cells. Int J Mol Sci 2020;21:E8564. [PMID: 33202867 DOI: 10.3390/ijms21228564] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
20 Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Research International 2020;136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
21 Chen CC, Chang ZY, Tsai FJ, Chen SY. Resveratrol Pretreatment Ameliorates Concanavalin A-Induced Advanced Renal Glomerulosclerosis in Aged Mice through Upregulation of Sirtuin 1-Mediated Klotho Expression. Int J Mol Sci 2020;21:E6766. [PMID: 32942691 DOI: 10.3390/ijms21186766] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Shi Y, Huang C, Zhao Y, Cao Q, Yi H, Chen X, Pollock C. RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Sci Rep 2020;10:10458. [PMID: 32591618 DOI: 10.1038/s41598-020-67054-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
23 Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019;19:517-32. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Cited by in Crossref: 150] [Cited by in F6Publishing: 154] [Article Influence: 75.0] [Reference Citation Analysis]
24 Qi R, Zhang W, Zheng L, Xu M, Rong R, Zhu T, Yang C. Cyclic helix B peptide ameliorates renal tubulointerstitial fibrosis induced by unilateral ureter obstruction via inhibiting NLRP3 pathway. Ann Transl Med 2020;8:167. [PMID: 32309314 DOI: 10.21037/atm.2020.02.12] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
25 Xiang H, Zhu F, Xu Z, Xiong J. Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical Pathways. Front Cell Dev Biol 2020;8:106. [PMID: 32175320 DOI: 10.3389/fcell.2020.00106] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 17.5] [Reference Citation Analysis]
26 Komada T, Muruve DA. The role of inflammasomes in kidney disease. Nat Rev Nephrol. 2019;15:501-520. [PMID: 31164720 DOI: 10.1038/s41581-019-0158-z] [Cited by in Crossref: 128] [Cited by in F6Publishing: 138] [Article Influence: 64.0] [Reference Citation Analysis]
27 Zhang H, Wang Z. Effect and Regulation of the NLRP3 Inflammasome During Renal Fibrosis. Front Cell Dev Biol 2019;7:379. [PMID: 32039201 DOI: 10.3389/fcell.2019.00379] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
28 Hu D, Zhang D, Liu B, Liu Y, Zhou Y, Yu Y, Shen L, Long C, Zhang D, Liu X, Lin T, He D, Xu T, Timashev P, Butnaru D, Zhang Y, Wei G. Human ucMSCs seeded in a decellularized kidney scaffold attenuate renal fibrosis by reducing epithelial–mesenchymal transition via the TGF-β/Smad signaling pathway. Pediatr Res 2020;88:192-201. [DOI: 10.1038/s41390-019-0736-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Cheng D, Liang R, Huang B, Hou J, Yin J, Zhao T, Zhou L, Wu R, Qian Y, Wang F. Tumor necrosis factor-α blockade ameliorates diabetic nephropathy in rats. Clin Kidney J 2021;14:301-8. [PMID: 33564432 DOI: 10.1093/ckj/sfz137] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
30 Kim YG, Kim SM, Kim KP, Lee SH, Moon JY. The Role of Inflammasome-Dependent and Inflammasome-Independent NLRP3 in the Kidney. Cells 2019;8:E1389. [PMID: 31694192 DOI: 10.3390/cells8111389] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 20.3] [Reference Citation Analysis]
31 Chang CC, Chiu PF, Wu CL, Kuo CL, Huang CS, Liu CS, Huang CH. Urinary cell-free mitochondrial and nuclear deoxyribonucleic acid correlates with the prognosis of chronic kidney diseases. BMC Nephrol 2019;20:391. [PMID: 31660901 DOI: 10.1186/s12882-019-1549-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
32 Li S, Lin Q, Shao X, Mou S, Gu L, Wang L, Zhang Z, Shen J, Zhou Y, Qi C, Jin H, Pang H, Ni Z. NLRP3 inflammasome inhibition attenuates cisplatin-induced renal fibrosis by decreasing oxidative stress and inflammation. Experimental Cell Research 2019;383:111488. [DOI: 10.1016/j.yexcr.2019.07.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
33 Yamamoto Y, Iyoda M, Tachibana S, Matsumoto K, Wada Y, Suzuki T, Iseri K, Saito T, Fukuda-Hihara K, Shibata T. Erlotinib attenuates the progression of chronic kidney disease in rats with remnant kidney. Nephrol Dial Transplant 2018;33:598-606. [PMID: 28992288 DOI: 10.1093/ndt/gfx264] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
34 Wei PZ, Kwan BC, Chow KM, Cheng PM, Luk CC, Li PK, Szeto CC. Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy. Nephrol Dial Transplant 2018;33:784-8. [PMID: 29301017 DOI: 10.1093/ndt/gfx339] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
35 Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta 2019;496:108-16. [PMID: 31276635 DOI: 10.1016/j.cca.2019.07.005] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 26.0] [Reference Citation Analysis]
36 Mousavi M, Hedayatpour A, Mortezaee K, Mohamadi Y, Abolhassani F, Hassanzadeh G. Schwann cell transplantation exerts neuroprotective roles in rat model of spinal cord injury by combating inflammasome activation and improving motor recovery and remyelination. Metab Brain Dis 2019;34:1117-30. [DOI: 10.1007/s11011-019-00433-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
37 Seo JB, Choi YK, Woo HI, Jung YA, Lee S, Lee S, Park M, Lee IK, Jung GS, Park KG. Gemigliptin Attenuates Renal Fibrosis Through Down-Regulation of the NLRP3 Inflammasome. Diabetes Metab J 2019;43:830-9. [PMID: 30877711 DOI: 10.4093/dmj.2018.0181] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
38 Jiang W, Li M, He F, Zhu L. Inhibition of NLRP3 inflammasome attenuates spinal cord injury‐induced lung injury in mice. J Cell Physiol 2019;234:6012-22. [DOI: 10.1002/jcp.27233] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
39 Liu X, Chen J, Liu X, Wang D, Zheng P, Qi A, Yi T, Li S. Jian-Pi-Yi-Shen Formula ameliorates chronic kidney disease: involvement of mitochondrial quality control network. BMC Complement Altern Med 2018;18:340. [PMID: 30572886 DOI: 10.1186/s12906-018-2395-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
40 Wei Z, Kwan BC, Chow KM, Cheng PM, Luk CC, Lai KB, Li PK, Szeto CC. Urinary mitochondrial DNA level as a biomarker of tissue injury in non-diabetic chronic kidney diseases. BMC Nephrol 2018;19:367. [PMID: 30567508 DOI: 10.1186/s12882-018-1178-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
41 Qiu H, Ji C, Liu W, Wu Y, Lu Z, Lin Q, Xue Z, Liu X, Wu H, Jiang W, Zou C. Chronic Kidney Disease Increases Atrial Fibrillation Inducibility: Involvement of Inflammation, Atrial Fibrosis, and Connexins. Front Physiol 2018;9:1726. [PMID: 30564139 DOI: 10.3389/fphys.2018.01726] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
42 Kim SM, Kim YG, Kim DJ, Park SH, Jeong KH, Lee YH, Lim SJ, Lee SH, Moon JY. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury. Front Immunol 2018;9:2563. [PMID: 30483252 DOI: 10.3389/fimmu.2018.02563] [Cited by in Crossref: 80] [Cited by in F6Publishing: 84] [Article Influence: 20.0] [Reference Citation Analysis]
43 Faustino VD, Arias SCA, Ferreira Ávila V, Foresto-Neto O, Zambom FFF, Machado FG, Machado Dos Reis L, Malheiros DMAC, Volpini RA, Camara NOS, Zatz R, Fujihara CK. Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria. Biosci Rep 2018;38:BSR20180762. [PMID: 29914975 DOI: 10.1042/BSR20180762] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
44 Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z, Yuan Q, Xie Y, Mei W, Tang Y, Meng J, Hu G, Tao L. Fluorofenidone attenuates interleukin-1β production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction: NLRP3 inflammasome in renal inflammation. Nephrology 2018;23:573-84. [DOI: 10.1111/nep.13062] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
45 Jin X, Rong S, Yuan W, Gu L, Jia J, Wang L, Yu H, Zhuge Y. High Mobility Group Box 1 Promotes Aortic Calcification in Chronic Kidney Disease via the Wnt/β-Catenin Pathway. Front Physiol 2018;9:665. [PMID: 29922171 DOI: 10.3389/fphys.2018.00665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
46 Zhao M, Bai M, Ding G, Zhang Y, Huang S, Jia Z, Zhang A. Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Dis (Basel) 2018;4:83-94. [PMID: 29998123 DOI: 10.1159/000488242] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
47 Wei PZ, Kwan BC, Chow KM, Cheng PM, Luk CC, Lai KB, Li PK, Szeto CC. Urinary mitochondrial DNA level in non-diabetic chronic kidney diseases. Clin Chim Acta 2018;484:36-9. [PMID: 29778542 DOI: 10.1016/j.cca.2018.05.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
48 Qiu H, Ji C, Wu H, Zou C. Chronic kidney disease-induced atrial structural remodeling and atrial fibrillation: more studies on the pathological mechanism are encouraged. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:671-673. [PMID: 29744559 DOI: 10.1007/s00210-018-1494-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
49 Bao YW, Yuan Y, Chen JH, Lin WQ. Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res. 2018;39:72-86. [PMID: 29515089 DOI: 10.24272/j.issn.2095-8137.2017.055] [Cited by in Crossref: 40] [Cited by in F6Publishing: 58] [Article Influence: 10.0] [Reference Citation Analysis]
50 Fanelli C, Noreddin A, Nunes A. Inflammation in Nonimmune-Mediated Chronic Kidney Disease. Chronic Kidney Disease - from Pathophysiology to Clinical Improvements 2018. [DOI: 10.5772/intechopen.70611] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
51 Komada T, Chung H, Lau A, Platnich JM, Beck PL, Benediktsson H, Duff HJ, Jenne CN, Muruve DA. Macrophage Uptake of Necrotic Cell DNA Activates the AIM2 Inflammasome to Regulate a Proinflammatory Phenotype in CKD. J Am Soc Nephrol 2018;29:1165-81. [PMID: 29439156 DOI: 10.1681/ASN.2017080863] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 16.5] [Reference Citation Analysis]
52 Inouye BM, Hughes FM Jr, Sexton SJ, Purves JT. The Emerging Role of Inflammasomes as Central Mediators in Inflammatory Bladder Pathology. Curr Urol 2018;11:57-72. [PMID: 29593464 DOI: 10.1159/000447196] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
53 Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 2017;14:207. [PMID: 29070054 DOI: 10.1186/s12974-017-0980-9] [Cited by in Crossref: 66] [Cited by in F6Publishing: 75] [Article Influence: 13.2] [Reference Citation Analysis]
54 Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017;8:752. [PMID: 29046642 DOI: 10.3389/fphys.2017.00752] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
55 Ke B, Shen W, Fang X, Wu Q. The NLPR3 inflammasome and obesity-related kidney disease. J Cell Mol Med 2018;22:16-24. [PMID: 28857469 DOI: 10.1111/jcmm.13333] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
56 Wang S, Li Y, Fan J, Zhang X, Luan J, Bian Q, Ding T, Wang Y, Wang Z, Song P, Cui D, Mei X, Ju D. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis 2017;8:e2937. [PMID: 28726774 DOI: 10.1038/cddis.2017.292] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 12.4] [Reference Citation Analysis]
57 Fanelli C, Arias SCA, Machado FG, Okuma JK, Malheiros DMAC, Azevedo H, Moreira-Filho CA, Camara NOS, Fujihara CK, Zatz R. Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model. Sci Rep 2017;7:3192. [PMID: 28600543 DOI: 10.1038/s41598-017-02915-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
58 Guo H, Bi X, Zhou P, Zhu S, Ding W. NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease. Mediators Inflamm 2017;2017:8316560. [PMID: 28348462 DOI: 10.1155/2017/8316560] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
59 Yu G, Bai Z, Chen Z, Chen H, Wang G, Wang G, Liu Z. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. International Immunopharmacology 2017;43:203-9. [DOI: 10.1016/j.intimp.2016.12.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
60 Ringling RE, Gastecki ML, Woodford ML, Lum-Naihe KJ, Grant RW, Pulakat L, Vieira-Potter VJ, Padilla J. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance. PLoS One 2016;11:e0161939. [PMID: 27583382 DOI: 10.1371/journal.pone.0161939] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]