BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical Reviews in Food Science and Nutrition 2020;60:1677-92. [DOI: 10.1080/10408398.2019.1588222] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Chakraborty R, Mukhopadhyay A, Paul S, Sarkar S, Mukhopadhyay R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Sci Total Environ 2023;863:160859. [PMID: 36526196 DOI: 10.1016/j.scitotenv.2022.160859] [Reference Citation Analysis]
2 Zhang T, Zhang C, Luo Y, Liu S, Li S, Li L, Ma Y, Liu J. Protective effect of rutin on spinal motor neuron in rats exposed to acrylamide and the underlying mechanism. Neurotoxicology 2023;95:127-35. [PMID: 36657526 DOI: 10.1016/j.neuro.2023.01.009] [Reference Citation Analysis]
3 Wu S, Ju J, Ji Y, Zhang H, Zou Y, Sun S. Exposure to acrylamide induces zygotic genome activation defects of mouse embryos. Food and Chemical Toxicology 2023. [DOI: 10.1016/j.fct.2023.113753] [Reference Citation Analysis]
4 Gabašová M, Zeleňáková L, Ciesarová Z, Benešová L, Kukurová K, Jelemenská V. The variability of acrylamide content in potato French fries depending on the oil used and deep-frying conditions. Potr S J F Sci 2023;17:170-184. [DOI: 10.5219/1857] [Reference Citation Analysis]
5 Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. Food Reviews International 2023. [DOI: 10.1080/87559129.2023.2164896] [Reference Citation Analysis]
6 Gazi S, Göncüoğlu Taş N, Görgülü A, Gökmen V. Effectiveness of asparaginase on reducing acrylamide formation in bakery products according to their dough type and properties. Food Chemistry 2023;402:134224. [DOI: 10.1016/j.foodchem.2022.134224] [Reference Citation Analysis]
7 González-Mulero L, Mesías M, Morales FJ, Navajas-Porras B, Rufián-Henares JA, Delgado-Andrade C. Acrylamide bioaccessibility in potato and veggie chips. Impact of in vitro colonic fermentation on the non-bioaccessible fraction. Food Res Int 2023;164:112409. [PMID: 36737990 DOI: 10.1016/j.foodres.2022.112409] [Reference Citation Analysis]
8 Hulme J. Staphylococcus Infection: Relapsing Atopic Dermatitis and Microbial Restoration. Antibiotics (Basel) 2023;12. [PMID: 36830133 DOI: 10.3390/antibiotics12020222] [Reference Citation Analysis]
9 Wang R, Deng X, Ma Q, Ma F. Association between acrylamide exposure and sex hormones among premenopausal and postmenopausal women: NHANES, 2013-2016. J Endocrinol Invest 2023. [PMID: 36602706 DOI: 10.1007/s40618-022-01976-3] [Reference Citation Analysis]
10 Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. J Environ Sci Health B 2023;58:139-49. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Reference Citation Analysis]
11 Xue C, Li Y, Quan W, Deng P, He Z, Qin F, Wang Z, Chen J, Zeng M. Simultaneous alleviation of acrylamide and methylimidazole accumulation in cookies by Rhizoma kaempferiae and kaempferol and potential mechanism revealed by density functional theory. LWT 2022. [DOI: 10.1016/j.lwt.2022.114302] [Reference Citation Analysis]
12 Ligina V, Martin R, Aiswarya MV, Mashirin KR, Chitra KC. Acute and sublethal effects of acrylamide on the freshwater fish Anabas testudineus (Bloch, 1792). Environ Sci Pollut Res Int 2022;29:90835-51. [PMID: 35879632 DOI: 10.1007/s11356-022-22155-0] [Reference Citation Analysis]
13 Su D, Lei A, Nie C, Chen Y. The protective effect of Ganoderma atrum polysaccharide on intestinal barrier function damage induced by acrylamide in mice through TLR4/MyD88/NF-κB based on the iTRAQ analysis. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.113548] [Reference Citation Analysis]
14 Dahran N, Abd-Elhakim YM, Mohamed AA, Abd-Elsalam MM, Said EN, Metwally MMM, Abdelhamid AE, Hassan BA, Alsieni M, Alosaimi ME, Abduljabbar MH, El-Shetry ES. Palliative effect of Moringa olifera-mediated zinc oxide nanoparticles against acrylamide-induced neurotoxicity in rats. Food Chem Toxicol 2022;171:113537. [PMID: 36442736 DOI: 10.1016/j.fct.2022.113537] [Reference Citation Analysis]
15 Sanz-Serrano J, Garayoa R, Vitas AI, López de Cerain A, Azqueta A. In vitro genotoxicity assessment of French fries from mass catering companies: a preliminary study. Mutagenesis 2023;38:51-7. [PMID: 36242551 DOI: 10.1093/mutage/geac021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Abedini AH, Vakili Saatloo N, Salimi M, Sadighara P, Alizadeh Sani M, Garcia-Oliviera P, Prieto MA, Kharazmi MS, Jafari SM. The role of additives on acrylamide formation in food products: a systematic review. Crit Rev Food Sci Nutr 2022;:1-21. [PMID: 36194060 DOI: 10.1080/10408398.2022.2126428] [Reference Citation Analysis]
17 Gu W, Zhang J, Ren C, Gao Y, Zhang T, Long Y, Wei W, Hou S, Sun C, Wang C, Jiang W, Zhao J. The association between biomarkers of acrylamide and cancer mortality in U.S. adult population: Evidence from NHANES 2003-2014. Front Oncol 2022;12:970021. [DOI: 10.3389/fonc.2022.970021] [Reference Citation Analysis]
18 Hammad Rasool M, Ahmad M, Ayoub M, Zamir A, Adeem Abbas M. A review of the usage of deep eutectic solvents as shale inhibitors in drilling mud. Journal of Molecular Liquids 2022;361:119673. [DOI: 10.1016/j.molliq.2022.119673] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Rodríguez-miranda J, Herman-lara E, Serrano-niño JC, Sánchez-ruiz BA, Martínez-sánchez CE. Effects of sucrose and sodium chloride pretreatments on cassava and plantain chips fried in CLA-enriched soybean oil: an analysis of acrylamide content, microstructure, and other physical properties. International Journal of Food Engineering 2022;0. [DOI: 10.1515/ijfe-2021-0263] [Reference Citation Analysis]
20 Lo Faro E, Salerno T, Montevecchi G, Fava P. Mitigation of Acrylamide Content in Biscuits through Combined Physical and Chemical Strategies. Foods 2022;11:2343. [PMID: 35954109 DOI: 10.3390/foods11152343] [Reference Citation Analysis]
21 Wu H, Sun X, Jiang H, Hu C, Xu J, Sun C, Wei W, Han T, Jiang W. The Association Between Exposure to Acrylamide and Mortalities of Cardiovascular Disease and All-Cause Among People With Hyperglycemia. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.930135] [Reference Citation Analysis]
22 Boateng ID. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5'-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chem 2022;382:132408. [PMID: 35176549 DOI: 10.1016/j.foodchem.2022.132408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
23 Rong Y, Hassan MM, Ouyang Q, Zhang Y, Wang L, Chen Q. An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114581] [Reference Citation Analysis]
24 Senthil Kumar S, Swaminathan A, Abdel-Daim MM, Sheik Mohideen S. A systematic review on the effects of acrylamide and bisphenol A on the development of Drosophila melanogaster. Mol Biol Rep 2022. [PMID: 35753027 DOI: 10.1007/s11033-022-07642-4] [Reference Citation Analysis]
25 Maurice B, Saint-eve A, Pernin A, Leroy P, Souchon I. How Different Are Industrial, Artisanal and Homemade Soft Breads? Foods 2022;11:1484. [DOI: 10.3390/foods11101484] [Reference Citation Analysis]
26 Abraham K, Trefflich I, Gauch F, Weikert C. Nutritional Intake and Biomarker Status in Strict Raw Food Eaters. Nutrients 2022;14:1725. [PMID: 35565694 DOI: 10.3390/nu14091725] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Wang F, Fan B, Chen C, Zhang W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.112982] [Reference Citation Analysis]
28 Toro SJH, Gómez-narváez F, Contreras-calderón J, Arisseto AP. Acrylamide in sugar products. Current Opinion in Food Science 2022. [DOI: 10.1016/j.cofs.2022.100841] [Reference Citation Analysis]
29 Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr 2022;9:859189. [DOI: 10.3389/fnut.2022.859189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 El-shehawi AM, Sayed S, Hassan MM, Al-otaibi S, Althobaiti F, Elseehy MM, Soliman M. Taify Pomegranate Juice (TPJ) Abrogates Acrylamide-Induced Oxidative Stress Through the Regulation of Antioxidant Activity, Inflammation, and Apoptosis-Associated Genes. Front Vet Sci 2022;9:833605. [DOI: 10.3389/fvets.2022.833605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Harahap Y, Lahilla AA, Jautan AS, Hafidz A, Sunarsih S. Analysis of Acrylamide and Glycidamide in Dried Blood Spot of Smokers Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. DDDT 2022;Volume 16:521-531. [DOI: 10.2147/dddt.s346892] [Reference Citation Analysis]
32 Laukalēja I, Krūma Z, Cinkmanis I. Impact of The Roast Level on Chemical Composition of Coffee from Colombia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2022;76:145-151. [DOI: 10.2478/prolas-2022-0022] [Reference Citation Analysis]
33 Paranthaman R, Moses J, Anandharamakrishnan C. Novel powder-XRD method for detection of acrylamide in processed foods. Food Research International 2022;152:110893. [DOI: 10.1016/j.foodres.2021.110893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhang L, Dong L, Yang L, Luo Y, Chen F. MiR-27a-5p regulates acrylamide-induced mitochondrial dysfunction and intrinsic apoptosis via targeting Btf3 in rats. Food Chem 2022;368:130816. [PMID: 34416489 DOI: 10.1016/j.foodchem.2021.130816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
35 Petka K, Sroka P, Tarko T, Duda-chodak A. The Acrylamide Degradation by Probiotic Strain Lactobacillus acidophilus LA-5. Foods 2022;11:365. [DOI: 10.3390/foods11030365] [Reference Citation Analysis]
36 Quesada-valverde M, Artavia G, Granados-chinchilla F, Cortés-herrera C. Acrylamide in foods: from regulation and registered levels to chromatographic analysis, nutritional relevance, exposure, mitigation approaches, and health effects. Toxin Reviews. [DOI: 10.1080/15569543.2021.2018611] [Reference Citation Analysis]
37 Liu S, Ben X, Liang H, Fei Q, Guo X, Weng X, Wu Y, Wen L, Wang R, Chen J, Jing C. Association of acrylamide hemoglobin biomarkers with chronic obstructive pulmonary disease in the general population in the US: NHANES 2013-2016. Food Funct 2021;12:12765-73. [PMID: 34851334 DOI: 10.1039/d1fo02612g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Lin Z, Luo P, Huang D, Wu Y, Li F, Liu H. Multi-omics based strategy for toxicity analysis of acrylamide in Saccharomyces cerevisiae model. Chem Biol Interact 2021;349:109682. [PMID: 34610338 DOI: 10.1016/j.cbi.2021.109682] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Luo YS, Chiang SY, Long TY, Tsai TH, Wu KY. Simultaneous toxicokinetics characterization of acrylamide and its primary metabolites using a novel microdialysis isotope-dilution liquid chromatography mass spectrometry method. Environ Int 2021;158:106954. [PMID: 34710730 DOI: 10.1016/j.envint.2021.106954] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Wang A, Chen X, Wu S, Jia W, Jiao J, Zhang Y. Unraveling the Serum Metabolomic Profile of Acrylamide-Induced Cardiovascular Toxicity. J Agric Food Chem 2021;69:12012-20. [PMID: 34586797 DOI: 10.1021/acs.jafc.1c04367] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
41 Emadi A, Yousefi B, Eslami M, Abdolshahi A. Reduction of acrylamide formation in bread and fried potato products using probiotic microorganisms: a systematic review and dose–response meta-analysis. Food Measure 2021;15:4277-87. [DOI: 10.1007/s11694-021-00997-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Codină GG, Sarion C, Dabija A. Effects of Dry Sourdough on Bread-Making Quality and Acrylamide Content. Agronomy 2021;11:1977. [DOI: 10.3390/agronomy11101977] [Reference Citation Analysis]
43 Kashani MH, Ramezani M, Piravar Z. The effect of acrylamide on sperm oxidative stress, total antioxidant levels, tyrosine phosphorylation, and carboxymethyl-lysine expression: A laboratory study. Int J Reprod Biomed 2021;19:625-36. [PMID: 34458671 DOI: 10.18502/ijrm.v19i7.9473] [Reference Citation Analysis]
44 Zhang Y, Wang Q, Li Y, Cheng J, Chen X, Zhang Y. Comprehensive profile of DNA adducts as both tissue and urinary biomarkers of exposure to acrylamide and chemo-preventive effect of catechins in rats. Chemosphere 2022;286:131852. [PMID: 34416594 DOI: 10.1016/j.chemosphere.2021.131852] [Reference Citation Analysis]
45 Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W. Microbial production, molecular modification, and practical application of l-Asparaginase: A review. Int J Biol Macromol 2021;186:975-83. [PMID: 34293360 DOI: 10.1016/j.ijbiomac.2021.07.107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
46 Mielech A, Puścion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients 2021;13:2358. [PMID: 34371868 DOI: 10.3390/nu13072358] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
47 Yang L, Dong L, Zhang L, Bai J, Chen F, Luo Y. Acrylamide Induces Abnormal mtDNA Expression by Causing Mitochondrial ROS Accumulation, Biogenesis, and Dynamics Disorders. J Agric Food Chem 2021;69:7765-76. [PMID: 34191505 DOI: 10.1021/acs.jafc.1c02569] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
48 Mesias M, Delgado-Andrade C, Holgado F, González-Mulero L, Morales FJ. Effect of consumer's decisions on acrylamide exposure during the preparation of French fries. Part 2: Color analysis. Food Chem Toxicol 2021;154:112321. [PMID: 34111489 DOI: 10.1016/j.fct.2021.112321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
49 Nadeem MS, Khan JA, Al-Ghamdi MA, Khan MI, Zeyadi MA. Studies on the recombinant production and anticancer activity of thermostable L- asparaginase I from Pyrococcus abyssi. Braz J Biol 2021;82:e244735. [PMID: 34076169 DOI: 10.1590/1519-6984.244735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Lipowczan A, Trochimczuk AW. Phosphates-Containing Interpenetrating Polymer Networks (IPNs) Acting as Slow Release Fertilizer Hydrogels (SRFHs) Suitable for Agricultural Applications. Materials (Basel) 2021;14:2893. [PMID: 34071203 DOI: 10.3390/ma14112893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Habibagahi A, Alderman N, Kubwabo C. A review of the analysis of biomarkers of exposure to tobacco and vaping products. Anal Methods 2020;12:4276-302. [PMID: 32853303 DOI: 10.1039/d0ay01467b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
52 Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. Int J Environ Res Public Health 2021;18:4332. [PMID: 33921874 DOI: 10.3390/ijerph18084332] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
53 Han Z, Gao J, Zhang S, Zhang Y, Wang S. Simultaneously Mitigation of Acrylamide, 5-Hydroxymethylfurfural, and Oil Content in Fried Dough Twist via Different Ingredients Combination and Infrared-Assisted Deep-Frying. Foods 2021;10:604. [PMID: 33809276 DOI: 10.3390/foods10030604] [Reference Citation Analysis]
54 Giovanelli G, Cappa C. 5-Hydroxymethylfurfural Formation in Bread as a Function of Heat Treatment Intensity: Correlations with Browning Indices. Foods 2021;10:417. [PMID: 33668628 DOI: 10.3390/foods10020417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
55 Tomaszewska E, Dobrowolski P, Puzio I, Donaldson J, Muszyński S. Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model. Annals of Animal Science 2020;20:1257-87. [DOI: 10.2478/aoas-2020-0044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
56 Nehlig A, Cunha RA. The Coffee-Acrylamide Apparent Paradox: An Example of Why the Health Impact of a Specific Compound in a Complex Mixture Should Not Be Evaluated in Isolation. Nutrients 2020;12:E3141. [PMID: 33066651 DOI: 10.3390/nu12103141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Guo J, Cao X, Hu X, Li S, Wang J. The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 2020;21:62. [PMID: 32811563 DOI: 10.1186/s40360-020-00440-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
58 Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020;9:E524. [PMID: 32331265 DOI: 10.3390/foods9040524] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
59 Ou J, Zheng J, Huang J, Ho C, Ou S. Interaction of Acrylamide, Acrolein, and 5-Hydroxymethylfurfural with Amino Acids and DNA. J Agric Food Chem 2020;68:5039-48. [DOI: 10.1021/acs.jafc.0c01345] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
60 Nowak A, Zakłos-Szyda M, Żyżelewicz D, Koszucka A, Motyl I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020;25:E368. [PMID: 31963203 DOI: 10.3390/molecules25020368] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
61 Tölgyesi Á, Sharma VK. Determination of acrylamide in gingerbread and other food samples by HILIC-MS/MS: A dilute-and-shoot method. J Chromatogr B Analyt Technol Biomed Life Sci 2020;1136:121933. [PMID: 31846858 DOI: 10.1016/j.jchromb.2019.121933] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]