BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem. 2009;284:5056-5066. [PMID: 19091748 DOI: 10.1074/jbc.m808128200] [Cited by in Crossref: 130] [Cited by in F6Publishing: 137] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. IJMS 2022;23:9993. [DOI: 10.3390/ijms23179993] [Reference Citation Analysis]
2 Huang C, Shi C, Li Z, Wang W, Ming D, Gao Y, Liu H, Ma X, Wang F. Pyrroloquinoline quinone regulates glycolipid metabolism in the jejunum via inhibiting AMPK phosphorylation of weaned pigs. Food Funct 2022. [PMID: 36004536 DOI: 10.1039/d2fo00281g] [Reference Citation Analysis]
3 Jung S, Bae H, Song WS, Jang C. Dietary Fructose and Fructose-Induced Pathologies. Annu Rev Nutr 2022;42:45-66. [PMID: 35995049 DOI: 10.1146/annurev-nutr-062220-025831] [Reference Citation Analysis]
4 Liu WW, Bohórquez DV. The neural basis of sugar preference. Nat Rev Neurosci 2022. [PMID: 35879409 DOI: 10.1038/s41583-022-00613-5] [Reference Citation Analysis]
5 Zhang H, Li X, Niu Y, Yang Z, Lu Y, Su Q, Qin L. Fasting serum fructose is associated with risk of gestational diabetes mellitus. BMC Pregnancy Childbirth 2022;22. [DOI: 10.1186/s12884-022-04768-y] [Reference Citation Analysis]
6 Giussani M, Lieti G, Orlando A, Parati G, Genovesi S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front Med (Lausanne) 2022;9:792949. [PMID: 35492316 DOI: 10.3389/fmed.2022.792949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Taneva I, Grumann D, Schmidt D, Taneva E, von Arnim U, Ansorge T, Wex T. Gene variants of the SLC2A5 gene encoding GLUT5, the major fructose transporter, do not contribute to clinical presentation of acquired fructose malabsorption. BMC Gastroenterol 2022;22:167. [PMID: 35387598 DOI: 10.1186/s12876-022-02244-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jin J, Liu J, Luo Y, He H, Zheng X, Zheng C, Huang Y, Chen Y. High fructose induces dysfunctional vasodilatation via PP2A-mediated eNOS Ser1177 dephosphorylation. Nutr Metab (Lond) 2022;19:24. [PMID: 35331293 DOI: 10.1186/s12986-022-00659-3] [Reference Citation Analysis]
9 Labban M, Itani MM, Maaliki D, Nasreddine L, Itani HA. The Sweet and Salty Dietary Face of Hypertension and Cardiovascular Disease in Lebanon. Front Physiol 2021;12:802132. [PMID: 35153813 DOI: 10.3389/fphys.2021.802132] [Reference Citation Analysis]
10 Peretti N, Emmanuel M. Congenital disorders of intestinal digestion and absorption (sugars, proteins, lipids, ions). Best Practice & Research Clinical Gastroenterology 2022. [DOI: 10.1016/j.bpg.2022.101785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Babaei-Jadidi R, Kashfi H, Alelwani W, Karimi Bakhtiari A, Kattan SW, Mansouri OA, Mukherjee A, Lobo DN, Nateri AS. Anti-miR-135/SPOCK1 axis antagonizes the influence of metabolism on drug response in intestinal/colon tumour organoids. Oncogenesis 2022;11:4. [PMID: 35046388 DOI: 10.1038/s41389-021-00376-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 El Masri D, Jamil Y, Eid Fares J. Sodium-Glucose Co-Transporter Protein 2 Inhibitors Induced Hypercalcemia: A Case Series and Literature Review. AACE Clinical Case Reports 2022;8:30-3. [DOI: 10.1016/j.aace.2021.07.002] [Reference Citation Analysis]
13 Yu S, Li C, Ji G, Zhang L. The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021;12:783393. [PMID: 34867414 DOI: 10.3389/fphar.2021.783393] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Zhang X, Luan P, Cao D, Hu G. A High-Density Genetic Linkage Map and Fine Mapping of QTL For Feed Conversion Efficiency in Common Carp (Cyprinus carpio). Front Genet 2021;12:778487. [PMID: 34868267 DOI: 10.3389/fgene.2021.778487] [Reference Citation Analysis]
15 Fagundes RR, Bourgonje AR, Saeed A, Vich Vila A, Plomp N, Blokzijl T, Sadaghian Sadabad M, von Martels JZH, van Leeuwen SS, Weersma RK, Dijkstra G, Harmsen HJM, Faber KN. Inulin-grown Faecalibacterium prausnitzii cross-feeds fructose to the human intestinal epithelium. Gut Microbes 2021;13:1993582. [PMID: 34793284 DOI: 10.1080/19490976.2021.1993582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Suwannakul N, Armartmuntree N, Thanan R, Midorikawa K, Kon T, Oikawa S, Kobayashi H, Ma N, Kawanishi S, Murata M. Targeting fructose metabolism by glucose transporter 5 regulation in human cholangiocarcinoma. Genes & Diseases 2021. [DOI: 10.1016/j.gendis.2021.09.002] [Reference Citation Analysis]
17 Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, Ortega-Cuellar D. Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells 2021;10:2359. [PMID: 34572007 DOI: 10.3390/cells10092359] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
18 D' Fonseca NMM, Gibson CME, van Doorn DA, Roelfsema E, de Ruijter-Villani M, Stout TAE. Effect of Overfeeding Shetland Pony Mares on Embryonic Glucose and Lipid Accumulation, and Expression of Imprinted Genes. Animals (Basel) 2021;11:2504. [PMID: 34573470 DOI: 10.3390/ani11092504] [Reference Citation Analysis]
19 Lin M, Fang Y, Li Z, Li Y, Feng X, Zhan Y, Xie Y, Liu Y, Liu Z, Li G, Shen Z, Deng H. S100P contributes to promoter demethylation and transcriptional activation of SLC2A5 to promote metastasis in colorectal cancer. Br J Cancer 2021;125:734-47. [PMID: 34188196 DOI: 10.1038/s41416-021-01306-z] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
20 Muriel P, López-Sánchez P, Ramos-Tovar E. Fructose and the Liver. Int J Mol Sci 2021;22:6969. [PMID: 34203484 DOI: 10.3390/ijms22136969] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 18.0] [Reference Citation Analysis]
21 Shi YN, Liu YJ, Xie Z, Zhang WJ. Fructose and metabolic diseases: too much to be good. Chin Med J (Engl) 2021;134:1276-85. [PMID: 34010200 DOI: 10.1097/CM9.0000000000001545] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PharmaNutrition 2020;14:100235. [DOI: 10.1016/j.phanu.2020.100235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Li Z, Wang B, Li H, Jian L, Luo H, Wang B, Zhang C, Zhao X, Xue Y, Peng S, Zuo S. Maternal Folic Acid Supplementation Differently Affects the Small Intestinal Phenotype and Gene Expression of Newborn Lambs from Differing Litter Sizes. Animals (Basel) 2020;10:E2183. [PMID: 33266421 DOI: 10.3390/ani10112183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Agius L, Chachra SS, Ford BE. The Protective Role of the Carbohydrate Response Element Binding Protein in the Liver: The Metabolite Perspective. Front Endocrinol (Lausanne) 2020;11:594041. [PMID: 33281747 DOI: 10.3389/fendo.2020.594041] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
25 Schneider C, Wutzke KD, Däbritz J. Methane breath tests and blood sugar tests in children with suspected carbohydrate malabsorption. Sci Rep 2020;10:18972. [PMID: 33149229 DOI: 10.1038/s41598-020-75987-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Salger SA, Reza J, Deck CA, Wahab MA, Baltzegar DA, Murr AT, Borski RJ. Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies. PLoS One 2020;15:e0236100. [PMID: 32702020 DOI: 10.1371/journal.pone.0236100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
27 Eberhart T, Schönenberger MJ, Walter KM, Charles KN, Faust PL, Kovacs WJ. Peroxisome-Deficiency and HIF-2α Signaling Are Negative Regulators of Ketohexokinase Expression. Front Cell Dev Biol 2020;8:566. [PMID: 32733884 DOI: 10.3389/fcell.2020.00566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Martinez CA, Scafoglio C. Heterogeneity of Glucose Transport in Lung Cancer. Biomolecules 2020;10:E868. [PMID: 32517099 DOI: 10.3390/biom10060868] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
29 Andres-Hernando A, Orlicky DJ, Kuwabara M, Ishimoto T, Nakagawa T, Johnson RJ, Lanaspa MA. Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. Cell Metab 2020;32:117-127.e3. [PMID: 32502381 DOI: 10.1016/j.cmet.2020.05.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 37] [Article Influence: 13.0] [Reference Citation Analysis]
30 Chen WL, Jin X, Wang M, Liu D, Luo Q, Tian H, Cai L, Meng L, Bi R, Wang L, Xie X, Yu G, Li L, Dong C, Cai Q, Jia W, Wei W, Jia L. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 2020;5:131596. [PMID: 32051337 DOI: 10.1172/jci.insight.131596] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
31 Kappen C, Kruger C, Jones S, Herion NJ, Salbaum JM. Maternal diet modulates placental nutrient transporter gene expression in a mouse model of diabetic pregnancy. PLoS One 2019;14:e0224754. [PMID: 31774824 DOI: 10.1371/journal.pone.0224754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
32 Eren OC, Ortiz A, Afsar B, Covic A, Kuwabara M, Lanaspa MA, Johnson RJ, Kanbay M. Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension 2019;73:265-72. [PMID: 30595116 DOI: 10.1161/HYPERTENSIONAHA.118.12150] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
33 Suehiro CL, Toledo-Arruda AC, Vieira RP, Almeida FM, Olivo CR, Martins MA, Lin CJ. A possible association between fructose consumption and pulmonary emphysema. Sci Rep 2019;9:9344. [PMID: 31249347 DOI: 10.1038/s41598-019-45594-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Zwarts I, van Zutphen T, Kruit JK, Liu W, Oosterveer MH, Verkade HJ, Uhlenhaut NH, Jonker JW. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR. Sci Rep 2019;9:9299. [PMID: 31243309 DOI: 10.1038/s41598-019-45803-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
35 Korkmaz OA, Sumlu E, Koca HB, Pektas MB, Kocabas A, Sadi G, Akar F. Effects of Lactobacillus Plantarum and Lactobacillus Helveticus on Renal Insulin Signaling, Inflammatory Markers, and Glucose Transporters in High-Fructose-Fed Rats. Medicina (Kaunas) 2019;55:E207. [PMID: 31137715 DOI: 10.3390/medicina55050207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
36 Lee HJ, Cha JY. Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism. BMB Rep 2018;51:429-36. [PMID: 30158026 [PMID: 30158026 DOI: 10.5483/bmbrep.2018.51.9.197] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
37 Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018;11:dmm034520. [PMID: 30504122 DOI: 10.1242/dmm.034520] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
38 Song M, Vos MB, McClain CJ. Copper-Fructose Interactions: A Novel Mechanism in the Pathogenesis of NAFLD. Nutrients 2018;10:E1815. [PMID: 30469339 DOI: 10.3390/nu10111815] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
39 Villegas LR, Rivard CJ, Hunter B, You Z, Roncal C, Joy MS, Le MT. Effects of fructose-containing sweeteners on fructose intestinal, hepatic, and oral bioavailability in dual-catheterized rats. PLoS One 2018;13:e0207024. [PMID: 30408104 DOI: 10.1371/journal.pone.0207024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
40 Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea A, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018;25:1885-904. [PMID: 30323273 DOI: 10.1038/s41418-018-0213-5] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
41 Schreck K, Melzig MF. Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells. Molecules 2018;23:E2544. [PMID: 30301205 DOI: 10.3390/molecules23102544] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
42 Valenzuela-Melgarejo FJ, Caro-Díaz C, Cabello-Guzmán G. Potential Crosstalk between Fructose and Melatonin: A New Role of Melatonin-Inhibiting the Metabolic Effects of Fructose. Int J Endocrinol 2018;2018:7515767. [PMID: 30154843 DOI: 10.1155/2018/7515767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
43 Ferraris RP, Choe JY, Patel CR. Intestinal Absorption of Fructose. Annu Rev Nutr 2018;38:41-67. [PMID: 29751733 DOI: 10.1146/annurev-nutr-082117-051707] [Cited by in Crossref: 41] [Cited by in F6Publishing: 56] [Article Influence: 10.3] [Reference Citation Analysis]
44 Oh AR, Sohn S, Lee J, Park JM, Nam KT, Hahm KB, Kim YB, Lee HJ, Cha JY. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 2018;85:286-97. [PMID: 29669261 DOI: 10.1016/j.metabol.2018.04.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
45 Kato T, Iizuka K, Takao K, Horikawa Y, Kitamura T, Takeda J. ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption. Nutrients 2018;10:E340. [PMID: 29534502 DOI: 10.3390/nu10030340] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
46 Merigo F, Brandolese A, Facchin S, Missaggia S, Bernardi P, Boschi F, D’Incà R, Savarino EV, Sbarbati A, Sturniolo GC. Glucose transporter expression in the human colon. World J Gastroenterol 2018; 24(7): 775-793 [PMID: 29467549 DOI: 10.3748/wjg.v24.i7.775] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
47 Gao S, Satsu H, Makino T. Inhibitory effect of bofutsushosan (fang feng tong sheng san) on glucose transporter 5 function in vitro. J Nat Med 2018;72:530-6. [PMID: 29423591 DOI: 10.1007/s11418-018-1183-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128:545-555. [PMID: 29388924 DOI: 10.1172/jci96702] [Cited by in Crossref: 158] [Cited by in F6Publishing: 197] [Article Influence: 39.5] [Reference Citation Analysis]
49 Li L, Byrd M, Doh K, Dixon PD, Lee H, Tiwari S, Ecelbarger CM. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep 2016;4:e13052. [PMID: 27923977 DOI: 10.14814/phy2.13052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
50 Kim M, Astapova II, Flier SN, Hannou SA, Doridot L, Sargsyan A, Kou HH, Fowler AJ, Liang G, Herman MA. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight 2017;2:96703. [PMID: 29263303 DOI: 10.1172/jci.insight.96703] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 8.0] [Reference Citation Analysis]
51 Zhang J, Wallace SJ, Shiu MY, Smith I, Rhind SG, Langlois VS. Human hair follicle transcriptome profiling: a minimally invasive tool to assess molecular adaptations upon low-volume, high-intensity interval training. Physiol Rep 2017;5. [PMID: 29212859 DOI: 10.14814/phy2.13534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ter Horst KW, Serlie MJ. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients. 2017;9. [PMID: 28878197 DOI: 10.3390/nu9090981] [Cited by in Crossref: 79] [Cited by in F6Publishing: 114] [Article Influence: 15.8] [Reference Citation Analysis]
53 Soueidan OM, Scully TW, Kaur J, Panigrahi R, Belovodskiy A, Do V, Matier CD, Lemieux MJ, Wuest F, Cheeseman C, West FG. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides. ACS Chem Biol 2017;12:1087-94. [PMID: 28205432 DOI: 10.1021/acschembio.6b01101] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
54 Steenson S, Umpleby AM, Lovegrove JA, Jackson KG, Fielding BA. Role of the Enterocyte in Fructose-Induced Hypertriglyceridaemia. Nutrients 2017;9:E349. [PMID: 28368310 DOI: 10.3390/nu9040349] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
55 Iizuka K. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism. Nutrients 2017;9:E181. [PMID: 28241431 DOI: 10.3390/nu9020181] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
56 Ebert K, Ludwig M, Geillinger KE, Schoberth GC, Essenwanger J, Stolz J, Daniel H, Witt H. Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters. J Membr Biol 2017;250:171-82. [PMID: 28083649 DOI: 10.1007/s00232-016-9945-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
57 Hussar P, Kärner M, Järveots T, Pendovski L, Duritis I, Popovska-percinic F. Comparative Study of Glucose Transporters GLUT-2 and GLUT-5 in Ostriches Gastrointestinal Tract. Macedonian Veterinary Review 2016;39:225-31. [DOI: 10.1515/macvetrev-2016-0089] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
58 Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, Zhao L, Liu J, Qu C, Wei R, Rajani C, Ni Y, Cheng Z, Chen Z, Chen SJ, Jia W. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential. Cancer Cell 2016;30:779-91. [PMID: 27746145 DOI: 10.1016/j.ccell.2016.09.006] [Cited by in Crossref: 86] [Cited by in F6Publishing: 106] [Article Influence: 14.3] [Reference Citation Analysis]
59 Murakami R, Chiba Y, Tsuboi K, Matsumoto K, Kawauchi M, Fujihara R, Mashima M, Kanenishi K, Yamamoto T, Ueno M. Immunoreactivity of glucose transporter 8 is localized in the epithelial cells of the choroid plexus and in ependymal cells. Histochem Cell Biol 2016;146:231-6. [PMID: 27160096 DOI: 10.1007/s00418-016-1444-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
60 Klein AV, Kiat H. The mechanisms underlying fructose-induced hypertension: a review. J Hypertens 2015;33:912-20. [PMID: 25715094 DOI: 10.1097/HJH.0000000000000551] [Cited by in Crossref: 63] [Cited by in F6Publishing: 75] [Article Influence: 10.5] [Reference Citation Analysis]
61 Ebert K, Witt H. Fructose malabsorption. Mol Cell Pediatr 2016;3:10. [PMID: 26883354 DOI: 10.1186/s40348-016-0035-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
62 Patching SG. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2017;54:1046-77. [PMID: 26801191 DOI: 10.1007/s12035-015-9672-6] [Cited by in Crossref: 115] [Cited by in F6Publishing: 151] [Article Influence: 19.2] [Reference Citation Analysis]
63 Nomura N, Verdon G, Kang HJ, Shimamura T, Nomura Y, Sonoda Y, Hussien SA, Qureshi AA, Coincon M, Sato Y, Abe H, Nakada-Nakura Y, Hino T, Arakawa T, Kusano-Arai O, Iwanari H, Murata T, Kobayashi T, Hamakubo T, Kasahara M, Iwata S, Drew D. Structure and mechanism of the mammalian fructose transporter GLUT5. Nature 2015;526:397-401. [PMID: 26416735 DOI: 10.1038/nature14909] [Cited by in Crossref: 136] [Cited by in F6Publishing: 138] [Article Influence: 19.4] [Reference Citation Analysis]
64 Patel C, Sugimoto K, Douard V, Shah A, Inui H, Yamanouchi T, Ferraris RP. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice. Am J Physiol Gastrointest Liver Physiol 2015;309:G779-90. [PMID: 26316589 DOI: 10.1152/ajpgi.00188.2015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.7] [Reference Citation Analysis]
65 Shigemizu D, Aiba T, Nakagawa H, Ozaki K, Miya F, Satake W, Toda T, Miyamoto Y, Fujimoto A, Suzuki Y, Kubo M, Tsunoda T, Shimizu W, Tanaka T. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes. PLoS One 2015;10:e0130329. [PMID: 26132555 DOI: 10.1371/journal.pone.0130329] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
66 Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 2015;309:R499-509. [PMID: 26084694 DOI: 10.1152/ajpregu.00128.2015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 53] [Article Influence: 6.4] [Reference Citation Analysis]
67 Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. FASEB J 2015;29:4046-58. [PMID: 26071406 DOI: 10.1096/fj.15-272195] [Cited by in Crossref: 46] [Cited by in F6Publishing: 51] [Article Influence: 6.6] [Reference Citation Analysis]
68 Sharma N, Li L, Ecelbarger CM. Sex differences in renal and metabolic responses to a high-fructose diet in mice. Am J Physiol Renal Physiol 2015;308:F400-10. [PMID: 25537743 DOI: 10.1152/ajprenal.00403.2014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
69 Ritze Y, Bárdos G, D'Haese JG, Ernst B, Thurnheer M, Schultes B, Bischoff SC. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans. PLoS One 2014;9:e101702. [PMID: 25010715 DOI: 10.1371/journal.pone.0101702] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
70 Biesiekierski JR. Fructose-induced symptoms beyond malabsorption in FGID. United European Gastroenterol J 2014;2:10-3. [PMID: 24918003 DOI: 10.1177/2050640613510905] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
71 Wilder-Smith CH, Li X, Ho SS, Leong SM, Wong RK, Koay ES, Ferraris RP. Fructose transporters GLUT5 and GLUT2 expression in adult patients with fructose intolerance. United European Gastroenterol J 2014;2:14-21. [PMID: 24918004 DOI: 10.1177/2050640613505279] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
72 Wu KL, Hung CY, Chan JY, Wu CW. An increase in adenosine-5'-triphosphate (ATP) content in rostral ventrolateral medulla is engaged in the high fructose diet-induced hypertension. J Biomed Sci 2014;21:8. [PMID: 24467657 DOI: 10.1186/1423-0127-21-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
73 Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut 2014;63:179-90. [PMID: 24131638 DOI: 10.1136/gutjnl-2013-305112] [Cited by in Crossref: 201] [Cited by in F6Publishing: 172] [Article Influence: 25.1] [Reference Citation Analysis]
74 Li HC, Du Z, Barone S, Rubera I, McDonough AA, Tauc M, Zahedi K, Wang T, Soleimani M. Proximal tubule specific knockout of the Na⁺/H⁺ exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med (Berl) 2013;91:951-63. [PMID: 23508938 DOI: 10.1007/s00109-013-1015-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.4] [Reference Citation Analysis]
75 Fukuzawa T, Fukazawa M, Ueda O, Shimada H, Kito A, Kakefuda M, Kawase Y, Wada NA, Goto C, Fukushima N, Jishage K, Honda K, King GL, Kawabe Y. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLoS One 2013;8:e56681. [PMID: 23451068 DOI: 10.1371/journal.pone.0056681] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
76 Le MT, Lobmeyer MT, Campbell M, Cheng J, Wang Z, Turner ST, Chapman AB, Boerwinkle E, Gums JG, Gong Y, Johnson RJ, Johnson JA. Impact of genetic polymorphisms of SLC2A2, SLC2A5, and KHK on metabolic phenotypes in hypertensive individuals. PLoS One 2013;8:e52062. [PMID: 23341889 DOI: 10.1371/journal.pone.0052062] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
77 Tapia E, Cristóbal M, García-Arroyo FE, Soto V, Monroy-Sánchez F, Pacheco U, Lanaspa MA, Roncal-Jiménez CA, Cruz-Robles D, Ishimoto T, Madero M, Johnson RJ, Sánchez-Lozada LG. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am J Physiol Renal Physiol 2013;304:F727-36. [PMID: 23303409 DOI: 10.1152/ajprenal.00485.2012] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 4.4] [Reference Citation Analysis]
78 Amlal H, Xu J, Barone S, Zahedi K, Soleimani M. The chloride channel/transporter Slc26a9 regulates the systemic arterial pressure and renal chloride excretion. J Mol Med (Berl) 2013;91:561-72. [PMID: 23149824 DOI: 10.1007/s00109-012-0973-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
79 Douard V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol. 2013;591:401-414. [PMID: 23129794 DOI: 10.1113/jphysiol.2011.215731] [Cited by in Crossref: 109] [Cited by in F6Publishing: 109] [Article Influence: 10.9] [Reference Citation Analysis]
80 Du L, Heaney AP. Regulation of adipose differentiation by fructose and GluT5. Mol Endocrinol 2012;26:1773-82. [PMID: 22827929 DOI: 10.1210/me.2012-1122] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
81 DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology 2012;153:4181-91. [PMID: 22822162 DOI: 10.1210/en.2012-1541] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.2] [Reference Citation Analysis]
82 Shen DW, Pouliot LM, Gillet JP, Ma W, Johnson AC, Hall MD, Gottesman MM. The transcription factor GCF2 is an upstream repressor of the small GTPAse RhoA, regulating membrane protein trafficking, sensitivity to doxorubicin, and resistance to cisplatin. Mol Pharm 2012;9:1822-33. [PMID: 22571463 DOI: 10.1021/mp300153z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
83 Soleimani M, Alborzi P. The role of salt in the pathogenesis of fructose-induced hypertension. Int J Nephrol 2011;2011:392708. [PMID: 21789281 DOI: 10.4061/2011/392708] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 0.8] [Reference Citation Analysis]
84 Gillet JP, Wang J, Calcagno AM, Green LJ, Varma S, Bunkholt Elstrand M, Trope CG, Ambudkar SV, Davidson B, Gottesman MM. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol Pharm 2011;8:2080-8. [PMID: 21761824 DOI: 10.1021/mp200240a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
85 Abdulla MH, Sattar MA, Johns EJ. The Relation between Fructose-Induced Metabolic Syndrome and Altered Renal Haemodynamic and Excretory Function in the Rat. Int J Nephrol 2011;2011:934659. [PMID: 21785727 DOI: 10.4061/2011/934659] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 2.7] [Reference Citation Analysis]
86 Collino M. High dietary fructose intake: Sweet or bitter life? World J Diabetes 2011; 2(6): 77-81 [PMID: 21860690 DOI: 10.4239/wjd.v2.i6.77] [Cited by in CrossRef: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
87 Madero M, Perez-Pozo SE, Jalal D, Johnson RJ, Sánchez-Lozada LG. Dietary fructose and hypertension. Curr Hypertens Rep 2011;13:29-35. [PMID: 20957458 DOI: 10.1007/s11906-010-0163-x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
88 Soleimani M. Dietary fructose, salt absorption and hypertension in metabolic syndrome: towards a new paradigm. Acta Physiol (Oxf) 2011;201:55-62. [PMID: 21143427 DOI: 10.1111/j.1748-1716.2010.02167.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
89 Sakar Y, Nazaret C, Lettéron P, Ait Omar A, Avenati M, Viollet B, Ducroc R, Bado A. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PLoS One 2009;4:e7935. [PMID: 19956534 DOI: 10.1371/journal.pone.0007935] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 3.7] [Reference Citation Analysis]