BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park J, Han DH, Park JK. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 2020;20:1191-203. [PMID: 32119024 DOI: 10.1039/d0lc00047g] [Cited by in Crossref: 52] [Cited by in F6Publishing: 56] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Gao D, Guo X, Yang Y, Shi H, Hao R, Wang S, Li ZJ, Zhao R, Song H. Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid. J Biol Eng 2022;16:33. [DOI: 10.1186/s13036-022-00312-w] [Reference Citation Analysis]
2 Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. TrAC Trends in Analytical Chemistry 2022;157:116792. [DOI: 10.1016/j.trac.2022.116792] [Reference Citation Analysis]
3 Shang Y, Xing G, Liu X, Lin H, Lin J. Fully Integrated Microfluidic Biosensor with Finger Actuation for the Ultrasensitive Detection of Escherichia coli O157:H7. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c03686] [Reference Citation Analysis]
4 Zeng Y, Wu C, He Y. Loop-Mediated Isothermal Amplification-Based Microfluidic Platforms for the Detection of Viral Infections. Curr Infect Dis Rep 2022;:1-11. [PMID: 36341307 DOI: 10.1007/s11908-022-00790-5] [Reference Citation Analysis]
5 Khashayar P, Al-madhagi S, Azimzadeh M, Scognamiglio V, Arduini F. New frontiers in microfluidics devices for miRNA analysis. TrAC Trends in Analytical Chemistry 2022;156:116706. [DOI: 10.1016/j.trac.2022.116706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang X, Qian Z, Jiang M, Li W, Huang Y, Men Y. Design and High-Resolution Analysis of an Efficient Periodic Split-and-Recombination Microfluidic Mixer. Micromachines 2022;13:1720. [DOI: 10.3390/mi13101720] [Reference Citation Analysis]
7 Gao R, Chen F, Yang D, Zheng L, Jing T, Jia H, Chen X, Lu Y, Xu S, Zhang D, Yu L. Simultaneous SERS-based immunoassay of dual cardiac markers on pump-free hybrid microfluidic chip. Sensors and Actuators B: Chemical 2022;369:132378. [DOI: 10.1016/j.snb.2022.132378] [Reference Citation Analysis]
8 Guo G, Wu X, Liu D, Liao L, Zhang D, Zhang Y, Mao T, He Y, Huang P, Wang W, Su L, Wang S, Liu Q, Ma X, Shi N, Guan Y. A Self-Regulated Microfluidic Device with Thermal Bubble Micropumps. Micromachines 2022;13:1620. [DOI: 10.3390/mi13101620] [Reference Citation Analysis]
9 Wang J, Yang L, Wang H, Wang L. Application of Microfluidic Chips in the Detection of Airborne Microorganisms. Micromachines 2022;13:1576. [DOI: 10.3390/mi13101576] [Reference Citation Analysis]
10 Qiu B, Chen X, Xu F, Wu D, Zhou Y, Tu W, Jin H, He G, Chen S, Sun D. Nanofiber self-consistent additive manufacturing process for 3D microfluidics. Microsyst Nanoeng 2022;8. [DOI: 10.1038/s41378-022-00439-2] [Reference Citation Analysis]
11 Song X, Ren X, Zhao W, Zhao L, Wang S, Luo C, Li Y, Wei Q. A Portable Microfluidic-Based Electrochemiluminescence Sensor for Trace Detection of Trenbolone in Natural Water. Anal Chem 2022. [PMID: 36044748 DOI: 10.1021/acs.analchem.2c02780] [Reference Citation Analysis]
12 Zai Y, Min C, Wang Z, Ding Y, Zhao H, Su E, He N. A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. Lab Chip 2022. [PMID: 35972195 DOI: 10.1039/d2lc00434h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Guan J, Wang Y, Jin J, Zheng G. A Microfluidic Chip for LAMP-based Multiplex Detection of Pathogen.. [DOI: 10.1101/2022.05.19.492672] [Reference Citation Analysis]
14 Meffan C, Menges J, Dolamore F, Mak D, Fee C, Dobson RCJ, Nock V. Capillaric field effect transistors. Microsyst Nanoeng 2022;8:33. [PMID: 35371537 DOI: 10.1038/s41378-022-00360-8] [Reference Citation Analysis]
15 Xiao Y, Li S, Pang Z, Wan C, Li L, Yuan H, Hong X, Du W, Feng X, Li Y, Chen P, Liu BF. Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosens Bioelectron 2022;206:114130. [PMID: 35245866 DOI: 10.1016/j.bios.2022.114130] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
16 Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. Biosensors (Basel) 2022;12:136. [PMID: 35323406 DOI: 10.3390/bios12030136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors (Basel) 2022;22:1620. [PMID: 35214519 DOI: 10.3390/s22041620] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
18 Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022;12:807253. [DOI: 10.3389/fcimb.2022.807253] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022;11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Tian LL, Li CH, Ye QC, Li YF, Huang CZ, Zhan L, Wang DM, Zhen SJ. A centrifugal microfluidic chip for point-of-care testing of staphylococcal enterotoxin B in complex matrices. Nanoscale 2022;14:1380-5. [PMID: 35018396 DOI: 10.1039/d1nr05599b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Sierra T, Henry CS, Crevillén AG, Escarpa A. Disposable Passive Electrochemical Microfluidic Device for Diagnosis of Congenital Disorders of Glycosylation. Analysis & Sensing 2022;2. [DOI: 10.1002/anse.202100038] [Reference Citation Analysis]
22 Song E, Tao Y, Shen H, Yang C, Tian T, Yang L, Zhu Z. A polypyrrole-mediated photothermal biosensor with a temperature and pressure dual readout for the detection of protein biomarkers. Analyst 2022;147:2671-2677. [DOI: 10.1039/d2an00370h] [Reference Citation Analysis]
23 Song J, Du C, Wang J, Cui Y, Wang Y, Deng J, Luo G. A novel observation platform for determining the micro-dispersion performance in practical reaction systems. React Chem Eng . [DOI: 10.1039/d2re00224h] [Reference Citation Analysis]
24 Xiang N, Ni Z. Hand-Powered Inertial Microfluidic Syringe-Tip Centrifuge. Biosensors 2021;12:14. [DOI: 10.3390/bios12010014] [Reference Citation Analysis]
25 Kikkeri K, Wu D, Voldman J. A sample-to-answer electrochemical biosensor system for biomarker detection. Lab Chip 2021;22:100-7. [PMID: 34889339 DOI: 10.1039/d1lc00910a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 23.0] [Reference Citation Analysis]
27 Fajrial AK, Vega A, Shakya G, Ding X. A frugal microfluidic pump. Lab Chip 2021;21:4772-8. [PMID: 34751689 DOI: 10.1039/d1lc00691f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ryu D, Nam H, Jeon JS, Park Y. Reagent- and actuator-free analysis of individual erythrocytes using three-dimensional quantitative phase imaging and capillary microfluidics. Sensors and Actuators B: Chemical 2021;348:130689. [DOI: 10.1016/j.snb.2021.130689] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Li N, Shen M, Liu J, Zhang L, Wang H, Xu Y, Cheng J. Multiplexed detection of respiratory pathogens with a portable analyzer in a "raw-sample-in and answer-out" manner. Microsyst Nanoeng 2021;7:94. [PMID: 34840805 DOI: 10.1038/s41378-021-00321-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Liu H, Thi Dao TN, Koo B, Jang YO, Shin Y. Trends and challenges of nanotechnology in self-test at home. TrAC Trends in Analytical Chemistry 2021;144:116438. [DOI: 10.1016/j.trac.2021.116438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yu Y, Yue T, Liu N, Liu Y, Gao S, Gu S, Zhou Y, Peng Y. A self-powered pump based on gas-dissolved-in-liquid phenomenon to generate both negative and positive driving pressures. Sensors and Actuators B: Chemical 2021;342:130048. [DOI: 10.1016/j.snb.2021.130048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Chen T, Yin S, Wu J. Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. TrAC Trends in Analytical Chemistry 2021;142:116309. [DOI: 10.1016/j.trac.2021.116309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Hsiao SW, Chen YJ, Huang JT. Portable self-flowing platform for filtration separation of samples. Anal Methods 2021;13:3605-13. [PMID: 34308942 DOI: 10.1039/d1ay00716e] [Reference Citation Analysis]
34 Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 2021. [PMID: 34345949 DOI: 10.1007/s00216-021-03553-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
35 Wang P, Yuan S, Yang N, Oppong PK. A comprehensive review on non-active micro-pumps for microfluidic platforms. J Micromech Microeng 2021;31:093001. [DOI: 10.1088/1361-6439/ac1452] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Park J, Park JK. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. Biomicrofluidics 2021;15:041302. [PMID: 34257794 DOI: 10.1063/5.0056580] [Reference Citation Analysis]
37 Wetterau L, Abert C, Suess D, Albrecht M, Witzigmann B. Extended micromagnetic model for the detection of superparamagnetic labels using a GMR vortex sensor. J Phys Commun 2021;5:075017. [DOI: 10.1088/2399-6528/ac174f] [Reference Citation Analysis]
38 Liu X, Jia Y, Han Z, Hou Q, Zhang W, Zheng W, Jiang X. Integrating a Concentration Gradient Generator and a Single‐Cell Trapper Array for High‐Throughput Screening the Bioeffects of Nanomaterials. Angew Chem 2021;133:12427-12430. [DOI: 10.1002/ange.202101293] [Reference Citation Analysis]
39 Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021;413:4137-59. [PMID: 34008124 DOI: 10.1007/s00216-021-03377-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 28.0] [Reference Citation Analysis]
40 Ryu D, Nam H, Jeon JS, Park Y. Reagent- and actuator-free analysis of individual erythrocytes using three-dimensional quantitative phase imaging and capillary microfluidics.. [DOI: 10.1101/2021.05.15.442583] [Reference Citation Analysis]
41 Jeong S, Kim D, Kim J, Kim J, Song S, Lee C. Programmable microfluidic flow for automatic multistep digital assay in a single-sheet 3-dimensional paper-based microfluidic device. Chemical Engineering Journal 2021;411:128429. [DOI: 10.1016/j.cej.2021.128429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. Sensors (Basel) 2021;21:3058. [PMID: 33925730 DOI: 10.3390/s21093058] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
43 Yao Y, Zhao N, Jing W, Liu Q, Lu H, Zhao W, Zhao W, Yuan Z, Xia H, Sui G. A self-powered rapid loading microfluidic chip for vector-borne viruses detection using RT-LAMP. Sensors and Actuators B: Chemical 2021;333:129521. [DOI: 10.1016/j.snb.2021.129521] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 98.0] [Reference Citation Analysis]
45 Ayuso JM, Park KY, Virumbrales-Muñoz M, Beebe DJ. Toward improved in vitro models of human cancer. APL Bioeng 2021;5:010902. [PMID: 33532672 DOI: 10.1063/5.0026857] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
46 Lu C, Han J, Sun X, Yang G. Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. Sensors (Basel) 2020;20:E6073. [PMID: 33114569 DOI: 10.3390/s20216073] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
47 Zhang X, Wasserberg D, Breukers C, Connell BJ, Schipper PJ, van Dalum J, Baeten E, van den Blink D, Bloem AC, Nijhuis M, Wensing AMJ, Terstappen LWMM, Beck M. An inkjet-printed polysaccharide matrix for on-chip sample preparation in point-of-care cell counting chambers. RSC Adv 2020;10:18062-18072. [DOI: 10.1039/d0ra01645d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]