BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klein AV, Kiat H. The mechanisms underlying fructose-induced hypertension: a review. J Hypertens 2015;33:912-20. [PMID: 25715094 DOI: 10.1097/HJH.0000000000000551] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 14.2] [Reference Citation Analysis]
Number Citing Articles
1 Pérez-gimeno G, Seral-cortes M, Sabroso-lasa S, Esteban LM, Lurbe E, Béghin L, Gottrand F, Meirhaeghe A, Muntaner M, Kafatos A, Molnár D, Leclercq C, Widhalm K, Kersting M, Nova E, Salazar-tortosa DF, Gonzalez-gross M, Breidenassel C, Sinningen K, Ruyter T, Labayen I, Rupérez AI, Bueno-lozano G, Moreno L. Development of a genetic risk score to predict the risk of hypertension in European adolescents from the HELENA study.. [DOI: 10.21203/rs.3.rs-1978509/v2] [Reference Citation Analysis]
2 Argeri R, Nishi EE, Kimura Lichtenecker DC, Gomes GN. Effects of maternal fructose intake on the offspring’s kidneys. Front Physiol 2022;13:969048. [DOI: 10.3389/fphys.2022.969048] [Reference Citation Analysis]
3 Monteiro LM, Barbosa CF, Lichtenecker DCK, Argeri R, Gomes GN. Maternal fructose intake during pregnancy and lactation: Later effects on renal function. Physiol Rep 2022;10:e15470. [PMID: 36117297 DOI: 10.14814/phy2.15470] [Reference Citation Analysis]
4 Levanovich PE, Daugherty AM, Komnenov D, Rossi NF. Dietary fructose and high salt in young male Sprague Dawley rats induces salt-sensitive changes in renal function in later life. Physiol Rep 2022;10:e15456. [PMID: 36117446 DOI: 10.14814/phy2.15456] [Reference Citation Analysis]
5 Pérez-gimeno G, Seral-cortes M, Sabroso-lasa S, Esteban LM, Lurbe E, Béghin L, Gottrand F, Meirhaeghe A, Muntaner M, Kafatos A, Molnár D, Leclercq C, Widhalm K, Kersting M, Nova E, Salazar-tortosa DF, Gonzalez-gross M, Breidenassel C, Sinningen K, De Ruyter T, Labayen I, Rupérez AI, Bueno-lozano G, Moreno LA. Development of a genetic risk score to predict the risk of hypertension in European adolescents from the HELENA study.. [DOI: 10.21203/rs.3.rs-1978509/v1] [Reference Citation Analysis]
6 Baumann A, Brandt A, Bergheim I. Fructose, a trigger of metabolic diseases?—a narrative review. Explor Dig Dis 2022. [DOI: 10.37349/edd.2022.00005] [Reference Citation Analysis]
7 Xie J, Shi S, Liu Y, Wang S, Rajput SA, Song T. Fructose metabolism and its role in pig production: A mini-review. Front Nutr 2022;9:922051. [PMID: 35967778 DOI: 10.3389/fnut.2022.922051] [Reference Citation Analysis]
8 Bugga P, Mohammed SA, Alam MJ, Katare P, Meghwani H, Maulik SK, Arava S, Banerjee SK. Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.120862] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhu Y, Tao Y, Wu C, Zeng Y, Du H, Xiang Q, Chen Y, Zhu Q, Wang L. Renal Farnesoid X Receptor improves high fructose-induced salt-sensitive hypertension in mice by inhibiting DNM3 to promote nitro oxide production. J Hypertens 2022. [PMID: 35792095 DOI: 10.1097/HJH.0000000000003189] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Janssen LE, Simons N, Simons PI, Schaper NC, Feskens EJ, van der Ploeg LM, Van den Eynde MD, Schalkwijk CG, Houben AJ, Stehouwer CD, Brouwers MC. Effects of fructose restriction on blood pressure: Secondary analysis of a double-blind randomized controlled trial. Clinical Nutrition ESPEN 2022. [DOI: 10.1016/j.clnesp.2022.07.009] [Reference Citation Analysis]
11 Zhu Q, Zhu Y, Liu Y, Tao Y, Lin Y, Lai S, Liang Z, Chen Y, Chen Y, Wang L. Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice. Food Funct 2022. [PMID: 35708145 DOI: 10.1039/d2fo00038e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Alshuniaber MA, Alshammari GM, Eleawa SM, Yagoub AEA, Al-khalifah AS, Alhussain MH, Al-harbi LN, Yahya MA. Camel milk protein hydrosylate alleviates hepatic steatosis and hypertension in high fructose-fed rats. Pharmaceutical Biology 2022;60:1137-47. [DOI: 10.1080/13880209.2022.2079678] [Reference Citation Analysis]
13 Li S, Li X, Fan J, Jia X, Wang H, Dong F, Mao H, Zhang C, Wang W, Jiang Y, Yan L, Zhang N. Refined-JinQi-JiangTang tablet ameliorates hypertension through activation of FGF21/FGFR1 axis in fructose-fed rats. J Nat Med 2022. [PMID: 35534765 DOI: 10.1007/s11418-022-01626-1] [Reference Citation Analysis]
14 Wang X, Liu Y, Wang Y, Dong X, Wang Y, Yang X, Tian H, Li T. Protective Effect of Coriander (Coriandrum sativum L.) on High-Fructose and High-Salt Diet-Induced Hypertension: Relevant to Improvement of Renal and Intestinal Function. J Agric Food Chem 2022. [PMID: 35315647 DOI: 10.1021/acs.jafc.2c00267] [Reference Citation Analysis]
15 Labban M, Itani MM, Maaliki D, Nasreddine L, Itani HA. The Sweet and Salty Dietary Face of Hypertension and Cardiovascular Disease in Lebanon. Front Physiol 2021;12:802132. [PMID: 35153813 DOI: 10.3389/fphys.2021.802132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sidddanagoudra S, Herlekar S, Doyizode A, Hittalamani P. Cardiac autonomic reactivity to acute ingestion of glucose and fructose in healthy subjects. Muller J Med Sci Res 2022;13:13. [DOI: 10.4103/mjmsr.mjmsr_42_21] [Reference Citation Analysis]
17 Tsirimiagkou C, Argyris A, Karatzi K, Konstantina N, Sfikakis PP, Protogerou AD. Dietary sugars and subclinical vascular damage in moderate-to-high cardiovascular risk adults. Nutr Metab Cardiovasc Dis 2022;32:98-108. [PMID: 34823975 DOI: 10.1016/j.numecd.2021.09.027] [Reference Citation Analysis]
18 Torok J, Zemancikova A, Valaskova Z, Balis P. The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats. Biomedicines 2021;9:1552. [PMID: 34829781 DOI: 10.3390/biomedicines9111552] [Reference Citation Analysis]
19 Béghin L, Huybrechts I, Drumez E, Kersting M, Walker RW, Kafatos A, Molnar D, Manios Y, Moreno LA, De Henauw S, Gottrand F. High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients 2021;13:3608. [PMID: 34684609 DOI: 10.3390/nu13103608] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
20 Levanovich PE, Chung CS, Komnenov D, Rossi NF. Fructose plus High-Salt Diet in Early Life Results in Salt-Sensitive Cardiovascular Changes in Mature Male Sprague Dawley Rats. Nutrients 2021;13:3129. [PMID: 34579006 DOI: 10.3390/nu13093129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Dong C, Ma A, Shang L. Animal models used in the research of nanoparticles for cardiovascular diseases. J Nanopart Res 2021;23:172. [PMID: 34393623 DOI: 10.1007/s11051-021-05289-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Batool A, Saleem M, Alamgeer, Mushtaq MN, Alotaibi NH, Alharbi KS, Bukhari SNA. The potential protective effect of the Polygonum hydropiper L against the development of fructose-induced oxidative stress and metabolic disorders in male Sprague-Dawely rats. J Pharm Pharmacol 2021:rgab071. [PMID: 34165561 DOI: 10.1093/jpp/rgab071] [Reference Citation Analysis]
23 Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, Zubcevic J, Hill J, Vijay-Kumar M, Menon B, Joe B. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep 2021;23:28. [PMID: 33961141 DOI: 10.1007/s11906-021-01142-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021;10:467. [PMID: 33809620 DOI: 10.3390/antiox10030467] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
25 Baleeiro RDS, Guimarães AP, de Souza PM, Andrade RDS, Barbosa de Queiroz K, Coelho DB, de Oliveira EC, Becker LK. Sucrose-Sweetened Drinks Reduce the Physical Performance and Increase the Cardiovascular Risk in Physically Active Males. J Nutr Metab 2021;2021:6683657. [PMID: 33763239 DOI: 10.1155/2021/6683657] [Reference Citation Analysis]
26 Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021;22:2298. [PMID: 33669059 DOI: 10.3390/ijms22052298] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 28.0] [Reference Citation Analysis]
27 Degu A, Abebe A, Engidawork E. Methanol (80%) leaf extract of Otostegia integrifolia Benth (Lamiaceae) lowers blood pressure in rats through interference with calcium conductance. BMC Complement Med Ther 2021;21:49. [PMID: 33541332 DOI: 10.1186/s12906-021-03222-4] [Reference Citation Analysis]
28 Park HA. Fruit Intake to Prevent and Control Hypertension and Diabetes. Korean J Fam Med 2021;42:9-16. [PMID: 33524250 DOI: 10.4082/kjfm.20.0225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Liu R, Mi B, Zhao Y, Li Q, Dang S, Yan H. Gender-specific association between carbohydrate consumption and blood pressure in Chinese adults. BMJ Nutr Prev Health 2021;4:80-9. [PMID: 34308115 DOI: 10.1136/bmjnph-2020-000165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Hasimun P, Mulyani Y, Zakaria H, Setiawan AR. Centella Asiatica Effect in A High Fat and Fructose Diet-Induced Model of Metabolic Disorder in Rats. J Biochem Technol 2021;12:1-5. [DOI: 10.51847/gzeddexleh] [Reference Citation Analysis]
31 O'Brien P, Han G, Ganpathy P, Pitre S, Zhang Y, Ryan J, Sim PY, Harding SV, Gray R, Preedy VR, Sanders TAB, Corpe CP. Chronic Effects of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism. Int J Mol Sci 2020;22:E137. [PMID: 33375525 DOI: 10.3390/ijms22010137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
32 Lin P, Ren Q, Wang Q, Wu J. Carotenoids Inhibit Fructose-Induced Inflammatory Response in Human Endothelial Cells and Monocytes. Mediators Inflamm 2020;2020:5373562. [PMID: 32410856 DOI: 10.1155/2020/5373562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Farmaki AE, Rayner NW, Kafyra M, Matchan A, Ntaoutidou K, Feritoglou P, Athanasiadis A, Gilly A, Mamakou V, Zengini E, Karaleftheri M, Zeggini E, Dedoussis G. A Dietary Pattern with High Sugar Content Is Associated with Cardiometabolic Risk Factors in the Pomak Population. Nutrients 2019;11:E3043. [PMID: 31847144 DOI: 10.3390/nu11123043] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
34 Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension 2019;73:265-72. [PMID: 30595116 DOI: 10.1161/HYPERTENSIONAHA.118.12150] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
35 Chen HH, Chu CH, Wen SW, Lai CC, Cheng PW, Tseng CJ. Excessive Fructose Intake Impairs Baroreflex Sensitivity and Led to Elevated Blood Pressure in Rats. Nutrients 2019;11:E2581. [PMID: 31731536 DOI: 10.3390/nu11112581] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
36 Vieceli Dalla Sega F, Mastrocola R, Aquila G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E, Pannuti A, Marchi S, Pinton P, Ferrari R, Rizzo P, Retta SF. KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction. Int J Mol Sci 2019;20:E4930. [PMID: 31590384 DOI: 10.3390/ijms20194930] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
37 Byun SS, Mayat ZK, Aggarwal B, Parekh N, Makarem N. Quantity, Quality, and Timing of Carbohydrate Intake and Blood Pressure. Curr Nutr Rep 2019;8:270-80. [PMID: 31144268 DOI: 10.1007/s13668-019-00277-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Abdelhedi O, Khemakhem H, Nasri R, Jridi M, Mora L, Ben Amor I, Jamoussi K, Toldrá F, Gargouri J, Nasri M. Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Mar Drugs 2019;17:E194. [PMID: 30934709 DOI: 10.3390/md17040194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
39 Lee WC, Wu KLH, Leu S, Tain YL. Translational insights on developmental origins of metabolic syndrome: Focus on fructose consumption. Biomed J 2018;41:96-101. [PMID: 29866605 DOI: 10.1016/j.bj.2018.02.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
40 Hasimun P, Mulyani Y, Sulaeman A, Embas Sara DA. Prevention of Hypertension and Arterial Stiffness by Combination of Centella asiatica and Curcuma longa in Rats. Asian J of Biological Sciences 2019;12:173-179. [DOI: 10.3923/ajbs.2019.173.179] [Reference Citation Analysis]
41 Andrade N, Andrade S, Silva C, Rodrigues I, Guardão L, Guimarães JT, Keating E, Martel F. Chronic consumption of the dietary polyphenol chrysin attenuates metabolic disease in fructose-fed rats. Eur J Nutr 2020;59:151-65. [PMID: 30631887 DOI: 10.1007/s00394-019-01895-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
42 Nier A, Brandt A, Rajcic D, Bruns T, Bergheim I. Short-Term Isocaloric Intake of a Fructose- but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res 2019;63:e1800868. [PMID: 30570214 DOI: 10.1002/mnfr.201800868] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
43 Maarman GJ. Ischemia-reperfusion injury and the roles of excess fructose: Effects on the heart and other organs. Molecular Nutrition: Carbohydrates 2019. [DOI: 10.1016/b978-0-12-849886-6.00014-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
44 Yokota R, Ronchi FA, Fernandes FB, Jara ZP, Rosa RM, Leite APO, Fiorino P, Farah V, do Nascimento NRF, Fonteles MC, Casarini DE. Intra-Renal Angiotensin Levels Are Increased in High-Fructose Fed Rats in the Extracorporeal Renal Perfusion Model. Front Physiol 2018;9:1433. [PMID: 30364140 DOI: 10.3389/fphys.2018.01433] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
45 Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018;2018:7515767. [PMID: 30154843 DOI: 10.1155/2018/7515767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
46 Dos Santos F, Moraes-Silva IC, Moreira ED, Irigoyen MC. The role of the baroreflex and parasympathetic nervous system in fructose-induced cardiac and metabolic alterations. Sci Rep 2018;8:10970. [PMID: 30030527 DOI: 10.1038/s41598-018-29336-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
47 Shaligram S, Sangüesa G, Akther F, Alegret M, Laguna JC, Rahimian R. Differential effects of high consumption of fructose or glucose on mesenteric arterial function in female rats. J Nutr Biochem 2018;57:136-44. [PMID: 29727795 DOI: 10.1016/j.jnutbio.2018.03.021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
48 Lardinois CK. Expert Perspective on the American Diabetes Association Dietary Guidelines for Patients with Diabetes. US Endocrinology 2018;14:13. [DOI: 10.17925/use.2018.14.1.13] [Reference Citation Analysis]
49 Bahadoran Z, Mirmiran P, Tohidi M, Azizi F. Longitudinal Associations of High-Fructose Diet with Cardiovascular Events and Potential Risk Factors: Tehran Lipid and Glucose Study. Nutrients 2017;9:E872. [PMID: 28825653 DOI: 10.3390/nu9080872] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
50 Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, Zhang X, Han J. High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 2017;61. [PMID: 28654221 DOI: 10.1002/mnfr.201700134] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
51 Rosset R, Surowska A, Tappy L. Pathogenesis of Cardiovascular and Metabolic Diseases: Are Fructose-Containing Sugars More Involved Than Other Dietary Calories? Curr Hypertens Rep 2016;18:44. [PMID: 27125390 DOI: 10.1007/s11906-016-0652-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
52 Ikechi R, Fischer BD, DeSipio J, Phadtare S. Irritable Bowel Syndrome: Clinical Manifestations, Dietary Influences, and Management. Healthcare (Basel). 2017;5. [PMID: 28445436 DOI: 10.3390/healthcare5020021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
53 Ettinger S. Obesity and Metabolic Syndrome. Nutritional Pathophysiology of Obesity and its Comorbidities 2017. [DOI: 10.1016/b978-0-12-803013-4.00001-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
54 Tain YL, Chan JY, Hsu CN. Maternal Fructose Intake Affects Transcriptome Changes and Programmed Hypertension in Offspring in Later Life. Nutrients 2016;8:E757. [PMID: 27897982 DOI: 10.3390/nu8120757] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
55 Singh A, Khan SA, Choudhary R, Bodakhe SH. Cinnamaldehyde Attenuates Cataractogenesis via Restoration of Hypertension and Oxidative Stress in Fructose-Fed Hypertensive rats. J Pharmacopuncture 2016;19:137-44. [PMID: 27386147 DOI: 10.3831/KPI.2016.19.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
56 Tappy L, Lê KA. Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 2015;15:54. [PMID: 26104800 DOI: 10.1007/s11892-015-0627-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
57 Ewida SF, Al-Sharaky DR. Implication of Renal Aquaporin-3 in Fructose-Induced Metabolic Syndrome and Melatonin Protection. J Clin Diagn Res 2016;10:CF06-11. [PMID: 27190797 DOI: 10.7860/JCDR/2016/18362.7656] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]