BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). 2007;10:1056-1058. [PMID: 17325804 DOI: 10.1039/b615134e] [Cited by in Crossref: 694] [Cited by in F6Publishing: 585] [Article Influence: 46.3] [Reference Citation Analysis]
Number Citing Articles
1 Akhtar MJ, Ahamed M, Alhadlaq HA, Khan MM, Alrokayan SA. Glutathione replenishing potential of CeO 2 nanoparticles in human breast and fibrosarcoma cells. Journal of Colloid and Interface Science 2015;453:21-7. [DOI: 10.1016/j.jcis.2015.04.049] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
2 Unnithan AR, Ramachandra Kurup Sasikala A, Sathishkumar Y, Lee YS, Park CH, Kim CS. Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications. Ceramics International 2014;40:12003-12. [DOI: 10.1016/j.ceramint.2014.04.038] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
3 Krishna Reddy J, Suresh G, Hymavathi C, Durga Kumari V, Subrahmanyam M. Ce (III) species supported zeolites as novel photocatalysts for hydrogen production from water. Catalysis Today 2009;141:89-93. [DOI: 10.1016/j.cattod.2008.05.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
4 von Montfort C, Alili L, Teuber-Hanselmann S, Brenneisen P. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage. Redox Biol 2015;4:1-5. [PMID: 25479549 DOI: 10.1016/j.redox.2014.11.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
5 Tian Z, Li X, Ma Y, Chen T, Xu D, Wang B, Qu Y, Gao Y. Quantitatively Intrinsic Biomimetic Catalytic Activity of Nanocerias as Radical Scavengers and Their Ability against H 2 O 2 and Doxorubicin-Induced Oxidative Stress. ACS Appl Mater Interfaces 2017;9:23342-52. [DOI: 10.1021/acsami.7b04761] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
6 Estevez AY, Ganesana M, Trentini JF, Olson JE, Li G, Boateng YO, Lipps JM, Yablonski SER, Donnelly WT, Leiter JC, Erlichman JS. Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA. Biomolecules 2019;9:E562. [PMID: 31623336 DOI: 10.3390/biom9100562] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
7 Thirunavukkarasu A, Muthukumaran K, Nithya R. Adsorption of acid yellow 36 onto green nanoceria and amine functionalized green nanoceria: Comparative studies on kinetics, isotherm, thermodynamics, and diffusion analysis. Journal of the Taiwan Institute of Chemical Engineers 2018;93:211-25. [DOI: 10.1016/j.jtice.2018.07.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
8 Liu Y, Zhu G, Yang J, Yuan A, Shen X. Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route. PLoS One 2014;9:e109158. [PMID: 25271632 DOI: 10.1371/journal.pone.0109158] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
9 Chen H, Motuzas J, Martens W, Diniz da Costa JC. Improved dark ambient degradation of organic pollutants by cerium strontium cobalt perovskite. J Environ Sci (China) 2020;90:110-8. [PMID: 32081308 DOI: 10.1016/j.jes.2019.11.013] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yang Z, Luo S, Li H, Dong S, He J, Jiang H, Li R, Yang X. Alendronate as a robust anchor for ceria nanoparticle surface coating: facile binding and improved biological properties. RSC Adv 2014;4:59965-9. [DOI: 10.1039/c4ra12007h] [Cited by in Crossref: 29] [Article Influence: 3.6] [Reference Citation Analysis]
11 Liu Q, Yang Y, Li H, Zhu R, Shao Q, Yang S, Xu J. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosensors and Bioelectronics 2015;64:147-53. [DOI: 10.1016/j.bios.2014.08.062] [Cited by in Crossref: 230] [Cited by in F6Publishing: 193] [Article Influence: 32.9] [Reference Citation Analysis]
12 Estes LM, Singha P, Singh S, Sakthivel TS, Garren M, Devine R, Brisbois EJ, Seal S, Handa H. Characterization of a nitric oxide (NO) donor molecule and cerium oxide nanoparticle (CNP) interactions and their synergistic antimicrobial potential for biomedical applications. Journal of Colloid and Interface Science 2021;586:163-77. [DOI: 10.1016/j.jcis.2020.10.081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
13 Sindhu RK, Najda A, Kaur P, Shah M, Singh H, Kaur P, Cavalu S, Jaroszuk-Sierocińska M, Rahman MH. Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases: Current Status and Future Challenges. Materials (Basel) 2021;14:5965. [PMID: 34683560 DOI: 10.3390/ma14205965] [Reference Citation Analysis]
14 Tsai YY, Oca-Cossio J, Lin SM, Woan K, Yu PC, Sigmund W. Reactive oxygen species scavenging properties of ZrO2-CeO2 solid solution nanoparticles. Nanomedicine (Lond) 2008;3:637-45. [PMID: 18817467 DOI: 10.2217/17435889.3.5.637] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
15 Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 2014;47:1097-105. [PMID: 24437921 DOI: 10.1021/ar400250z] [Cited by in Crossref: 745] [Cited by in F6Publishing: 645] [Article Influence: 93.1] [Reference Citation Analysis]
16 Singh R, Karakoti AS, Self W, Seal S, Singh S. Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress Induced by Glutathione Depletion. Langmuir 2016;32:12202-11. [PMID: 27792880 DOI: 10.1021/acs.langmuir.6b03022] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 9.3] [Reference Citation Analysis]
17 Korschelt K, Schwidetzky R, Pfitzner F, Strugatchi J, Schilling C, von der Au M, Kirchhoff K, Panthöfer M, Lieberwirth I, Tahir MN, Hess C, Meermann B, Tremel W. CeO 2−x nanorods with intrinsic urease-like activity. Nanoscale 2018;10:13074-82. [DOI: 10.1039/c8nr03556c] [Cited by in Crossref: 26] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
18 Ragg R, Natalio F, Tahir MN, Janssen H, Kashyap A, Strand D, Strand S, Tremel W. Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity. ACS Nano 2014;8:5182-9. [DOI: 10.1021/nn501235j] [Cited by in Crossref: 76] [Cited by in F6Publishing: 57] [Article Influence: 9.5] [Reference Citation Analysis]
19 Son HY, Koo BI, Lee JB, Kim KR, Kim W, Jang J, Yoon MS, Cho JW, Nam YS. Tannin-Titanium Oxide Multilayer as a Photochemically Suppressed Ultraviolet Filter. ACS Appl Mater Interfaces 2018;10:27344-54. [PMID: 30039969 DOI: 10.1021/acsami.8b09200] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
20 Liu B, Liu J. Sensors and biosensors based on metal oxide nanomaterials. TrAC Trends in Analytical Chemistry 2019;121:115690. [DOI: 10.1016/j.trac.2019.115690] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
21 Das S, Neal CJ, Ortiz J, Seal S. Engineered nanoceria cytoprotection in vivo : mitigation of reactive oxygen species and double-stranded DNA breakage due to radiation exposure. Nanoscale 2018;10:21069-75. [DOI: 10.1039/c8nr04640a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
22 Wingett D, Louka P, Anders CB, Zhang J, Punnoose A. A role of ZnO nanoparticle electrostatic properties in cancer cell cytotoxicity. Nanotechnol Sci Appl 2016;9:29-45. [PMID: 27486313 DOI: 10.2147/NSA.S99747] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, Casano G, Botta A, Kovacic H, Pietri S. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: Evidence for NADPH oxidase and mitochondrial stimulation. Chemico-Biological Interactions 2012;199:161-76. [DOI: 10.1016/j.cbi.2012.08.007] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
24 Zhang Z, Zhang X, Liu B, Liu J. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. J Am Chem Soc 2017;139:5412-9. [DOI: 10.1021/jacs.7b00601] [Cited by in Crossref: 315] [Cited by in F6Publishing: 258] [Article Influence: 63.0] [Reference Citation Analysis]
25 Ranjbar A, Soleimani Asl S, Firozian F, Heidary Dartoti H, Seyedabadi S, Taheri Azandariani M, Ganji M. Role of Cerium Oxide Nanoparticles in a Paraquat-Induced Model of Oxidative Stress: Emergence of Neuroprotective Results in the Brain. J Mol Neurosci 2018;66:420-7. [DOI: 10.1007/s12031-018-1191-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
26 Xiang H, Chen Y. Energy‐Converting Nanomedicine. Small 2019;15:1805339. [DOI: 10.1002/smll.201805339] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 16.7] [Reference Citation Analysis]
27 Gao C, Zhang Q, Yang Y, Li Y, Lin W. Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomater Res 2022;26:5. [PMID: 35120554 DOI: 10.1186/s40824-022-00250-0] [Reference Citation Analysis]
28 Joung D, Singh V, Park S, Schulte A, Seal S, Khondaker SI. Anchoring Ceria Nanoparticles on Reduced Graphene Oxide and Their Electronic Transport Properties. J Phys Chem C 2011;115:24494-500. [DOI: 10.1021/jp206485v] [Cited by in Crossref: 104] [Cited by in F6Publishing: 68] [Article Influence: 9.5] [Reference Citation Analysis]
29 Shih S, Li G, Cockayne DJ, Borisenko KB. Mechanism of dopant distribution: An example of nickel-doped ceria nanoparticles. Scripta Materialia 2009;61:832-5. [DOI: 10.1016/j.scriptamat.2009.07.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
30 Conway JR, Hanna SK, Lenihan HS, Keller AA. Effects and Implications of Trophic Transfer and Accumulation of CeO 2 Nanoparticles in a Marine Mussel. Environ Sci Technol 2014;48:1517-24. [DOI: 10.1021/es404549u] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 6.9] [Reference Citation Analysis]
31 Giri R, Ghosh M, Tripathy A, Nath G. Ultrasonic assisted solvent extraction in synthesis of ceria nanofluids from rare earth material for heat exchange application. Adv Nat Sci: Nanosci Nanotechnol 2021;12:015002. [DOI: 10.1088/2043-6254/abdebf] [Reference Citation Analysis]
32 Yu T, Lim B, Xia Y. Aqueous-Phase Synthesis of Single-Crystal Ceria Nanosheets. Angewandte Chemie 2010;122:4586-9. [DOI: 10.1002/ange.201001521] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
33 Krishna Reddy J, Durgakumari V, Subrahmanyam M, Sreedhar B. Structure and photocatalytic activity studies of TiO2-supported over Ce-modified Al-MCM-41. Materials Research Bulletin 2009;44:1540-6. [DOI: 10.1016/j.materresbull.2009.02.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
34 Mandal A, Dasgupta S, Adhikary A, Samanta D, Zangrando E, Das D. Synthesis of Mn 3 O 4 nanozymes from structurally characterized phenoxazinone synthase models based on manganese( iii ) Schiff base complexes. Dalton Trans 2020;49:5999-6011. [DOI: 10.1039/d0dt00355g] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
35 Singh S, Ly A, Das S, Sakthivel TS, Barkam S, Seal S. Cerium oxide nanoparticles at the nano-bio interface: size-dependent cellular uptake. Artif Cells Nanomed Biotechnol 2018;46:S956-63. [PMID: 30314412 DOI: 10.1080/21691401.2018.1521818] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
36 Sims CM, Hanna SK, Heller DA, Horoszko CP, Johnson ME, Montoro Bustos AR, Reipa V, Riley KR, Nelson BC. Redox-active nanomaterials for nanomedicine applications. Nanoscale 2017;9:15226-51. [PMID: 28991962 DOI: 10.1039/c7nr05429g] [Cited by in Crossref: 55] [Cited by in F6Publishing: 16] [Article Influence: 13.8] [Reference Citation Analysis]
37 Aplak E, von Montfort C, Haasler L, Stucki D, Steckel B, Reichert AS, Stahl W, Brenneisen P. CNP mediated selective toxicity on melanoma cells is accompanied by mitochondrial dysfunction. PLoS One 2020;15:e0227926. [PMID: 31951630 DOI: 10.1371/journal.pone.0227926] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Liu C, Cheng S, Chen N, Lo L. Intra/Inter-Particle Energy Transfer of Luminescence Nanocrystals for Biomedical Applications. Journal of Nanomaterials 2012;2012:1-9. [DOI: 10.1155/2012/706134] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
39 Ahmad HR, Zia-ur-rehman M, Sohail MI, Anwar ul Haq M, Khalid H, Ayub MA, Ishaq G. Effects of Rare Earth Oxide Nanoparticles on Plants. Nanomaterials in Plants, Algae, and Microorganisms. Elsevier; 2018. pp. 239-75. [DOI: 10.1016/b978-0-12-811487-2.00011-6] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
40 Liu L, Hong L. Interactions between CeO2 and Ni P for enhancing coking and sulfur resistance in autothermal reforming of liquid hydrocarbons. Fuel 2012;96:348-54. [DOI: 10.1016/j.fuel.2011.12.055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
41 Menchón C, Martín R, Apostolova N, Victor VM, Alvaro M, Herance JR, García H. Gold nanoparticles supported on nanoparticulate ceria as a powerful agent against intracellular oxidative stress. Small 2012;8:1895-903. [PMID: 22454217 DOI: 10.1002/smll.201102255] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
42 Shcherbakov AB, Ivanov VK, Zholobak NM, Ivanova OS, Krysanov EY, Baranchikov AE, Spivak NY, Tretyakov YD. Nanocrystalline ceria based materials—Perspectives for biomedical application. BIOPHYSICS 2011;56:987-1004. [DOI: 10.1134/s0006350911060170] [Cited by in Crossref: 28] [Article Influence: 2.8] [Reference Citation Analysis]
43 Tavoosi S, Baghsheikhi AH, Shetab-boushehri SV, Navaei-nigjeh M, Sarvestani NN, Karimi MY, Ranjbar A, Ebadollahi-natanzi A, Hosseini A. Cerium and Yttrium Oxide Nanoparticles and Nano-selenium Produce Protective Effects Against H2O2-induced Oxidative Stress in Pancreatic Beta Cells by Modulating Mitochondrial Dysfunction. PNT 2020;8:63-75. [DOI: 10.2174/2211738507666191002154659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Andreescu S, Ornatska M, Erlichman JS, Estevez A, Leiter JC. Biomedical Applications of Metal Oxide Nanoparticles. In: Matijević E, editor. Fine Particles in Medicine and Pharmacy. Boston: Springer US; 2012. pp. 57-100. [DOI: 10.1007/978-1-4614-0379-1_3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
45 Mohamed HEA, Afridi S, Khalil AT, Ali M, Zohra T, Akhtar R, Ikram A, Shinwari ZK, Maaza M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine 2020;15:467-88. [DOI: 10.2217/nnm-2019-0368] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
46 Roy B, Sullivan H, Leclerc C. Effect of variable conditions on steam reforming and aqueous phase reforming of n-butanol over Ni/CeO2 and Ni/Al2O3 catalysts. Journal of Power Sources 2014;267:280-7. [DOI: 10.1016/j.jpowsour.2014.05.090] [Cited by in Crossref: 22] [Article Influence: 2.8] [Reference Citation Analysis]
47 Singh V, Singh S, Das S, Kumar A, Self WT, Seal S. A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale 2012;4:2597. [DOI: 10.1039/c2nr12131j] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
48 Dashtestani F, Ghourchian H, Najafi A. Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation. Bioorganic Chemistry 2018;80:621-30. [DOI: 10.1016/j.bioorg.2018.07.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
49 Sendra M, Yeste PM, Moreno-Garrido I, Gatica JM, Blasco J. CeO2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Sci Total Environ 2017;590-591:304-15. [PMID: 28283294 DOI: 10.1016/j.scitotenv.2017.03.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
50 Rim K. Effects of rare earth elements on the environment and human health: A literature review. Toxicol Environ Health Sci 2016;8:189-200. [DOI: 10.1007/s13530-016-0276-y] [Cited by in Crossref: 54] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
51 Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SV, Wozniak K, Self WT, Seal S. PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 2009;131:14144-5. [PMID: 19769392 DOI: 10.1021/ja9051087] [Cited by in Crossref: 227] [Cited by in F6Publishing: 200] [Article Influence: 17.5] [Reference Citation Analysis]
52 Kumari P, Saifi MA, Khurana A, Godugu C. Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. Journal of Trace Elements in Medicine and Biology 2018;50:198-208. [DOI: 10.1016/j.jtemb.2018.07.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
53 Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide. Appl Biochem Biotechnol 2016;180:638-54. [PMID: 27234032 DOI: 10.1007/s12010-016-2121-9] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
54 Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Rahimifard M, Navaei-Nigjeh M, Hassani S, Baeeri M, Abdollahi M. Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Mech Methods 2012;22:476-82. [PMID: 22409398 DOI: 10.3109/15376516.2012.673093] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
55 Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2021;66:423-40. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
56 Völker C, Oetken M, Oehlmann J. The biological effects and possible modes of action of nanosilver. Rev Environ Contam Toxicol 2013;223:81-106. [PMID: 23149813 DOI: 10.1007/978-1-4614-5577-6_4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 1.7] [Reference Citation Analysis]
57 Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;2:2121-34. [PMID: 19206459 DOI: 10.1021/nn800511k] [Cited by in Crossref: 1670] [Cited by in F6Publishing: 1457] [Article Influence: 128.5] [Reference Citation Analysis]
58 Sankar V, Salinraj P, Athira R, Soumya RS, Raghu KG. Cerium nanoparticles synthesized using aqueous extract of Centella asiatica: characterization, determination of free radical scavenging activity and evaluation of efficacy against cardiomyoblast hypertrophy. RSC Adv 2015;5:21074-83. [DOI: 10.1039/c4ra16893c] [Cited by in Crossref: 16] [Article Influence: 2.3] [Reference Citation Analysis]
59 Casals E, Gusta MF, Piella J, Casals G, Jiménez W, Puntes V. Intrinsic and Extrinsic Properties Affecting Innate Immune Responses to Nanoparticles: The Case of Cerium Oxide. Front Immunol 2017;8:970. [PMID: 28855907 DOI: 10.3389/fimmu.2017.00970] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
60 Ge L, Zang C, Chen F. The enhanced Fenton-like catalytic performance of PdO/CeO2 for the degradation of acid orange 7 and salicylic acid. Chinese Journal of Catalysis 2015;36:314-21. [DOI: 10.1016/s1872-2067(14)60261-8] [Cited by in Crossref: 15] [Article Influence: 2.1] [Reference Citation Analysis]
61 Zhang M, Zhao L, Du F, Wu Y, Cai R, Xu L, Jin H, Zou S, Gong A, Du F. Facile synthesis of cerium-doped carbon quantum dots as a highly efficient antioxidant for free radical scavenging. Nanotechnology 2019;30:325101. [DOI: 10.1088/1361-6528/ab12ef] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
62 Liu C, Zhang M, Geng H, Zhang P, Zheng Z, Zhou Y, He W. NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Applied Catalysis B: Environmental 2021;295:120317. [DOI: 10.1016/j.apcatb.2021.120317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
63 Chauhan D, Sri S, Kumar R, Panda AK, Solanki PR. Evaluation of size, shape, and charge effect on the biological interaction and cellular uptake of cerium oxide nanostructures. Nanotechnology 2021;32. [PMID: 34020431 DOI: 10.1088/1361-6528/ac03d5] [Reference Citation Analysis]
64 Peloi KE, Ratti BA, Nakamura CV, Neal CJ, Sakthivel TS, Singh S, Seal S, de Oliveira Silva Lautenschlager S. Engineered nanoceria modulate neutrophil oxidative response to low doses of UV-B radiation through the inhibition of reactive oxygen species production. J Biomed Mater Res A 2021. [PMID: 34173708 DOI: 10.1002/jbm.a.37251] [Reference Citation Analysis]
65 Mandal B, Mondal A, Ray SS, Kundu A. Sm doped mesoporous CeO 2 nanocrystals: aqueous solution-based surfactant assisted low temperature synthesis, characterization and their improved autocatalytic activity. Dalton Trans 2016;45:1679-92. [DOI: 10.1039/c5dt03688g] [Cited by in Crossref: 33] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
66 Karakoti AS, Monteiro-Riviere NA, Aggarwal R, Davis JP, Narayan RJ, Self WT, McGinnis J, Seal S. Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM (1989) 2008;60:33-7. [PMID: 20617106 DOI: 10.1007/s11837-008-0029-8] [Cited by in Crossref: 252] [Cited by in F6Publishing: 200] [Article Influence: 18.0] [Reference Citation Analysis]
67 Tian R, Sun J, Qi Y, Zhang B, Guo S, Zhao M. Influence of VO₂ Nanoparticle Morphology on the Colorimetric Assay of H₂O₂ and Glucose. Nanomaterials (Basel) 2017;7:E347. [PMID: 29068412 DOI: 10.3390/nano7110347] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 5.4] [Reference Citation Analysis]
68 Rehman SU, Niazi RK, Zulqurnain M, Mansoor Q, Iqbal J, Arshad A. Graphene nanoplatelets/CeO2 nanotiles nanocomposites as effective antibacterial material for multiple drug-resistant bacteria. Appl Nanosci. [DOI: 10.1007/s13204-022-02422-9] [Reference Citation Analysis]
69 Davoodbasha MA, Saravanakumar K, Abdulkader AM, Lee S, Kim J. Synthesis of Biocompatible Cellulose-Coated Nanoceria with pH-Dependent Antioxidant Property. ACS Appl Bio Mater 2019;2:1792-801. [DOI: 10.1021/acsabm.8b00647] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
70 Pettinger NW, Empey JM, Fröbel S, Kohler B. Photoreductive dissolution of cerium oxide nanoparticles and their size-dependent absorption properties. Phys Chem Chem Phys 2020;22:5756-64. [PMID: 32104809 DOI: 10.1039/c9cp06579b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
71 Zhai Y, Zhang Y, Qin F, Yao X. An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron 2015;70:130-6. [PMID: 25801953 DOI: 10.1016/j.bios.2015.03.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
72 Yang S, Ji J, Luo M, Li H, Gao Z. Poly(tannic acid) nanocoating based surface modification for construction of multifunctional composite CeO2NZs to enhance cell proliferation and antioxidative viability of preosteoblasts. Nanoscale 2021;13:16349-61. [PMID: 34581718 DOI: 10.1039/d1nr02799a] [Reference Citation Analysis]
73 Gao Y, Chen K, Ma JL, Gao F. Cerium oxide nanoparticles in cancer. Onco Targets Ther 2014;7:835-40. [PMID: 24920925 DOI: 10.2147/OTT.S62057] [Cited by in Crossref: 80] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
74 Shen L, Ye D, Zhao H, Zhang J. Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Anal Chem 2021;93:1221-31. [PMID: 33371664 DOI: 10.1021/acs.analchem.0c04084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
75 Dowding JM, Das S, Kumar A, Dosani T, McCormack R, Gupta A, Sayle TX, Sayle DC, von Kalm L, Seal S, Self WT. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 2013;7:4855-68. [PMID: 23668322 DOI: 10.1021/nn305872d] [Cited by in Crossref: 129] [Cited by in F6Publishing: 117] [Article Influence: 14.3] [Reference Citation Analysis]
76 Khan AAP, Khan A, Alam M, Asiri AM, Uddin J, Rahman MM. SDBS-functionalized MWCNT/poly(o-toluidine) nanowires modified glassy carbon electrode as a selective sensing platform for Ce3+ in real samples. Journal of Molecular Liquids 2019;279:392-9. [DOI: 10.1016/j.molliq.2019.01.159] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
77 Plakhova TV, Romanchuk AY, Yakunin SN, Dumas T, Demir S, Wang S, Minasian SG, Shuh DK, Tyliszczak T, Shiryaev AA, Egorov AV, Ivanov VK, Kalmykov SN. Solubility of Nanocrystalline Cerium Dioxide: Experimental Data and Thermodynamic Modeling. J Phys Chem C 2016;120:22615-26. [DOI: 10.1021/acs.jpcc.6b05650] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
78 Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjug Chem 2019;30:1273-96. [PMID: 30966739 DOI: 10.1021/acs.bioconjchem.9b00171] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 14.7] [Reference Citation Analysis]
79 Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI. Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 2012;6:5366-80. [PMID: 22564147 DOI: 10.1021/nn3012114] [Cited by in Crossref: 240] [Cited by in F6Publishing: 187] [Article Influence: 24.0] [Reference Citation Analysis]
80 Wei F, Neal CJ, Sakthivel TS, Seal S, Kean T, Razavi M, Coathup M. Cerium oxide nanoparticles protect against irradiation-induced cellular damage while augmenting osteogenesis. Mater Sci Eng C Mater Biol Appl 2021;126:112145. [PMID: 34082956 DOI: 10.1016/j.msec.2021.112145] [Reference Citation Analysis]
81 Singh RK, Patel KD, Mahapatra C, Parthiban SP, Kim TH, Kim HW. Combinatory Cancer Therapeutics with Nanoceria-Capped Mesoporous Silica Nanocarriers through pH-triggered Drug Release and Redox Activity. ACS Appl Mater Interfaces 2019;11:288-99. [PMID: 30539634 DOI: 10.1021/acsami.8b17958] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
82 Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev 2010;39:4422. [DOI: 10.1039/b919677n] [Cited by in Crossref: 347] [Cited by in F6Publishing: 299] [Article Influence: 28.9] [Reference Citation Analysis]
83 Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G, Cutillas P, Puntes V, Jiménez W. Cerium Oxide Nanoparticles Protect against Oxidant Injury and Interfere with Oxidative Mediated Kinase Signaling in Human-Derived Hepatocytes. Int J Mol Sci 2019;20:E5959. [PMID: 31783479 DOI: 10.3390/ijms20235959] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
84 You M, Li K, Xie Y, Huang L, Zheng X. The Effects of Cerium Valence States at Cerium Oxide Coatings on the Responses of Bone Mesenchymal Stem Cells and Macrophages. Biol Trace Elem Res 2017;179:259-70. [PMID: 28229387 DOI: 10.1007/s12011-017-0968-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
85 Farag MM, Al-Rashidy ZM, Ahmed MM. In vitro drug release behavior of Ce-doped nano-bioactive glass carriers under oxidative stress. J Mater Sci Mater Med 2019;30:18. [PMID: 30671708 DOI: 10.1007/s10856-019-6220-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
86 Zhai Y, Zhou K, Xue Y, Qin F, Yang L, Yao X. Synthesis of water-soluble chitosan-coated nanoceria with excellent antioxidant properties. RSC Adv 2013;3:6833. [DOI: 10.1039/c3ra22251a] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
87 Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. Results in Chemistry 2022. [DOI: 10.1016/j.rechem.2022.100288] [Reference Citation Analysis]
88 Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Reference Citation Analysis]
89 Apostolova N, Rovira-llopis S, Baldoví HG, Navalon S, Asiri AM, Victor VM, Garcia H, Herance JR. Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress. RSC Adv 2015;5:79423-32. [DOI: 10.1039/c5ra12794g] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
90 Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine 2010;6:738-44. [PMID: 20553964 DOI: 10.1016/j.nano.2010.05.004] [Cited by in Crossref: 124] [Cited by in F6Publishing: 99] [Article Influence: 10.3] [Reference Citation Analysis]
91 Xu C, Lin Y, Wang J, Wu L, Wei W, Ren J, Qu X. Nanoceria-triggered synergetic drug release based on CeO(2) -capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO(2). Adv Healthc Mater 2013;2:1591-9. [PMID: 23630084 DOI: 10.1002/adhm.201200464] [Cited by in Crossref: 126] [Cited by in F6Publishing: 102] [Article Influence: 14.0] [Reference Citation Analysis]
92 Marzec-Wróblewska U, Kamiński P, Łakota P, Ludwikowski G, Szymański M, Wasilow K, Stuczyński T, Buciński A, Jerzak L. Determination of Rare Earth Elements in Human Sperm and Association with Semen Quality. Arch Environ Contam Toxicol 2015;69:191-201. [PMID: 25762379 DOI: 10.1007/s00244-015-0143-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
93 Hosseini A, Baeeri M, Rahimifard M, Navaei-Nigjeh M, Mohammadirad A, Pourkhalili N, Hassani S, Kamali M, Abdollahi M. Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol 2013;32:544-53. [PMID: 23696423 DOI: 10.1177/0960327112468175] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
94 Stolle A, Schmöger C, Ondruschka B, Bonrath W, Keller TF, Jandt KD. Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions. Chinese Journal of Catalysis 2011;32:1312-22. [DOI: 10.1016/s1872-2067(10)60249-5] [Cited by in Crossref: 12] [Article Influence: 1.1] [Reference Citation Analysis]
95 Yu Q, Wu X, Tang C, Qi L, Liu B, Gao F, Sun K, Dong L, Chen Y. Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M=Mg2+, Al3+, Si4+) mixed oxides for CO oxidation. Journal of Colloid and Interface Science 2011;354:341-52. [DOI: 10.1016/j.jcis.2010.10.043] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
96 Andreescu D, Bulbul G, Özel RE, Hayat A, Sardesai N, Andreescu S. Applications and implications of nanoceria reactivity: measurement tools and environmental impact. Environ Sci : Nano 2014;1:445-58. [DOI: 10.1039/c4en00075g] [Cited by in Crossref: 40] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
97 Yefimova SL, Maksimchuk PO, Seminko VV, Kavok NS, Klochkov VK, Hubenko KA, Sorokin AV, Kurilchenko IY, Malyukin YV. Janus-Faced Redox Activity of LnVO 4 :Eu 3+ (Ln = Gd, Y, and La) Nanoparticles. J Phys Chem C 2019;123:15323-9. [DOI: 10.1021/acs.jpcc.9b03040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
98 Dogra Y, Arkill KP, Elgy C, Stolpe B, Lead J, Valsami-Jones E, Tyler CR, Galloway TS. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 2016;10:480-7. [PMID: 26554927 DOI: 10.3109/17435390.2015.1088587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
99 Yang J, Li K, Li C, Gu J. In Situ Coupling of Catalytic Centers into Artificial Substrate Mesochannels as Super-Active Metalloenzyme Mimics. Small 2021;17:e2101455. [PMID: 34310077 DOI: 10.1002/smll.202101455] [Reference Citation Analysis]
100 Zucker I, Dizge N, Fausey CL, Shaulsky E, Sun M, Elimelech M. Electrospun silica nanofiber mats functionalized with ceria nanoparticles for water decontamination. RSC Adv 2019;9:19408-17. [DOI: 10.1039/c9ra03467f] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
101 Yan C, Yan Z, Du Y, Shen J, Zhang C, Feng W. Controlled Synthesis and Properties of Rare Earth Nanomaterials. Elsevier; 2011. pp. 275-472. [DOI: 10.1016/b978-0-444-53590-0.00004-2] [Cited by in Crossref: 15] [Article Influence: 1.4] [Reference Citation Analysis]
102 De Marchi L, Coppola F, Soares AM, Pretti C, Monserrat JM, Torre CD, Freitas R. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment. Environmental Research 2019;178:108683. [DOI: 10.1016/j.envres.2019.108683] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
103 Shin HY, Park TJ, Kim MI. Recent Research Trends and Future Prospects in Nanozymes. Journal of Nanomaterials 2015;2015:1-11. [DOI: 10.1155/2015/756278] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
104 Karakoti AS, Munusamy P, Hostetler K, Kodali V, Kuchibhatla S, Orr G, Pounds JG, Teeguarden JG, Thrall BD, Baer DR. Preparation and Characterization Challenges to Understanding Environmental and Biological Impacts of Nanoparticles. Surf Interface Anal 2012;44:882-9. [PMID: 23430137 DOI: 10.1002/sia.5006] [Cited by in Crossref: 92] [Cited by in F6Publishing: 73] [Article Influence: 9.2] [Reference Citation Analysis]
105 Liu Q, Ding Y, Yang Y, Zhang L, Sun L, Chen P, Gao C. Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose. Materials Science and Engineering: C 2016;59:445-53. [DOI: 10.1016/j.msec.2015.10.046] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
106 Peloi KE, Contreras Lancheros CA, Nakamura CV, Singh S, Neal C, Sakthivel TS, Seal S, Lautenschlager SOS. Antioxidative photochemoprotector effects of cerium oxide nanoparticles on UVB irradiated fibroblast cells. Colloids and Surfaces B: Biointerfaces 2020;191:111013. [DOI: 10.1016/j.colsurfb.2020.111013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
107 DeCoteau W, Heckman KL, Estevez AY, Reed KJ, Costanzo W, Sandford D, Studlack P, Clauss J, Nichols E, Lipps J, Parker M, Hays-Erlichman B, Leiter JC, Erlichman JS. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine 2016;12:2311-20. [PMID: 27389143 DOI: 10.1016/j.nano.2016.06.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 5.7] [Reference Citation Analysis]
108 Kobyliak NM, Falalyeyeva TM, Kuryk OG, Beregova TV, Bodnar PM, Zholobak NM, Shcherbakov OB, Bubnov RV, Spivak MY. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J 2015;6:12. [PMID: 26097523 DOI: 10.1186/s13167-015-0034-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
109 Moskvin M, Marková I, Malínská H, Miklánková D, Hüttl M, Oliyarnyk O, Pop-Georgievski O, Zhigunov A, Petrovský E, Horák D. Cerium Oxide-Decorated γ-Fe2O3 Nanoparticles: Design, Synthesis and in vivo Effects on Parameters of Oxidative Stress. Front Chem 2020;8:682. [PMID: 32850680 DOI: 10.3389/fchem.2020.00682] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Gupta A, Sakthivel TS, Neal CJ, Koul S, Singh S, Kushima A, Seal S. Antioxidant properties of ALD grown nanoceria films with tunable valency. Biomater Sci 2019;7:3051-61. [PMID: 31115397 DOI: 10.1039/c9bm00397e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
111 Tsai DS, Yang TS, Huang YS, Peng PW, Ou KL. Disinfection effects of undoped and silver-doped ceria powders of nanometer crystallite size. Int J Nanomedicine 2016;11:2531-42. [PMID: 27330294 DOI: 10.2147/IJN.S103760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
112 Wang X, Yang Q, Cao Y, Hao H, Zhou J, Hao J. Metallosurfactant Ionogels in Imidazolium and Protic Ionic Liquids as Precursors To Synthesize Nanoceria as Catalase Mimetics for the Catalytic Decomposition of H 2 O 2. Chem Eur J 2016;22:17857-65. [DOI: 10.1002/chem.201603743] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
113 Yin X, Liu P, Xu X, Pan J, Li X, Niu X. Breaking the pH limitation of peroxidase-like CoFe2O4 nanozyme via vitriolization for one-step glucose detection at physiological pH. Sensors and Actuators B: Chemical 2021;328:129033. [DOI: 10.1016/j.snb.2020.129033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
114 Garg B, Bisht T, Ling YC. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview. Molecules 2015;20:14155-90. [PMID: 26248071 DOI: 10.3390/molecules200814155] [Cited by in Crossref: 89] [Cited by in F6Publishing: 70] [Article Influence: 12.7] [Reference Citation Analysis]
115 Jeong H, Cha BG, Kang D, Kim DY, Yang W, Ki S, Kim SI, Han J, Kim CK, Kim J, Lee S. Ceria Nanoparticles Fabricated with 6‐Aminohexanoic Acid that Overcome Systemic Inflammatory Response Syndrome. Adv Healthcare Mater 2019;8:1801548. [DOI: 10.1002/adhm.201801548] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
116 Goujon G, Baldim V, Roques C, Bia N, Seguin J, Palmier B, Graillot A, Loubat C, Mignet N, Margaill I, Berret JF, Beray-Berthat V. Antioxidant Activity and Toxicity Study of Cerium Oxide Nanoparticles Stabilized with Innovative Functional Copolymers. Adv Healthc Mater 2021;10:e2100059. [PMID: 33890419 DOI: 10.1002/adhm.202100059] [Reference Citation Analysis]
117 Singh N, Mugesh G. CeVO 4 Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angew Chem 2019;131:7879-83. [DOI: 10.1002/ange.201903427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
118 Anandkumar M, Ramamurthy CH, Thirunavukkarasu C, Babu KS. Influence of age on the free-radical scavenging ability of CeO2 and Au/CeO2 nanoparticles. J Mater Sci 2015;50:2522-31. [DOI: 10.1007/s10853-014-8811-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
119 Boningari T, Somogyvari A, Smirniotis PG. Ce-Based Catalysts for the Selective Catalytic Reduction of NO x in the Presence of Excess Oxygen and Simulated Diesel Engine Exhaust Conditions. Ind Eng Chem Res 2017;56:5483-94. [DOI: 10.1021/acs.iecr.7b00045] [Cited by in Crossref: 46] [Cited by in F6Publishing: 22] [Article Influence: 9.2] [Reference Citation Analysis]
120 Purohit SD, Singh H, Bhaskar R, Yadav I, Chou C, Gupta MK, Mishra NC. Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration. Materials Science and Engineering: C 2020;116:111111. [DOI: 10.1016/j.msec.2020.111111] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
121 Jain V, Bhagat S, Singh M, Bansal V, Singh S. Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Adv 2019;9:33195-206. [DOI: 10.1039/c9ra05547a] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
122 Saraf N, Barkam S, Peppler M, Metke A, Vázquez-guardado A, Singh S, Emile C, Bico A, Rodas C, Seal S. Microsensor for limonin detection: An indicator of citrus greening disease. Sensors and Actuators B: Chemical 2019;283:724-30. [DOI: 10.1016/j.snb.2018.12.067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
123 Andrei V, Sharpe E, Vasilescu A, Andreescu S. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta 2016;156-157:112-8. [PMID: 27260442 DOI: 10.1016/j.talanta.2016.04.067] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
124 Russell-Webster B, Lopez-Nieto J, Abboud KA, Christou G. Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO2. Dalton Trans 2021;50:15524-32. [PMID: 34643207 DOI: 10.1039/d1dt02667d] [Reference Citation Analysis]
125 Liu X, Wei W, Yuan Q, Zhang X, Li N, Du Y, Ma G, Yan C, Ma D. Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun (Camb) 2012;48:3155-7. [PMID: 22129765 DOI: 10.1039/c1cc15815e] [Cited by in Crossref: 84] [Cited by in F6Publishing: 13] [Article Influence: 7.6] [Reference Citation Analysis]
126 Zhao X, Li S, Yu X, Gang R, Wang H. In situ growth of CeO 2 on g-C 3 N 4 nanosheets toward a spherical g-C 3 N 4 /CeO 2 nanozyme with enhanced peroxidase-like catalysis: a selective colorimetric analysis strategy for mercury( ii ). Nanoscale 2020;12:21440-6. [DOI: 10.1039/d0nr05315e] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
127 Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti AS, Berret JF. Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS Appl Mater Interfaces 2020;12:42056-66. [PMID: 32812730 DOI: 10.1021/acsami.0c08778] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
128 Liu B, Sun Z, Huang PJ, Liu J. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. J Am Chem Soc 2015;137:1290-5. [DOI: 10.1021/ja511444e] [Cited by in Crossref: 268] [Cited by in F6Publishing: 225] [Article Influence: 38.3] [Reference Citation Analysis]
129 Shi X, Yang J, Wen X, Tian F, Li C. Oxygen vacancy enhanced biomimetic superoxide dismutase activity of CeO2-Gd nanozymes. Journal of Rare Earths 2021;39:1108-16. [DOI: 10.1016/j.jre.2020.06.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
130 Kuah E, Toh S, Yee J, Ma Q, Gao Z. Enzyme Mimics: Advances and Applications. Chemistry 2016;22:8404-30. [PMID: 27062126 DOI: 10.1002/chem.201504394] [Cited by in Crossref: 174] [Cited by in F6Publishing: 132] [Article Influence: 29.0] [Reference Citation Analysis]
131 Es-Haghi A, Mashreghi M, Rezazade Bazaz M, Homayouni-Tabrizi M, Darroudi M. Fabrication of biopolymer based nanocomposite wound dressing: evaluation of wound healing properties and wound microbial load. IET Nanobiotechnol 2017;11:517-22. [PMID: 28745283 DOI: 10.1049/iet-nbt.2016.0160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
132 Sager TM, Wolfarth M, Leonard SS, Morris AM, Porter DW, Castranova V, Holian A. Role of engineered metal oxide nanoparticle agglomeration in reactive oxygen species generation and cathepsin B release in NLRP3 inflammasome activation and pulmonary toxicity. Inhal Toxicol 2016;28:686-97. [PMID: 27919184 DOI: 10.1080/08958378.2016.1257664] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
133 Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles. Environ Sci Nano 2015;2:33-53. [PMID: 26207185 DOI: 10.1039/C4EN00138A] [Cited by in Crossref: 183] [Cited by in F6Publishing: 59] [Article Influence: 26.1] [Reference Citation Analysis]
134 Li C, Shi X, Shen Q, Guo C, Hou Z, Zhang J. Hot Topics and Challenges of Regenerative Nanoceria in Application of Antioxidant Therapy. Journal of Nanomaterials 2018;2018:1-12. [DOI: 10.1155/2018/4857461] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
135 Wang Z, Zhang R, Yan X, Fan K. Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today 2020;41:81-119. [DOI: 10.1016/j.mattod.2020.08.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 19.5] [Reference Citation Analysis]
136 Zhao H, Dong Y, Jiang P, Wang G, Zhang J. Highly Dispersed CeO 2 on TiO 2 Nanotube: A Synergistic Nanocomposite with Superior Peroxidase-Like Activity. ACS Appl Mater Interfaces 2015;7:6451-61. [DOI: 10.1021/acsami.5b00023] [Cited by in Crossref: 183] [Cited by in F6Publishing: 142] [Article Influence: 26.1] [Reference Citation Analysis]
137 Bhushan B, Nandhagopal S, Kannan RR, Gopinath P. Therapeutic Nanozyme: Antioxidative and cytoprotective effects of nanoceria against hydrogen peroxide induced oxidative stress in fibroblast cells and in zebrafish. ChemistrySelect 2016;1:2849-56. [DOI: 10.1002/slct.201600736] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
138 Wong LL, Hirst SM, Pye QN, Reilly CM, Seal S, McGinnis JF. Catalytic nanoceria are preferentially retained in the rat retina and are not cytotoxic after intravitreal injection. PLoS One. 2013;8:e58431. [PMID: 23536794 DOI: 10.1371/journal.pone.0058431] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
139 Fu Y, Zhan W, Guo Y, Wang Y, Liu X, Guo Y, Wang Y, Lu G. Effect of surface functionalization of cerium-doped MCM-48 on its catalytic performance for liquid-phase free-solvent oxidation of cyclohexane with molecular oxygen. Microporous and Mesoporous Materials 2015;214:101-7. [DOI: 10.1016/j.micromeso.2015.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
140 Korschelt K, Tahir MN, Tremel W. A Step into the Future: Applications of Nanoparticle Enzyme Mimics. Chem Eur J 2018;24:9703-13. [DOI: 10.1002/chem.201800384] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
141 Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nanomicro Lett 2021;13:193. [PMID: 34515917 DOI: 10.1007/s40820-021-00717-0] [Reference Citation Analysis]
142 Saikia H, Hazarika KK, Chutia B, Choudhury B, Bharali P. A Simple Chemical Route toward High Surface Area CeO 2 Nanoparticles Displaying Remarkable Radical Scavenging Activity. ChemistrySelect 2017;2:3369-75. [DOI: 10.1002/slct.201700354] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 1.6] [Reference Citation Analysis]
143 Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, Ko G, Kim BH, Kim D, Hyeon T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. Adv Mater 2018;30:1704290. [DOI: 10.1002/adma.201704290] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 9.8] [Reference Citation Analysis]
144 Dashtestani F, Ghourchian H, Najafi A. Silver-gold-apoferritin nanozyme for suppressing oxidative stress during cryopreservation. Mater Sci Eng C Mater Biol Appl 2019;94:831-40. [PMID: 30423769 DOI: 10.1016/j.msec.2018.10.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
145 Kim YH, Boykin E, Stevens T, Lavrich K, Gilmour MI. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnology 2014;12:47. [PMID: 25424549 DOI: 10.1186/s12951-014-0047-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
146 Kyosseva SV, McGinnis JF. Cerium oxide nanoparticles as promising ophthalmic therapeutics for the treatment of retinal diseases. World J Ophthalmol 2015; 5(1): 23-30 [DOI: 10.5318/wjo.v5.i1.23] [Cited by in CrossRef: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
147 Khulbe K, Mugesh G. Lock and key-based nanozyme model to understand the substituent effect on the hydrolysis of organophosphate-based nerve agents by Zr-incorporated cerium oxide. Polyhedron 2019;172:198-204. [DOI: 10.1016/j.poly.2019.05.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
148 Machhi J, Yeapuri P, Markovic M, Patel M, Yan W, Lu Y, Cohen JD, Hasan M, Abdelmoaty MM, Zhou Y, Xiong H, Wang X, Mosley RL, Gendelman HE, Kevadiya BD. Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chem Neurosci 2022. [PMID: 35312284 DOI: 10.1021/acschemneuro.1c00847] [Reference Citation Analysis]
149 Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 2011;32:6745-53. [PMID: 21704369 DOI: 10.1016/j.biomaterials.2011.05.073] [Cited by in Crossref: 203] [Cited by in F6Publishing: 166] [Article Influence: 18.5] [Reference Citation Analysis]
150 Choi SW, Kim J. Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1'-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. ACS Omega 2021;6:26477-88. [PMID: 34661003 DOI: 10.1021/acsomega.1c03700] [Reference Citation Analysis]
151 Lin Y, Liu X, Liu Z, Xu Y. Visible-Light-Driven Photocatalysis-Enhanced Nanozyme of TiO2 Nanotubes@MoS2 Nanoflowers for Efficient Wound Healing Infected with Multidrug-Resistant Bacteria. Small 2021;17:e2103348. [PMID: 34418285 DOI: 10.1002/smll.202103348] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Narayanan KB, Park HH. Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Advances in Colloid and Interface Science 2013;201-202:30-42. [DOI: 10.1016/j.cis.2013.10.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
153 Zhao B, Shao Q, Hao L, Zhang L, Liu Z, Zhang B, Ge S, Guo Z. Yeast-template synthesized Fe-doped cerium oxide hollow microspheres for visible photodegradation of acid orange 7. Journal of Colloid and Interface Science 2018;511:39-47. [DOI: 10.1016/j.jcis.2017.09.077] [Cited by in Crossref: 73] [Cited by in F6Publishing: 52] [Article Influence: 18.3] [Reference Citation Analysis]
154 Singh R, Singh S. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 2015;132:78-84. [DOI: 10.1016/j.colsurfb.2015.05.005] [Cited by in Crossref: 58] [Cited by in F6Publishing: 40] [Article Influence: 8.3] [Reference Citation Analysis]
155 Dubé M, Auclair J, Hanana H, Turcotte P, Gagnon C, Gagné F. Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2019;223:88-95. [DOI: 10.1016/j.cbpc.2019.05.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
156 Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem Rev 2015;115:10725-815. [DOI: 10.1021/acs.chemrev.5b00091] [Cited by in Crossref: 654] [Cited by in F6Publishing: 498] [Article Influence: 93.4] [Reference Citation Analysis]
157 Zhang Y, Shao Q, Jiang H, Liu L, Wu M, Lin J, Zhang J, Wu S, Dong M, Guo Z. One-step co-precipitation synthesis of novel BiOCl/CeO 2 composites with enhanced photodegradation of rhodamine B. Inorg Chem Front 2020;7:1345-61. [DOI: 10.1039/c9qi01524h] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 8.5] [Reference Citation Analysis]
158 Yadav N, Patel V, Singh S. Cerium Oxide-Based Nanozymes in Biology and Medicine. In: Singh DK, Das S, Materny A, editors. Advances in Spectroscopy: Molecules to Materials. Singapore: Springer; 2019. pp. 193-213. [DOI: 10.1007/978-981-15-0202-6_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Peng W, Zhao L, Zhang C, Yan Y, Xian Y. Controlled growth cerium oxide nanoparticles on reduced graphene oxide for oxygen catalytic reduction. Electrochimica Acta 2016;191:669-76. [DOI: 10.1016/j.electacta.2016.01.129] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
160 Shcherbakov AB, Zholobak NM, Ivanov VK. Biological, biomedical and pharmaceutical applications of cerium oxide. Cerium Oxide (CeO₂): Synthesis, Properties and Applications. Elsevier; 2020. pp. 279-358. [DOI: 10.1016/b978-0-12-815661-2.00008-6] [Cited by in Crossref: 13] [Article Influence: 6.5] [Reference Citation Analysis]
161 Yang W, Jiang Z, Yang J, Yang B, Lu H. Preparation of Thermoplastic Polyester Elastomer/Cerium Carbonate Hydroxide Composites Containing Aluminum Phosphinate with Improved Flame-Retardant and Mechanical Properties. Ind Eng Chem Res 2015;54:11048-55. [DOI: 10.1021/acs.iecr.5b02687] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
162 Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants (Basel) 2022;11:791. [PMID: 35453476 DOI: 10.3390/antiox11040791] [Reference Citation Analysis]
163 Chigurupati S, Mughal MR, Okun E, Das S, Kumar A, McCaffery M, Seal S, Mattson MP. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials 2013;34:2194-201. [PMID: 23266256 DOI: 10.1016/j.biomaterials.2012.11.061] [Cited by in Crossref: 199] [Cited by in F6Publishing: 173] [Article Influence: 19.9] [Reference Citation Analysis]
164 Anupriya K, Vivek E, Subramanian B. Facile synthesis of ceria nanoparticles by precipitation route for UV blockers. Journal of Alloys and Compounds 2014;590:406-10. [DOI: 10.1016/j.jallcom.2013.12.121] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 3.9] [Reference Citation Analysis]
165 Hosseini A, Abdollahi M. Through a mechanism-based approach, nanoparticles of cerium and yttrium may improve the outcome of pancreatic islet isolation. Journal of Medical Hypotheses and Ideas 2012;6:4-6. [DOI: 10.1016/j.jmhi.2012.03.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
166 Sutradhar N, Sinhamahapatra A, Pahari S, Jayachandran M, Subramanian B, Bajaj HC, Panda AB. Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene. J Phys Chem C 2011;115:7628-37. [DOI: 10.1021/jp200645q] [Cited by in Crossref: 78] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
167 Maqbool Q, Nazar M, Naz S, Hussain T, Jabeen N, Kausar R, Anwaar S, Abbas F, Jan T. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract. Int J Nanomedicine 2016;11:5015-25. [PMID: 27785011 DOI: 10.2147/IJN.S113508] [Cited by in Crossref: 72] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
168 Yefimova SL, Maksimchuk PO, Hubenko KO, Omielaieva VV, Kavok NS, Klochkov VK, Malyukin YV, Semynozhenko VP. Light-triggered redox activity of GdYVO4:Eu3+ nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 2020;242:118741. [PMID: 32736222 DOI: 10.1016/j.saa.2020.118741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Li K, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H2O2-Induced Inhibition of Osteogenic Differentiation. Biol Trace Elem Res 2018;182:91-104. [PMID: 28624869 DOI: 10.1007/s12011-017-1066-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
170 Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, Gural'skiy IA, Pfitzner F, Link T, Schenk S, Panthöfer M, Ksenofontov V, Kolb U, Opatz T, André R, Tremel W. Haloperoxidase Mimicry by CeO 2−x Nanorods Combats Biofouling. Adv Mater 2017;29:1603823. [DOI: 10.1002/adma.201603823] [Cited by in Crossref: 93] [Cited by in F6Publishing: 63] [Article Influence: 15.5] [Reference Citation Analysis]
171 Saifi MA, Sangomla S, Khurana A, Godugu C. Protective Effect of Nanoceria on Cisplatin-Induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro-inflammatory Mechanisms. Biol Trace Elem Res 2019;189:145-56. [DOI: 10.1007/s12011-018-1457-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
172 Lv Y, Ma M, Huang Y, Xia Y. Carbon Dot Nanozymes: How to Be Close to Natural Enzymes. Chemistry 2019;25:954-60. [PMID: 30357963 DOI: 10.1002/chem.201804419] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
173 Colón-ortiz J, Landers JM, Gordon WO, Balboa A, Karwacki CJ, Neimark AV. Disordered Mesoporous Zirconium (Hydr)oxides for Decomposition of Dimethyl Chlorophosphate. ACS Appl Mater Interfaces 2019;11:17931-9. [DOI: 10.1021/acsami.9b00843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
174 Passi M, Kumar V, Packirisamy G. Theranostic nanozyme: Silk fibroin based multifunctional nanocomposites to combat oxidative stress. Mater Sci Eng C Mater Biol Appl 2020;107:110255. [PMID: 31761203 DOI: 10.1016/j.msec.2019.110255] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
175 Channei D, Nakaruk A, Phanichphant S. Influence of graphene oxide on photocatalytic enhancement of cerium dioxide. Materials Letters 2017;209:43-7. [DOI: 10.1016/j.matlet.2017.07.109] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
176 Bhowmick TK, Suresh AK, Kane SG, Joshi AC, Bellare JR. Physicochemical characterization of an Indian traditional medicine, Jasada Bhasma: detection of nanoparticles containing non-stoichiometric zinc oxide. J Nanopart Res 2009;11:655-64. [DOI: 10.1007/s11051-008-9414-z] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
177 Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021;338:164-89. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Reference Citation Analysis]
178 Wong LL. Chapter 3 Cerium Oxide Nanoparticles–Associated Oxidant and Antioxidant Effects and Mechanisms. In: Pagano G, editor. Rare Earth Elements in Human and Environmental Health. Penthouse Level: Pan Stanford Publishing; 2016. pp. 69-106. [DOI: 10.1201/9781315364735-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
179 Lin Y, Xu C, Ren J, Qu X. Using Thermally Regenerable Cerium Oxide Nanoparticles in Biocomputing to Perform Label-free, Resettable, and Colorimetric Logic Operations. Angew Chem 2012;124:12747-51. [DOI: 10.1002/ange.201207587] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
180 Arunachalam T, Karpagasundaram M, Rajarathinam N. Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties. Materials Science-Poland 2017;35:791-8. [DOI: 10.1515/msp-2017-0104] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
181 Ran S, Zhao L, Han L, Guo Z, Fang Z. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound. Thermochimica Acta 2015;612:55-62. [DOI: 10.1016/j.tca.2015.05.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
182 Najafi R, Hosseini A, Ghaznavi H, Mehrzadi S, Sharifi AM. Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Research Bulletin 2017;131:117-22. [DOI: 10.1016/j.brainresbull.2017.03.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
183 Singh N, Mugesh G. CeVO4 Nanozymes Catalyze the Reduction of Dioxygen to Water without Releasing Partially Reduced Oxygen Species. Angew Chem Int Ed Engl 2019;58:7797-801. [PMID: 30950157 DOI: 10.1002/anie.201903427] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
184 Zhou L, Li W, Wen Y, Fu X, Leng F, Yang J, Chen L, Yu X, Yu C, Yang Z. Chem-inspired hollow ceria nanozymes with lysosome-targeting for tumor synergistic phototherapy. J Mater Chem B 2021;9:2515-23. [PMID: 33659973 DOI: 10.1039/d0tb02837a] [Reference Citation Analysis]
185 Sudarshan K, Tiwari V, Utpalla P, Gupta SK. Defect evolution in Eu 3+ , Nb 5+ doped and co-doped CeO 2 : X-ray diffraction, positron annihilation lifetime and photoluminescence studies. Inorg Chem Front 2019;6:2167-77. [DOI: 10.1039/c9qi00668k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
186 Yang ZY, Li H, Zeng YP, Hao YH, Liu C, Liu J, Wang WD, Li R. Photosensitizer-Loaded Branched Polyethylenimine-PEGylated Ceria Nanoparticles for Imaging-Guided Synchronous Photochemotherapy. ACS Appl Mater Interfaces. 2015;7:24218-24228. [PMID: 26485120 DOI: 10.1021/acsami.5b07702] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
187 Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, Gong X, Yang J, Chang J. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. Nanoscale 2019;11:13126-38. [DOI: 10.1039/c9nr02350j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
188 Salvador-Morales C, Grodzinski P. Nanotechnology Tools Enabling Biological Discovery. ACS Nano 2022. [PMID: 35311278 DOI: 10.1021/acsnano.1c10635] [Reference Citation Analysis]
189 Azari A, Shokrzadeh M, Zamani E, Amani N, Shaki F. Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress. Drug Chem Toxicol 2019;42:54-9. [PMID: 29871546 DOI: 10.1080/01480545.2018.1477793] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
190 Sun L, Ding Y, Jiang Y, Liu Q. Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H 2 O 2. Sensors and Actuators B: Chemical 2017;239:848-56. [DOI: 10.1016/j.snb.2016.08.094] [Cited by in Crossref: 120] [Cited by in F6Publishing: 89] [Article Influence: 24.0] [Reference Citation Analysis]
191 Zhai JH, Wu Y, Wang XY, Cao Y, Xu K, Xu L, Guo Y. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro. Med Sci Monit 2016;22:3792-7. [PMID: 27752033 DOI: 10.12659/msm.901068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
192 Zang C, Yu K, Hu S, Chen F. Adsorption-depended Fenton-like reaction kinetics in CeO2-H2O2 system for salicylic acid degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;553:456-63. [DOI: 10.1016/j.colsurfa.2018.05.100] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
193 Fan Y, Huang Y. The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 2012;137:1225. [DOI: 10.1039/c2an16105b] [Cited by in Crossref: 84] [Cited by in F6Publishing: 72] [Article Influence: 8.4] [Reference Citation Analysis]
194 Hegazy MA, Maklad HM, Samy DM, Abdelmonsif DA, El Sabaa BM, Elnozahy FY. Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson's disease in rats. Neurochem Int 2017;108:361-71. [PMID: 28527632 DOI: 10.1016/j.neuint.2017.05.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
195 Singh S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Front Chem 2019;7:46. [PMID: 30805331 DOI: 10.3389/fchem.2019.00046] [Cited by in Crossref: 73] [Cited by in F6Publishing: 45] [Article Influence: 24.3] [Reference Citation Analysis]
196 Estevez AY, Erlichman JS. The potential of cerium oxide nanoparticles (nanoceria) for neurodegenerative disease therapy. Nanomedicine 2014;9:1437-40. [DOI: 10.2217/nnm.14.87] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 7.4] [Reference Citation Analysis]
197 Zhang M, Zhang C, Zhai X, Luo F, Du Y, Yan C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci China Mater 2019;62:1727-39. [DOI: 10.1007/s40843-019-9471-7] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 10.7] [Reference Citation Analysis]
198 Rai N, Raj R, Kanagaraj S. Radical Scavenging of Nanoceria in Minimizing the Oxidative Stress-Induced Loss of Residual Hearing: A Review. J Indian Inst Sci 2019;99:529-45. [DOI: 10.1007/s41745-019-00116-w] [Reference Citation Analysis]
199 Unnithan AR, Arathyram R, Kim CS. Scaffolds with Antibacterial Properties. Nanotechnology Applications for Tissue Engineering. Elsevier; 2015. pp. 103-23. [DOI: 10.1016/b978-0-323-32889-0.00007-8] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
200 Hussain I, Singh N, Singh A, Singh H, Singh S, Yadav V. Exogenous application of phytosynthesized nanoceria to alleviate ferulic acid stress in Solanum lycopersicum. Scientia Horticulturae 2017;214:158-64. [DOI: 10.1016/j.scienta.2016.11.032] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 4.2] [Reference Citation Analysis]
201 Zhang Q, Ge K, Duan J, Chen S, Zhang R, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress. J Nanopart Res 2014;16. [DOI: 10.1007/s11051-014-2697-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
202 Iqbal N, Anastasiou A, Aslam Z, Raif EM, Do T, Giannoudis PV, Jha A. Interrelationships between the structural, spectroscopic, and antibacterial properties of nanoscale (< 50 nm) cerium oxides. Sci Rep 2021;11:20875. [PMID: 34686704 DOI: 10.1038/s41598-021-00222-9] [Reference Citation Analysis]
203 Das S, Chigurupati S, Dowding J, Munusamy P, Baer DR, Mcginnis JF, Mattson MP, Self W, Seal S. Therapeutic potential of nanoceria in regenerative medicine. MRS Bull 2014;39:976-83. [DOI: 10.1557/mrs.2014.221] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
204 Zand Z, Khaki PA, Salihi A, Sharifi M, Qadir Nanakali NM, Alasady AA, Aziz FM, Shahpasand K, Hasan A, Falahati M. Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. Int J Nanomedicine 2019;14:6989-7000. [PMID: 31695369 DOI: 10.2147/IJN.S220380] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 7.3] [Reference Citation Analysis]
205 Kim YE, Kim J. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Appl Mater Interfaces 2021. [PMID: 34962774 DOI: 10.1021/acsami.1c18261] [Reference Citation Analysis]
206 Soren S, Jena SR, Samanta L, Parhi P. Antioxidant Potential and Toxicity Study of the Cerium Oxide Nanoparticles Synthesized by Microwave-Mediated Synthesis. Appl Biochem Biotechnol 2015;177:148-61. [PMID: 26137877 DOI: 10.1007/s12010-015-1734-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
207 Ouyang Y, Biniuri Y, Fadeev M, Zhang P, Carmieli R, Vázquez-González M, Willner I. Aptamer-Modified Cu2+-Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-"Aptananozymes". J Am Chem Soc 2021;143:11510-9. [PMID: 34286967 DOI: 10.1021/jacs.1c03939] [Reference Citation Analysis]
208 Ragg R, Schilmann AM, Korschelt K, Wieseotte C, Kluenker M, Viel M, Völker L, Preiß S, Herzberger J, Frey H, Heinze K, Blümler P, Tahir MN, Natalio F, Tremel W. Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J Mater Chem B 2016;4:7423-8. [DOI: 10.1039/c6tb02078j] [Cited by in Crossref: 40] [Cited by in F6Publishing: 2] [Article Influence: 6.7] [Reference Citation Analysis]
209 Pahari SK, Pal P, Sinhamahapatra A, Saha A, Santra C, Ghosh SC, Chowdhury B, Panda AB. Efficient oxidation of hydrocarbons over nanocrystalline Ce 1−x Sm x O 2 (x = 0–0.1) synthesized using supercritical water. RSC Adv 2015;5:45144-51. [DOI: 10.1039/c5ra05441a] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
210 Li Y, Li Y, Wang H, Liu R. Yb3+, Er3+ Codoped Cerium Oxide Upconversion Nanoparticles Enhanced the Enzymelike Catalytic Activity and Antioxidative Activity for Parkinson's Disease Treatment. ACS Appl Mater Interfaces 2021;13:13968-77. [PMID: 33739810 DOI: 10.1021/acsami.1c00157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
211 Babu S, Cho JH, Dowding JM, Heckert E, Komanski C, Das S, Colon J, Baker CH, Bass M, Self WT, Seal S. Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chem Commun (Camb) 2010;46:6915-7. [PMID: 20683524 DOI: 10.1039/c0cc01832e] [Cited by in Crossref: 100] [Cited by in F6Publishing: 79] [Article Influence: 8.3] [Reference Citation Analysis]
212 Rakhmatullin RM, Aminov LK, Kurkin IN, Böttcher R, Pöppl A, Avila-paredes H, Kim S, Sen S. Electron paramagnetic resonance linewidth narrowing of Gd3+ ions in Y-doped ceria nanocrystals with decreasing crystallite size. The Journal of Chemical Physics 2009;131:124515. [DOI: 10.1063/1.3225487] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
213 Pandey A, Midha S, Sharma RK, Maurya R, Nigam VK, Ghosh S, Balani K. Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Mater Sci Eng C Mater Biol Appl 2018;88:13-24. [PMID: 29636127 DOI: 10.1016/j.msec.2018.02.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 8.8] [Reference Citation Analysis]
214 Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. Small 2021;:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
215 Choi SW, Kim J. Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. ACS Appl Nano Mater 2020;3:1043-62. [DOI: 10.1021/acsanm.9b02243] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
216 Kim CK, Kim T, Choi I, Soh M, Kim D, Kim Y, Jang H, Yang H, Kim JY, Park H, Park SP, Park S, Yu T, Yoon B, Lee S, Hyeon T. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angew Chem 2012;124:11201-5. [DOI: 10.1002/ange.201203780] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
217 Lee SS, Zhu H, Contreras EQ, Prakash A, Puppala HL, Colvin VL. High Temperature Decomposition of Cerium Precursors To Form Ceria Nanocrystal Libraries for Biological Applications. Chem Mater 2012;24:424-32. [DOI: 10.1021/cm200863q] [Cited by in Crossref: 72] [Cited by in F6Publishing: 48] [Article Influence: 7.2] [Reference Citation Analysis]
218 Ge X, Li Z, Yuan Q. 1D Ceria Nanomaterials: Versatile Synthesis and Bio-application. Journal of Materials Science & Technology 2015;31:645-54. [DOI: 10.1016/j.jmst.2015.01.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
219 Yang B, Chen Y, Shi J. Nanocatalytic Medicine. Adv Mater 2019;31:1901778. [DOI: 10.1002/adma.201901778] [Cited by in Crossref: 136] [Cited by in F6Publishing: 126] [Article Influence: 45.3] [Reference Citation Analysis]
220 Kumar P, Ratan JK, Divya N. Synthesis and Characterization of CeO2, Gr and rGO Nanocomposites at Different Temperature. JOM. [DOI: 10.1007/s11837-021-05084-0] [Reference Citation Analysis]
221 Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2020;8:831. [PMID: 33644000 DOI: 10.3389/fchem.2020.00831] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
222 Wu Y, Zhang R, Tran HDN, Kurniawan ND, Moonshi SS, Whittaker AK, Ta HT. Chitosan Nanococktails Containing Both Ceria and Superparamagnetic Iron Oxide Nanoparticles for Reactive Oxygen Species-Related Theranostics. ACS Appl Nano Mater 2021;4:3604-18. [DOI: 10.1021/acsanm.1c00141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
223 Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Advanced Drug Delivery Reviews 2017;118:94-108. [DOI: 10.1016/j.addr.2017.09.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
224 Ragg R, Tahir MN, Tremel W. Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics: Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics. Eur J Inorg Chem 2016;2016:1906-15. [DOI: 10.1002/ejic.201501237] [Cited by in Crossref: 116] [Cited by in F6Publishing: 86] [Article Influence: 16.6] [Reference Citation Analysis]
225 Xue Y, Zhai Y, Zhou K, Wang L, Tan H, Luan Q, Yao X. The Vital Role of Buffer Anions in the Antioxidant Activity of CeO 2 Nanoparticles. Chem Eur J 2012;18:11115-22. [DOI: 10.1002/chem.201200983] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 5.3] [Reference Citation Analysis]
226 Chaudhari KN, Chaudhari NK, Yu J. Peroxidase mimic activity of hematiteiron oxides (α-Fe 2 O 3 ) with different nanostructures. Catal Sci Technol 2012;2:119-24. [DOI: 10.1039/c1cy00124h] [Cited by in Crossref: 52] [Cited by in F6Publishing: 2] [Article Influence: 5.2] [Reference Citation Analysis]
227 Chetty R, Pandya SR, Singh M. Physicochemical interaction of cerium oxide nanoparticles with simulated biofluids, hemoglobin, insulin, and ds-DNA at 310.15 K. New J Chem 2020;44:1825-45. [DOI: 10.1039/c9nj04155a] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
228 Chen C, Vázquez-González M, O'Hagan MP, Ouyang Y, Wang Z, Willner I. Enzyme-Loaded Hemin/G-Quadruplex-Modified ZIF-90 Metal-Organic Framework Nanoparticles: Bioreactor Nanozymes for the Cascaded Oxidation of N-hydroxy-l-arginine and Sensing Applications. Small 2022;:e2104420. [PMID: 35037383 DOI: 10.1002/smll.202104420] [Reference Citation Analysis]
229 Hanafy BI, Cave GWV, Barnett Y, Pierscionek B. Treatment of Human Lens Epithelium with High Levels of Nanoceria Leads to Reactive Oxygen Species Mediated Apoptosis. Molecules 2020;25:E441. [PMID: 31973133 DOI: 10.3390/molecules25030441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
230 Liu B, Liu J. Surface modification of nanozymes. Nano Res 2017;10:1125-48. [DOI: 10.1007/s12274-017-1426-5] [Cited by in Crossref: 250] [Cited by in F6Publishing: 188] [Article Influence: 50.0] [Reference Citation Analysis]
231 Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 2010;13:877-918. [PMID: 20095865 DOI: 10.1089/ars.2009.2876] [Cited by in Crossref: 356] [Cited by in F6Publishing: 311] [Article Influence: 29.7] [Reference Citation Analysis]
232 Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 2013;42:6060. [DOI: 10.1039/c3cs35486e] [Cited by in Crossref: 1803] [Cited by in F6Publishing: 1479] [Article Influence: 200.3] [Reference Citation Analysis]
233 Li K, Shen Q, Xie Y, You M, Huang L, Zheng X. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization. J Biomater Appl 2017;31:1062-76. [DOI: 10.1177/0885328216682362] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
234 Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote Control of Cellular Functions: The Role of Smart Nanomaterials in the Medicine of the Future. Adv Healthcare Mater 2017;6:1700002. [DOI: 10.1002/adhm.201700002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
235 Dulany K, Hepburn K, Goins A, Allen JB. In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res A 2020;108:301-15. [PMID: 31606924 DOI: 10.1002/jbm.a.36816] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
236 Li Y, Li S, Zhou R, Li G, Li X. Selective laser welding in liquid: A strategy for preparation of high-antibacterial activity nanozyme against Staphylococcus aureus. Journal of Advanced Research 2022. [DOI: 10.1016/j.jare.2022.03.015] [Reference Citation Analysis]
237 Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010;78:273-9. [DOI: 10.1016/j.chemosphere.2009.10.050] [Cited by in Crossref: 288] [Cited by in F6Publishing: 216] [Article Influence: 24.0] [Reference Citation Analysis]
238 Bakkiyaraj R, Subramanian R, Balakrishnan M, Ravichandran K. Biofabrication of CeO 2 nanoparticles, characterization, photocatalytic, and biological activities. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.1983841] [Reference Citation Analysis]
239 Reed K, Bush N, Burns Z, Doherty G, Foley T, Milone M, L Maki K, Cromer M. Modeling the Kinetic Behavior of Reactive Oxygen Species with Cerium Dioxide Nanoparticles. Biomolecules 2019;9:E447. [PMID: 31487821 DOI: 10.3390/biom9090447] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
240 Wang X, Guo W, Hu Y, Wu J, Wei H. Metal Oxide-Based Nanomaterials for Nanozymes. Nanozymes: Next Wave of Artificial Enzymes. Berlin: Springer Berlin Heidelberg; 2016. pp. 57-91. [DOI: 10.1007/978-3-662-53068-9_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
241 Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46:2736-2738. [PMID: 20369166 DOI: 10.1039/b922024k] [Cited by in Crossref: 638] [Cited by in F6Publishing: 549] [Article Influence: 53.2] [Reference Citation Analysis]
242 Gagnon J, Fromm KM. Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria) Depending on Their Preparation Method, Particle Size, Cell Type, and Exposure Route: Toxicity and Protective Effects of Cerium Oxide Nanoparticles (Nanoceria). Eur J Inorg Chem 2015;2015:4510-7. [DOI: 10.1002/ejic.201500643] [Cited by in Crossref: 55] [Cited by in F6Publishing: 24] [Article Influence: 7.9] [Reference Citation Analysis]
243 Lang NJ, Liu B, Liu J. Characterization of glucose oxidation by gold nanoparticles using nanoceria. Journal of Colloid and Interface Science 2014;428:78-83. [DOI: 10.1016/j.jcis.2014.04.025] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
244 Szymanski CJ, Munusamy P, Mihai C, Xie Y, Hu D, Gilles MK, Tyliszczak T, Thevuthasan S, Baer DR, Orr G. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 2015;62:147-54. [PMID: 26056725 DOI: 10.1016/j.biomaterials.2015.05.042] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 5.1] [Reference Citation Analysis]
245 Bahreinipour M, Zarei H, Dashtestani F, Rashidiani J, Eskandari K, Zarandi SAM, Ardestani SK, Watabe H; Department of Energy Engineering and Physics, Faculty of Physics, Amirkabir University of Technology, Tehran, Iran, Persian Gulf Research Institute, Persian Gulf University Bushehr, Iran, Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Miyagi, Japan, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran, Nanobiotechnology Research Center, Baqiyatallah University of Medical Science, Tehran, Iran. . AIMS Biophysics 2021;8:124-42. [DOI: 10.3934/biophy.2021010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
246 Luo Z, Zhou Y, Yang T, Gao Y, Kumar P, Chandrawati R. Ceria Nanoparticles as an Unexpected Catalyst to Generate Nitric Oxide from S ‐Nitrosoglutathione. Small. [DOI: 10.1002/smll.202105762] [Reference Citation Analysis]
247 Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory Properties of Cerium Oxide Nanoparticles. Small 2009;5:2848-56. [DOI: 10.1002/smll.200901048] [Cited by in Crossref: 447] [Cited by in F6Publishing: 393] [Article Influence: 34.4] [Reference Citation Analysis]
248 Malyukin Y, Maksimchuk P, Seminko V, Okrushko E, Spivak N. Limitations of Self-Regenerative Antioxidant Ability of Nanoceria Imposed by Oxygen Diffusion. J Phys Chem C 2018;122:16406-11. [DOI: 10.1021/acs.jpcc.8b03982] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
249 Wei M, Lee J, Xia F, Lin P, Hu X, Li F, Ling D. Chemical design of nanozymes for biomedical applications. Acta Biomater 2021;126:15-30. [PMID: 33652165 DOI: 10.1016/j.actbio.2021.02.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
250 Nicolini V, Gambuzzi E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P, D’addato S, Valeri S. Evidence of Catalase Mimetic Activity in Ce 3+ /Ce 4+ Doped Bioactive Glasses. J Phys Chem B 2015;119:4009-19. [DOI: 10.1021/jp511737b] [Cited by in Crossref: 78] [Cited by in F6Publishing: 57] [Article Influence: 11.1] [Reference Citation Analysis]
251 Saraf S, Neal CJ, Das S, Barkam S, McCormack R, Seal S. Understanding the adsorption interface of polyelectrolyte coating on redox active nanoparticles using soft particle electrokinetics and its biological activity. ACS Appl Mater Interfaces 2014;6:5472-82. [PMID: 24673655 DOI: 10.1021/am405250g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
252 Naganuma T, Traversa E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation. Biomaterials 2014;35:4441-53. [DOI: 10.1016/j.biomaterials.2014.01.074] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 10.0] [Reference Citation Analysis]
253 Li K, Yu J, Xie Y, You M, Huang L, Zheng X. The Effects of Cerium Oxide Incorporation in Calcium Silicate Coating on Bone Mesenchymal Stem Cell and Macrophage Responses. Biol Trace Elem Res 2017;177:148-58. [PMID: 27761846 DOI: 10.1007/s12011-016-0859-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
254 Wang Z, Shen X, Gao X, Zhao Y. Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 2019;11:13289-99. [DOI: 10.1039/c9nr03473k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 4] [Article Influence: 8.3] [Reference Citation Analysis]
255 Jeong HG, Cha BG, Kang DW, Kim DY, Ki SK, Kim SI, Han JH, Yang W, Kim CK, Kim J, Lee SH. Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke 2018;49:3030-8. [PMID: 30571409 DOI: 10.1161/STROKEAHA.118.022631] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
256 Liu X, Han L, Liu W, Yang Y. Synthesis of Co/Ni Unitary- or Binary-Doped CeO 2 Mesoporous Nanospheres and Their Catalytic Performance for CO Oxidation: Co/Ni Unitary- or Binary-Doped CeO 2 Mesoporous Nanospheres. Eur J Inorg Chem 2014;2014:5370-7. [DOI: 10.1002/ejic.201402570] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
257 Wong LL, Mcginnis JF. Nanoceria as Bona Fide Catalytic Antioxidants in Medicine: What We Know and What We Want to Know…. In: Ash JD, Grimm C, Hollyfield JG, Anderson RE, Lavail MM, Bowes Rickman C, editors. Retinal Degenerative Diseases. New York: Springer; 2014. pp. 821-8. [DOI: 10.1007/978-1-4614-3209-8_103] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
258 Yu N, Hao J, Wang Q, Huang K, Geng B. Self-assembled porous ceria nanostructures with excellent water solubility and antioxidant properties. RSC Adv 2016;6:45957-62. [DOI: 10.1039/c6ra05630j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
259 An Z, Yan J, Zhang Y, Pei R. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B 2020;8:8748-67. [DOI: 10.1039/d0tb01380c] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
260 Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS, Biswal MR. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. Nanomaterials (Basel) 2021;11:173. [PMID: 33445545 DOI: 10.3390/nano11010173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
261 Katta PP, Nalliyan R. Corrosion resistance with self-healing behavior and biocompatibility of Ce incorporated niobium oxide coated 316L SS for orthopedic applications. Surface and Coatings Technology 2019;375:715-26. [DOI: 10.1016/j.surfcoat.2019.07.042] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
262 Niemiec SM, Hilton SA, Wallbank A, Azeltine M, Louiselle AE, Elajaili H, Allawzi A, Xu J, Mattson C, Dewberry LC, Hu J, Singh S, Sakthivel TS, Sea S, Nozik-Grayck E, Smith B, Zgheib C, Liechty KW. Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine 2021;34:102388. [PMID: 33753282 DOI: 10.1016/j.nano.2021.102388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
263 Jung S, Kwon I. Synergistic Degradation of a Hyperuricemia-Causing Metabolite Using One-Pot Enzyme-Nanozyme Cascade Reactions. Sci Rep 2017;7:44330. [PMID: 28287162 DOI: 10.1038/srep44330] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
264 Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z. Nano-CeO 2 Exhibits Adverse Effects at Environmental Relevant Concentrations. Environ Sci Technol 2011;45:3725-30. [DOI: 10.1021/es103309n] [Cited by in Crossref: 211] [Cited by in F6Publishing: 178] [Article Influence: 19.2] [Reference Citation Analysis]
265 Wang Z, Wu J, Zheng JJ, Shen X, Yan L, Wei H, Gao X, Zhao Y. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat Commun 2021;12:6866. [PMID: 34824234 DOI: 10.1038/s41467-021-27194-8] [Reference Citation Analysis]
266 Correia AT, Rebelo D, Marques J, Nunes B. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations. Environ Toxicol Pharmacol 2019;68:27-36. [PMID: 30870693 DOI: 10.1016/j.etap.2019.02.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
267 Cao F, Zhang Y, Sun Y, Wang Z, Zhang L, Huang Y, Liu C, Liu Z, Ren J, Qu X. Ultrasmall Nanozymes Isolated within Porous Carbonaceous Frameworks for Synergistic Cancer Therapy: Enhanced Oxidative Damage and Reduced Energy Supply. Chem Mater 2018;30:7831-9. [DOI: 10.1021/acs.chemmater.8b03348] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 9.8] [Reference Citation Analysis]
268 Singh S, Asal R, Bhagat S. Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. J Biomed Mater Res A 2018;106:3152-64. [PMID: 30194716 DOI: 10.1002/jbm.a.36510] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
269 Filippi A, Liu F, Wilson J, Lelieveld S, Korschelt K, Wang T, Wang Y, Reich T, Pöschl U, Tremel W, Tong H. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Adv 2019;9:11077-81. [DOI: 10.1039/c9ra00642g] [Cited by in Crossref: 16] [Article Influence: 5.3] [Reference Citation Analysis]
270 Yang J, Cai L, Zhang S, Zhu X, Zhou P, Lu Y. Silica-based cerium (III) chloride nanoparticles prevent the fructose-induced glycation of α-crystallin and H₂O₂-induced oxidative stress in human lens epithelial cells. Arch Pharm Res 2014;37:404-11. [PMID: 23828754 DOI: 10.1007/s12272-013-0195-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
271 Mu J, Zhao X, Li J, Yang E, Zhao X. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J Mater Chem B 2016;4:5217-21. [DOI: 10.1039/c6tb01390b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
272 Shekunova TO, Lapkina LA, Shcherbakov AB, Meshkov IN, Ivanov VK, Yu. Tsivadze A, Gorbunova YG. Deactivation of singlet oxygen by cerium oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2019;382:111925. [DOI: 10.1016/j.jphotochem.2019.111925] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
273 Vernekar AA, Das T, Mugesh G. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angew Chem 2016;128:1434-8. [DOI: 10.1002/ange.201510355] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
274 Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res 2018;11:4955-84. [PMID: 30450165 DOI: 10.1007/s12274-018-2092-y] [Cited by in Crossref: 91] [Cited by in F6Publishing: 69] [Article Influence: 22.8] [Reference Citation Analysis]
275 Li W, Qiang Z, Zhang T, Bao X, Zhao X. Efficient degradation of pyruvic acid in water by catalytic ozonation with PdO/CeO2. Journal of Molecular Catalysis A: Chemical 2011;348:70-6. [DOI: 10.1016/j.molcata.2011.08.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
276 Villa S, Maggioni D, Hamza H, Di Nica V, Magni S, Morosetti B, Parenti CC, Finizio A, Binelli A, Della Torre C. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. Environmental Pollution 2020;257:113597. [DOI: 10.1016/j.envpol.2019.113597] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
277 Zhang T, Li CY, Jia JJ, Chi JS, Zhou D, Li JZ, Liu XM, Zhang J, Yi L. Combination Therapy with LXW7 and Ceria Nanoparticles Protects against Acute Cerebral Ischemia/Reperfusion Injury in Rats. Curr Med Sci 2018;38:144-52. [PMID: 30074164 DOI: 10.1007/s11596-018-1858-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
278 Li F, Zou L, He J, Wu Y, Yang L, Liu Q, Wu Q, Yang X. On the correlation between structure and catalytic activity of mesoporous ceria nanoparticles. Journal of Catalysis 2021;402:300-9. [DOI: 10.1016/j.jcat.2021.08.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
279 Heckman KL, Decoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C, Mullen P, Rathbun E, Prime K, Marini J, Patchefsky J, Patchefsky AS, Hailstone RK, Erlichman JS. Custom Cerium Oxide Nanoparticles Protect against a Free Radical Mediated Autoimmune Degenerative Disease in the Brain. ACS Nano 2013;7:10582-96. [DOI: 10.1021/nn403743b] [Cited by in Crossref: 202] [Cited by in F6Publishing: 170] [Article Influence: 22.4] [Reference Citation Analysis]
280 Matter MT, Furer LA, Starsich FHL, Fortunato G, Pratsinis SE, Herrmann IK. Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS Appl Mater Interfaces 2019;11:2830-9. [PMID: 30571079 DOI: 10.1021/acsami.8b18778] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
281 Vernekar AA, Das T, Mugesh G. Vacancy-Engineered Nanoceria: Enzyme Mimetic Hotspots for the Degradation of Nerve Agents. Angew Chem Int Ed 2016;55:1412-6. [DOI: 10.1002/anie.201510355] [Cited by in Crossref: 102] [Cited by in F6Publishing: 75] [Article Influence: 14.6] [Reference Citation Analysis]
282 Khulbe K, Roy P, Radhakrishnan A, Mugesh G. An Unusual Two‐Step Hydrolysis of Nerve Agents by a Nanozyme. ChemCatChem 2018;10:4826-31. [DOI: 10.1002/cctc.201801220] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
283 Rajeshkumar S, Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles - A Review. Biotechnol Rep (Amst) 2018;17:1-5. [PMID: 29234605 DOI: 10.1016/j.btre.2017.11.008] [Cited by in Crossref: 123] [Cited by in F6Publishing: 64] [Article Influence: 24.6] [Reference Citation Analysis]
284 Zhang X, Hu J, Becker KV, Engle JW, Ni D, Cai W, Wu D, Qu S. Antioxidant and C5a-blocking strategy for hepatic ischemia-reperfusion injury repair. J Nanobiotechnology 2021;19:107. [PMID: 33858424 DOI: 10.1186/s12951-021-00858-9] [Reference Citation Analysis]
285 Yadav N. Cerium oxide nanostructures: properties, biomedical applications and surface coatings. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03186-3] [Reference Citation Analysis]
286 Seminko V, Maksimchuk P, Grygorova G, Avrunin O, Semenets V, Klochkov V, Malyukin Y. Catalytic Decomposition of Hypochlorite Anions by Ceria Nanoparticles Visualized by Spectroscopic Techniques. J Phys Chem C 2019;123:20675-81. [DOI: 10.1021/acs.jpcc.9b06466] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
287 Arya A, Gangwar A, Singh SK, Roy M, Das M, Sethy NK, Bhargava K. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade. Int J Nanomedicine 2016;11:1159-73. [PMID: 27069362 DOI: 10.2147/IJN.S102096] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
288 Nicolini V, Varini E, Malavasi G, Menabue L, Menziani MC, Lusvardi G, Pedone A, Benedetti F, Luches P. The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Materials & Design 2016;97:73-85. [DOI: 10.1016/j.matdes.2016.02.056] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
289 Gupta A, Rawal TB, Neal CJ, Das S, Rahman TS, Seal S. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling. 2D Mater 2017;4:025077. [DOI: 10.1088/2053-1583/aa636b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
290 Veera Dandu P, Devarapalli V, Babu S. Reverse selectivity – High silicon nitride and low silicon dioxide removal rates using ceria abrasive-based dispersions. Journal of Colloid and Interface Science 2010;347:267-76. [DOI: 10.1016/j.jcis.2010.03.071] [Cited by in Crossref: 28] [Article Influence: 2.3] [Reference Citation Analysis]
291 Raza Naqvi ST, Shirinfar B, Majeed S, Najam-ul-haq M, Hussain D, Iqbal T, Ahmed N. Synthesis, design and sensing applications of nanostructured ceria-based materials. Analyst 2018;143:5610-28. [DOI: 10.1039/c8an01268g] [Cited by in Crossref: 17] [Article Influence: 4.3] [Reference Citation Analysis]
292 Shokrzadeh M, Abdi H, Asadollah-Pour A, Shaki F. Nanoceria Attenuated High Glucose-Induced Oxidative Damage in HepG2 Cells. Cell J 2016;18:97-102. [PMID: 27054124 DOI: 10.22074/cellj.2016.3992] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
293 Kumaresan I, Pichaimani P, Ellappan S, Paramasivam M. Ceria doped mullite reinforced polybenzoxazine nanocomposites with improved UV-shielding and thermo-mechanical properties. Polym Compos 2018;39:2073-80. [DOI: 10.1002/pc.24169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
294 Rocca A, Mattoli V, Mazzolai B, Ciofani G. Cerium oxide nanoparticles inhibit adipogenesis in rat mesenchymal stem cells: potential therapeutic implications. Pharm Res 2014;31:2952-62. [PMID: 24805277 DOI: 10.1007/s11095-014-1390-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
295 Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411-1420. [PMID: 21369578 DOI: 10.1039/c0nr00875c] [Cited by in Crossref: 549] [Cited by in F6Publishing: 453] [Article Influence: 49.9] [Reference Citation Analysis]
296 Dong H, Liang W, Song S, Xue H, Fan T, Liu S. Engineering of cerium oxide loaded chitosan/polycaprolactone hydrogels for wound healing management in model of cardiovascular surgery. Process Biochemistry 2021;106:1-9. [DOI: 10.1016/j.procbio.2021.03.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
297 Wu H, Tito N, Giraldo JP. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS Nano 2017;11:11283-97. [DOI: 10.1021/acsnano.7b05723] [Cited by in Crossref: 119] [Cited by in F6Publishing: 87] [Article Influence: 23.8] [Reference Citation Analysis]
298 Liu Y, Xiao Z, Chen F, Yue L, Zou H, Lyu J, Wang Z. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Sci Total Environ 2021;780:146578. [PMID: 34030327 DOI: 10.1016/j.scitotenv.2021.146578] [Reference Citation Analysis]
299 Zgheib C, Hilton SA, Dewberry LC, Hodges MM, Ghatak S, Xu J, Singh S, Roy S, Sen CK, Seal S, Liechty KW. Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. J Am Coll Surg 2019;228:107-15. [PMID: 30359833 DOI: 10.1016/j.jamcollsurg.2018.09.017] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
300 Clark A, Zhu A, Sun K, Petty HR. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res 2011;13:5547-55. [PMID: 22039334 DOI: 10.1007/s11051-011-0544-3] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 6.5] [Reference Citation Analysis]
301 Li J, Wen J, Li B, Li W, Qiao W, Shen J, Jin W, Jiang X, Yeung KWK, Chu PK. Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation. Adv Sci (Weinh) 2018;5:1700678. [PMID: 29610729 DOI: 10.1002/advs.201700678] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
302 Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nanomicro Lett 2021;13:154. [PMID: 34241715 DOI: 10.1007/s40820-021-00674-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
303 Ali S, Sikdar S, Basak S, Rajbanshi B, Mondal M, Roy D, Dutta A, Kumar A, Dakua VK, Chakrabarty R, Roy A, Barman A, Datta A, Roy PK, Chakraborty B, Roy MN. β-Cyclodextrin-Stabilized Biosynthesis Nanozyme for Dual Enzyme Mimicking and Fenton Reaction with a High Potential Anticancer Agent. ACS Omega. [DOI: 10.1021/acsomega.1c06322] [Reference Citation Analysis]
304 Reddy JK, Durga Kumari V, Subrahmanyam M. Ce Dispersed Al-MCM-41: A Photocombinate for Phenol Degradation Activity. Catal Lett 2008;123:301-6. [DOI: 10.1007/s10562-008-9423-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
305 Dewberry LC, Niemiec SM, Hilton SA, Louiselle AE, Singh S, Sakthivel TS, Hu J, Seal S, Liechty KW, Zgheib C. Cerium oxide nanoparticle conjugation to microRNA-146a mechanism of correction for impaired diabetic wound healing. Nanomedicine 2021;:102483. [PMID: 34748956 DOI: 10.1016/j.nano.2021.102483] [Reference Citation Analysis]
306 Sandhir R, Yadav A, Sunkaria A, Singhal N. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015;89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
307 Yokel RA, Au TC, Macphail R, Hardas SS, Butterfield DA, Sultana R, Goodman M, Tseng MT, Dan M, Haghnazar H, Unrine JM, Graham UM, Wu P, Grulke EA. Distribution, Elimination, and Biopersistence to 90 Days of a Systemically Introduced 30 nm Ceria-Engineered Nanomaterial in Rats. Toxicological Sciences 2012;127:256-68. [DOI: 10.1093/toxsci/kfs067] [Cited by in Crossref: 90] [Cited by in F6Publishing: 84] [Article Influence: 9.0] [Reference Citation Analysis]
308 Bhagat S, Srikanth Vallabani N, Shutthanandan V, Bowden M, Karakoti AS, Singh S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science 2018;513:831-42. [DOI: 10.1016/j.jcis.2017.11.064] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
309 Zambon A, Malavasi G, Pallini A, Fraulini F, Lusvardi G. Cerium Containing Bioactive Glasses: A Review. ACS Biomater Sci Eng 2021;7:4388-401. [PMID: 34468119 DOI: 10.1021/acsbiomaterials.1c00414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2013;31:563-92. [PMID: 23022622 DOI: 10.1016/j.biotechadv.2012.09.005] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 8.3] [Reference Citation Analysis]
311 Shao D, Li K, You M, Liu S, Hu T, Huang L, Xie Y, Zheng X. Macrophage polarization by plasma sprayed ceria coatings on titanium-based implants: Cerium valence state matters. Applied Surface Science 2020;504:144070. [DOI: 10.1016/j.apsusc.2019.144070] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
312 Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 2018;33:161-77. [DOI: 10.1093/mutage/gey004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
313 Artiglia L, Agnoli S, Paganini MC, Cattelan M, Granozzi G. TiO 2 @CeO x Core–Shell Nanoparticles as Artificial Enzymes with Peroxidase-Like Activity. ACS Appl Mater Interfaces 2014;6:20130-6. [DOI: 10.1021/am5057129] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
314 Baranchikov AE, Polezhaeva OS, Ivanov VK, Tretyakov YD. Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm 2010;12:3531. [DOI: 10.1039/c0ce00245c] [Cited by in Crossref: 68] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
315 Garaud M, Trapp J, Devin S, Cossu-leguille C, Pain-devin S, Felten V, Giamberini L. Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli. Aquatic Toxicology 2015;158:63-74. [DOI: 10.1016/j.aquatox.2014.11.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
316 Ball JP, Mound BA, Monsalve AG, Nino JC, Allen JB. Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering. J Biomed Mater Res A 2015;103:8-15. [PMID: 24677427 DOI: 10.1002/jbm.a.35137] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
317 Sun H, Cai S, Wang C, Chen Y, Yang R. Recent Progress of Nanozymes in the Detection of Pathogenic Microorganisms. Chembiochem 2020;21:2572-84. [PMID: 32352212 DOI: 10.1002/cbic.202000126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
318 Hussain S, Al-Nsour F, Rice AB, Marshburn J, Ji Z, Zink JI, Yingling B, Walker NJ, Garantziotis S. Cerium dioxide nanoparticles do not modulate the lipopolysaccharide-induced inflammatory response in human monocytes. Int J Nanomedicine 2012;7:1387-97. [PMID: 22457596 DOI: 10.2147/IJN.S29429] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
319 Niu J, Wang K, Kolattukudy PE. Cerium oxide nanoparticles inhibit oxidative stress and nuclear factor-κB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther 2011;338:53-61. [PMID: 21464334 DOI: 10.1124/jpet.111.179978] [Cited by in Crossref: 129] [Cited by in F6Publishing: 119] [Article Influence: 11.7] [Reference Citation Analysis]
320 Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small 2020;16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
321 Rogers S, Rice KM, Manne ND, Shokuhfar T, He K, Selvaraj V, Blough ER. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Med 2015;3:2050312115575387. [PMID: 26770770 DOI: 10.1177/2050312115575387] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
322 Gohari G, Zareei E, Rostami H, Panahirad S, Kulak M, Farhadi H, Amini M, Martinez-Ballesta MDC, Fotopoulos V. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. Ecotoxicol Environ Saf 2021;220:112402. [PMID: 34090105 DOI: 10.1016/j.ecoenv.2021.112402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
323 González-flores D, De Nicola M, Bruni E, Caputo F, Rodríguez AB, Pariente JA, Ghibelli L. Nanoceria protects from alterations in oxidative metabolism and calcium overloads induced by TNFα and cycloheximide in U937 cells: pharmacological potential of nanoparticles. Mol Cell Biochem 2014;397:245-53. [DOI: 10.1007/s11010-014-2192-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
324 Das J, Han JW, Choi YJ, Song H, Cho SG, Park C, Seo HG, Kim JH. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism. Sci Rep 2016;6:29197. [PMID: 27380727 DOI: 10.1038/srep29197] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
325 Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. Materials (Basel) 2020;13:E3072. [PMID: 32660042 DOI: 10.3390/ma13143072] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
326 Qiu Y, Rojas E, Murray RA, Irigoyen J, Gregurec D, Castro-Hartmann P, Fledderman J, Estrela-Lopis I, Donath E, Moya SE. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs. Nanoscale 2015;7:6588-98. [PMID: 25789459 DOI: 10.1039/c5nr00884k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
327 Kim HS, Sun X, Lee J, Kim H, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Advanced Drug Delivery Reviews 2019;146:209-39. [DOI: 10.1016/j.addr.2018.12.014] [Cited by in Crossref: 100] [Cited by in F6Publishing: 89] [Article Influence: 33.3] [Reference Citation Analysis]
328 Wu Y, Xu W, Jiao L, Tang Y, Chen Y, Gu W, Zhu C. Defect engineering in nanozymes. Materials Today 2021. [DOI: 10.1016/j.mattod.2021.10.032] [Reference Citation Analysis]
329 Safavi MS, Walsh FC, Visai L, Khalil-allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS Omega. [DOI: 10.1021/acsomega.2c00440] [Reference Citation Analysis]
330 Policar C, Bouvet J, Bertrand HC, Delsuc N. SOD mimics: From the tool box of the chemists to cellular studies. Current Opinion in Chemical Biology 2022;67:102109. [DOI: 10.1016/j.cbpa.2021.102109] [Reference Citation Analysis]
331 Ni P, Wei X, Guo J, Ye X, Yang S. On the origin of the oxidizing ability of ceria nanoparticles. RSC Adv 2015;5:97512-9. [DOI: 10.1039/c5ra20700b] [Cited by in Crossref: 25] [Cited by in F6Publishing: 1] [Article Influence: 3.6] [Reference Citation Analysis]
332 Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 2014;6:e90-e90. [DOI: 10.1038/am.2013.88] [Cited by in Crossref: 490] [Cited by in F6Publishing: 319] [Article Influence: 61.3] [Reference Citation Analysis]
333 Wu H, Li F, Wang S, Lu J, Li J, Du Y, Sun X, Chen X, Gao J, Ling D. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018;151:66-77. [DOI: 10.1016/j.biomaterials.2017.10.018] [Cited by in Crossref: 104] [Cited by in F6Publishing: 85] [Article Influence: 26.0] [Reference Citation Analysis]
334 Zhao H, Zhang R, Yan X, Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B 2021. [PMID: 34161407 DOI: 10.1039/d1tb00720c] [Reference Citation Analysis]
335 Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, Self WT, Bossy-Wetzel E. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 2014;21:1622-32. [PMID: 24902900 DOI: 10.1038/cdd.2014.72] [Cited by in Crossref: 107] [Cited by in F6Publishing: 91] [Article Influence: 13.4] [Reference Citation Analysis]
336 Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants (Basel) 2016;5:E15. [PMID: 27196936 DOI: 10.3390/antiox5020015] [Cited by in Crossref: 173] [Cited by in F6Publishing: 127] [Article Influence: 28.8] [Reference Citation Analysis]
337 Tian J, Wang J, Li Y, Huang M, Lu J. Electrochemically Driven Omeprazole Metabolism via Cytochrome P450 Assembled on the Nanocomposites of Ceria Nanoparticles and Graphene. J Electrochem Soc 2017;164:H470-6. [DOI: 10.1149/2.0751707jes] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
338 Jiang H, Chen Z, Cao H, Huang Y. Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst 2012;137:5560. [DOI: 10.1039/c2an35911a] [Cited by in Crossref: 202] [Cited by in F6Publishing: 168] [Article Influence: 20.2] [Reference Citation Analysis]
339 Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M, Baeeri M, Mohammadirad A, Abdollahi M. Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2011; 2(11): 204-210 [PMID: 22087357 DOI: 10.4239/wjd.v2.i11.204] [Cited by in CrossRef: 67] [Cited by in F6Publishing: 63] [Article Influence: 6.1] [Reference Citation Analysis]
340 Sundararajan V, Venkatasubbu GD, Sheik Mohideen S. Investigation of therapeutic potential of cerium oxide nanoparticles in Alzheimer's disease using transgenic Drosophila. 3 Biotech 2021;11:159. [PMID: 33758737 DOI: 10.1007/s13205-021-02706-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
341 Dowding JM, Seal S, Self WT. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO(-)). Drug Deliv Transl Res 2013;3:375-9. [PMID: 23936755 DOI: 10.1007/s13346-013-0136-0] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
342 Zhu G, Zheng P, Wang M, Chen W, Li C. A novel CuCoS nanozyme for synergistic photothermal and chemodynamic therapy of tumors. Inorg Chem Front . [DOI: 10.1039/d1qi01563j] [Reference Citation Analysis]
343 Zou S, Guo F, Wu L, Ju H, Sun M, Cai R, Xu L, Gong Y, Gong A, Zhang M, Du F. One-pot synthesis of cerium and praseodymium co-doped carbon quantum dots as enhanced antioxidant for hydroxyl radical scavenging. Nanotechnology 2020;31:165101. [PMID: 31766034 DOI: 10.1088/1361-6528/ab5b40] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
344 Lin Y, Xu C, Ren J, Qu X. Using Thermally Regenerable Cerium Oxide Nanoparticles in Biocomputing to Perform Label-free, Resettable, and Colorimetric Logic Operations. Angew Chem Int Ed 2012;51:12579-83. [DOI: 10.1002/anie.201207587] [Cited by in Crossref: 71] [Cited by in F6Publishing: 61] [Article Influence: 7.1] [Reference Citation Analysis]
345 Xue Y, Luan Q, Yang D, Yao X, Zhou K. Direct Evidence for Hydroxyl Radical Scavenging Activity of Cerium Oxide Nanoparticles. J Phys Chem C 2011;115:4433-8. [DOI: 10.1021/jp109819u] [Cited by in Crossref: 203] [Cited by in F6Publishing: 140] [Article Influence: 18.5] [Reference Citation Analysis]
346 Cai X, Sezate SA, Seal S, McGinnis JF. Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 2012;33:8771-81. [PMID: 22959465 DOI: 10.1016/j.biomaterials.2012.08.030] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 6.4] [Reference Citation Analysis]
347 Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y. Well-redispersed ceria nanoparticles: Promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 2012;4:3261. [DOI: 10.1039/c2ay25511a] [Cited by in Crossref: 142] [Cited by in F6Publishing: 96] [Article Influence: 14.2] [Reference Citation Analysis]
348 Mccormack RN, Mendez P, Barkam S, Neal CJ, Das S, Seal S. Inhibition of Nanoceria’s Catalytic Activity due to Ce 3+ Site-Specific Interaction with Phosphate Ions. J Phys Chem C 2014;118:18992-9006. [DOI: 10.1021/jp500791j] [Cited by in Crossref: 43] [Cited by in F6Publishing: 32] [Article Influence: 5.4] [Reference Citation Analysis]
349 Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev 2019;119:4881-985. [DOI: 10.1021/acs.chemrev.8b00626] [Cited by in Crossref: 465] [Cited by in F6Publishing: 401] [Article Influence: 155.0] [Reference Citation Analysis]
350 Sendra M, Moreno-garrido I, Blasco J, Araújo CV. Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum. Environmental Pollution 2018;242:357-66. [DOI: 10.1016/j.envpol.2018.07.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
351 Cao L, Cai J, Deng W, Tan Y, Xie Q. NiCoO 2 @CeO 2 Nanoboxes for Ultrasensitive Electrochemical Immunosensing Based on the Oxygen Evolution Reaction in a Neutral Medium: Application for Interleukin-6 Detection. Anal Chem 2020;92:16267-73. [DOI: 10.1021/acs.analchem.0c04217] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
352 Vernekar AA, Das T, Ghosh S, Mugesh G. A Remarkably Efficient MnFe 2 O 4 -based Oxidase Nanozyme. Chem Asian J 2016;11:72-6. [DOI: 10.1002/asia.201500942] [Cited by in Crossref: 66] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
353 da Silva AGM, Batalha DC, Rodrigues TS, Candido EG, Luz SC, de Freitas IC, Fonseca FC, de Oliveira DC, Taylor JG, Córdoba de Torresi SI, Camargo PHC, Fajardo HV. Sub-15 nm CeO 2 nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline. Catal Sci Technol 2018;8:1828-39. [DOI: 10.1039/c7cy02402a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
354 Alili L, Sack M, von Montfort C, Giri S, Das S, Carroll KS, Zanger K, Seal S, Brenneisen P. Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal. 2013;19:765-778. [PMID: 23198807 DOI: 10.1089/ars.2012.4831] [Cited by in Crossref: 109] [Cited by in F6Publishing: 93] [Article Influence: 12.1] [Reference Citation Analysis]
355 Han J, Hwang C, Kim SH, Park C, Kim J, Jung GY, Baek K, Chae S, Kang SJ, Cho J, Kwak SK, Song H, Choi N. An Antiaging Electrolyte Additive for High‐Energy‐Density Lithium‐Ion Batteries. Adv Energy Mater 2020;10:2000563. [DOI: 10.1002/aenm.202000563] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
356 Dinte E, Vostinaru O, Samoila O, Sevastre B, Bodoki E. Ophthalmic Nanosystems with Antioxidants for the Prevention and Treatment of Eye Diseases. Coatings 2020;10:36. [DOI: 10.3390/coatings10010036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
357 Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, Zink JI, Walker NJ, Garantziotis S. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 2012;6:5820-9. [PMID: 22717232 DOI: 10.1021/nn302235u] [Cited by in Crossref: 152] [Cited by in F6Publishing: 146] [Article Influence: 15.2] [Reference Citation Analysis]
358 Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res 2011;28:237-59. [PMID: 21104301 DOI: 10.1007/s11095-010-0318-0] [Cited by in Crossref: 198] [Cited by in F6Publishing: 159] [Article Influence: 16.5] [Reference Citation Analysis]
359 Shah M, Shah J, Arya H, Vyas A, Vijapura A, Gajipara A, Shamal A, Bakshi M, Thakore P, Shah R, Saxena V, Varade D, Singh S. Biological Oxidase Enzyme Mimetic Cu‐Pt Nanoalloys: A Multifunctional Nanozyme for Colorimetric Detection of Ascorbic Acid and Identification of Mammalian Cells. ChemistrySelect 2019;4:6537-46. [DOI: 10.1002/slct.201900681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
360 Jiao L, Zhang L, Du W, Liu S, Wei Q, Li H. Robust enzyme-free electrochemical immunoassay of CEA enhanced by porous PdCu nanoparticles. Electrochimica Acta 2017;252:374-80. [DOI: 10.1016/j.electacta.2017.08.188] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
361 Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis. 2011;42:514-523. [PMID: 21396448 DOI: 10.1016/j.nbd.2011.03.004] [Cited by in Crossref: 104] [Cited by in F6Publishing: 95] [Article Influence: 9.5] [Reference Citation Analysis]
362 Zhao H, Wang Z, Jiao X, Zhang L, Lv Y. Uricase-Based Highly Sensitive and Selective Spectrophotometric Determination of Uric Acid Using BSA-Stabilized Au Nanoclusters as Artificial Enzyme. Spectroscopy Letters 2012;45:511-9. [DOI: 10.1080/00387010.2011.649440] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
363 Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Sun M, Yang P, Jiang S, Ying X, Du Y. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics 2020;10:2342-57. [PMID: 32104507 DOI: 10.7150/thno.40395] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 19.0] [Reference Citation Analysis]
364 Parra-Robert M, Casals E, Massana N, Zeng M, Perramón M, Fernández-Varo G, Morales-Ruiz M, Puntes V, Jiménez W, Casals G. Beyond the Scavenging of Reactive Oxygen Species (ROS): Direct Effect of Cerium Oxide Nanoparticles in Reducing Fatty Acids Content in an In Vitro Model of Hepatocellular Steatosis. Biomolecules 2019;9:E425. [PMID: 31470518 DOI: 10.3390/biom9090425] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
365 Juan P, Liu C, Lin C, Ju S, Chen M, Chang IY, Lu J. Electrical Characterization and Dielectric Properties of Metal–Oxide–Semiconductor Structures Using High-κ CeZrO 4 Ternary Oxide as Gate Dielectric. Jpn J Appl Phys 2009;48:05DA02. [DOI: 10.1143/jjap.48.05da02] [Cited by in Crossref: 14] [Article Influence: 1.1] [Reference Citation Analysis]
366 Singh N, Geethika M, Eswarappa SM, Mugesh G. Manganese-Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chem Eur J 2018;24:8393-403. [DOI: 10.1002/chem.201800770] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
367 Rather HA, Thakore R, Singh R, Jhala D, Singh S, Vasita R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioact Mater 2018;3:201-11. [PMID: 29744458 DOI: 10.1016/j.bioactmat.2017.09.006] [Cited by in Crossref: 68] [Cited by in F6Publishing: 47] [Article Influence: 13.6] [Reference Citation Analysis]
368 Sun L, Zhou L, Yang C, Yuan Y. CeO2 nanoparticle-decorated reduced graphene oxide as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy 2017;42:15140-8. [DOI: 10.1016/j.ijhydene.2017.04.257] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 5.6] [Reference Citation Analysis]
369 Wei F, Neal CJ, Sakthivel TS, Kean T, Seal S, Coathup MJ. Multi-functional cerium oxide nanoparticles regulate inflammation and enhance osteogenesis. Mater Sci Eng C Mater Biol Appl 2021;124:112041. [PMID: 33947541 DOI: 10.1016/j.msec.2021.112041] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
370 Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 2018;9:2927-33. [PMID: 29732076 DOI: 10.1039/c7sc05476a] [Cited by in Crossref: 171] [Cited by in F6Publishing: 30] [Article Influence: 42.8] [Reference Citation Analysis]
371 Molinari M, Symington AR, Sayle DC, Sakthivel TS, Seal S, Parker SC. Computer-Aided Design of Nanoceria Structures as Enzyme Mimetic Agents: The Role of Bodily Electrolytes on Maximizing Their Activity. ACS Appl Bio Mater 2019;2:1098-106. [DOI: 10.1021/acsabm.8b00709] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
372 Liu D, Wang D, Jing X, Zhao X, Xi D, Dang D, Meng L. Continuous phase regulation of MoSe 2 from 2H to 1T for the optimization of peroxidase-like catalysis. J Mater Chem B 2020;8:6451-8. [DOI: 10.1039/d0tb00115e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
373 Yang Y, Mao Z, Huang W, Liu L, Li J, Li J, Wu Q. Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Sci Rep 2016;6:35344. [PMID: 27748403 DOI: 10.1038/srep35344] [Cited by in Crossref: 71] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
374 Plakhova TV, Romanchuk AY, Butorin SM, Konyukhova AD, Egorov AV, Shiryaev AA, Baranchikov AE, Dorovatovskii PV, Huthwelker T, Gerber E, Bauters S, Sozarukova MM, Scheinost AC, Ivanov VK, Kalmykov SN, Kvashnina KO. Towards the surface hydroxyl species in CeO 2 nanoparticles. Nanoscale 2019;11:18142-9. [DOI: 10.1039/c9nr06032d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
375 Yao H, Ding X, Wang Z, Zhang F, Wang Y, Luo G. Facile synthesis of a novel CeO 2 /glass bead catalyst with enhanced catalytic oxidation performance. RSC Adv 2016;6:112413-9. [DOI: 10.1039/c6ra21657a] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
376 Qian J, Cao Y, Chen Z, Liu C, Lu X. Biomimetic synthesis of cerium oxide nanosquares on RGO and their enhanced photocatalytic activities. Dalton Trans 2017;46:547-53. [PMID: 27975093 DOI: 10.1039/c6dt03375j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
377 Neal CJ, Fox CR, Sakthivel TS, Kumar U, Fu Y, Drake C, Parks GD, Seal S. Metal-Mediated Nanoscale Cerium Oxide Inactivates Human Coronavirus and Rhinovirus by Surface Disruption. ACS Nano 2021;15:14544-56. [PMID: 34436866 DOI: 10.1021/acsnano.1c04142] [Reference Citation Analysis]
378 Kim T, Hyeon T. Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 2014;25:012001. [PMID: 24334327 DOI: 10.1088/0957-4484/25/1/012001] [Cited by in Crossref: 94] [Cited by in F6Publishing: 71] [Article Influence: 10.4] [Reference Citation Analysis]
379 Zhou D, Fang T, Lu LQ, Yi L. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huazhong Univ Sci Technolog Med Sci 2016;36:480-6. [PMID: 27465320 DOI: 10.1007/s11596-016-1612-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
380 Alam B, Philippe A, Rosenfeldt RR, Seitz F, Dey S, Bundschuh M, Schaumann GE, Brenner SA. Synthesis, characterization, and ecotoxicity of CeO2 nanoparticles with differing properties. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3613-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
381 Karakoti AS, Tsigkou O, Yue S, Lee PD, Stevens MM, Jones JR, Seal S. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J Mater Chem 2010;20:8912. [DOI: 10.1039/c0jm01072c] [Cited by in Crossref: 97] [Cited by in F6Publishing: 65] [Article Influence: 8.1] [Reference Citation Analysis]
382 Ratnayake S, Mantilaka M, Sandaruwan C, Dahanayake D, Gunasekara YP, Jeyasakthy S, Gurusinghe N, Wanninayake U, Nalin de Silva K. Low-temperature thermocatalytic particulate carbon decomposition via urea solution-combustion derived CeO2 nanostructures. Journal of Rare Earths 2021;39:67-74. [DOI: 10.1016/j.jre.2020.02.013] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
383 Guo W, Zhang M, Lou Z, Zhou M, Wang P, Wei H. Engineering Nanoceria for Enhanced Peroxidase Mimics: A Solid Solution Strategy. ChemCatChem 2019;11:737-43. [DOI: 10.1002/cctc.201801578] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
384 Kumar S, Srivastava M, Singh J, Layek S, Yashpal M, Materny A, Ojha AK. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles. AIP Advances 2015;5:027109. [DOI: 10.1063/1.4908003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 4.6] [Reference Citation Analysis]
385 Danish SM, Gupta A, Khan UA, Hasan N, Ahmad FJ, Warsi MH, Ali AMA, Zafar A, Jain GK. Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer’s via Anti-Oxidative Pathway. Pharmaceutics 2022;14:756. [DOI: 10.3390/pharmaceutics14040756] [Reference Citation Analysis]
386 Zhang X, He S, Chen Z, Huang Y. CoFe 2 O 4 Nanoparticles as Oxidase Mimic-Mediated Chemiluminescence of Aqueous Luminol for Sulfite in White Wines. J Agric Food Chem 2013;61:840-7. [DOI: 10.1021/jf3041269] [Cited by in Crossref: 75] [Cited by in F6Publishing: 62] [Article Influence: 8.3] [Reference Citation Analysis]
387 Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E. Stem Cell Aligned Growth Induced by CeO2 Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Adv Funct Mater 2010;20:1617-24. [DOI: 10.1002/adfm.200902363] [Cited by in Crossref: 132] [Cited by in F6Publishing: 85] [Article Influence: 11.0] [Reference Citation Analysis]
388 Ma Y, Gao W, Zhang Z, Zhang S, Tian Z, Liu Y, Ho JC, Qu Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surface Science Reports 2018;73:1-36. [DOI: 10.1016/j.surfrep.2018.02.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 34] [Article Influence: 18.5] [Reference Citation Analysis]
389 Gu S, Li W, Wang F, Wang S, Zhou H, Li H. Synthesis of buckhorn-like BiVO4 with a shell of CeO nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity. Applied Catalysis B: Environmental 2015;170-171:186-94. [DOI: 10.1016/j.apcatb.2015.01.044] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 10.7] [Reference Citation Analysis]
390 Deng H, Shen W, Peng Y, Chen X, Yi G, Gao Z. Nanoparticulate Peroxidase/Catalase Mimetic and Its Application. Chem Eur J 2012;18:8906-11. [DOI: 10.1002/chem.201200643] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
391 Nilawar S, Chatterjee K. Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomacromolecules 2021. [PMID: 34905351 DOI: 10.1021/acs.biomac.1c01235] [Reference Citation Analysis]
392 Cai X, Shi L, Zhao H, Lan M. Enhanced Electrocatalytic Activity of p-CuO/n-CeO 2 -Heterojunction-Based Nanocomposites for Superoxide Determination: Influence of the Cu/Ce Ratio. ChemNanoMat 2018;4:213-9. [DOI: 10.1002/cnma.201700282] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
393 Hanafy BI, Cave GWV, Barnett Y, Pierscionek BK. Nanoceria Prevents Glucose-Induced Protein Glycation in Eye Lens Cells. Nanomaterials (Basel) 2021;11:1473. [PMID: 34206140 DOI: 10.3390/nano11061473] [Reference Citation Analysis]
394 Ngobili TA, Daniele MA. Nanoparticles and direct immunosuppression. Exp Biol Med (Maywood) 2016;241:1064-73. [PMID: 27229901 DOI: 10.1177/1535370216650053] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
395 Guo L, He N, Zhao Y, Liu T, Deng Y. Autophagy Modulated by Inorganic Nanomaterials. Theranostics 2020;10:3206-22. [PMID: 32194863 DOI: 10.7150/thno.40414] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 11.5] [Reference Citation Analysis]
396 Li X, Qi M, Li C, Dong B, Wang J, Weir MD, Imazato S, Du L, Lynch CD, Xu L, Zhou Y, Wang L, Xu HHK. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. J Mater Chem B 2019;7:6955-71. [DOI: 10.1039/c9tb01743g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 6.7] [Reference Citation Analysis]
397 Casals G, Perramón M, Casals E, Portolés I, Fernández-Varo G, Morales-Ruiz M, Puntes V, Jiménez W. Cerium Oxide Nanoparticles: A New Therapeutic Tool in Liver Diseases. Antioxidants (Basel) 2021;10:660. [PMID: 33923136 DOI: 10.3390/antiox10050660] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
398 Surendra T, Roopan SM. Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. Journal of Photochemistry and Photobiology B: Biology 2016;161:122-8. [DOI: 10.1016/j.jphotobiol.2016.05.019] [Cited by in Crossref: 84] [Cited by in F6Publishing: 42] [Article Influence: 14.0] [Reference Citation Analysis]
399 Arya A, Sethy NK, Gangwar A, Bhargava N, Dubey A, Roy M, Srivastava G, Singh SK, Das M, Bhargava K. Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle. Mater Res Express 2017;4:055401. [DOI: 10.1088/2053-1591/aa6922] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
400 Naganuma T, Traversa E. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates. Nanoscale 2014;6:6637. [DOI: 10.1039/c3nr06662b] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
401 Chen F, Shen X, Wang Y, Zhang J. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Applied Catalysis B: Environmental 2012;121-122:223-9. [DOI: 10.1016/j.apcatb.2012.04.014] [Cited by in Crossref: 61] [Cited by in F6Publishing: 45] [Article Influence: 6.1] [Reference Citation Analysis]
402 Dai Q, Bai S, Wang Z, Wang X, Lu G. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts. Applied Catalysis B: Environmental 2012;126:64-75. [DOI: 10.1016/j.apcatb.2012.07.008] [Cited by in Crossref: 88] [Cited by in F6Publishing: 64] [Article Influence: 8.8] [Reference Citation Analysis]
403 Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P. Combining Top-Down and Bottom-Up Routes for Fabrication of Mesoporous Titania Films Containing Ceria Nanoparticles for Free Radical Scavenging. ACS Appl Mater Interfaces 2013;5:3168-75. [DOI: 10.1021/am4001024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
404 Patel V, Singh M, Mayes ELH, Martinez A, Shutthanandan V, Bansal V, Singh S, Karakoti AS. Ligand-mediated reversal of the oxidation state dependent ROS scavenging and enzyme mimicking activity of ceria nanoparticles. Chem Commun 2018;54:13973-6. [DOI: 10.1039/c8cc08355j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
405 Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal 2014;20:2372-415. [PMID: 23875805 DOI: 10.1089/ars.2012.5147] [Cited by in Crossref: 152] [Cited by in F6Publishing: 136] [Article Influence: 16.9] [Reference Citation Analysis]
406 Boey A, Leong SQ, Bhave S, Ho HK. Cerium Oxide Nanoparticles Alleviate Hepatic Fibrosis Phenotypes In Vitro. Int J Mol Sci 2021;22:11777. [PMID: 34769206 DOI: 10.3390/ijms222111777] [Reference Citation Analysis]
407 Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M, Rayegan S, Cheshmehnour J, Hassani S, Bayrami Z, Safa M. Cerium and Yttrium Oxide Nanoparticles Against Lead-Induced Oxidative Stress and Apoptosis in Rat Hippocampus. Biol Trace Elem Res 2015;164:80-9. [DOI: 10.1007/s12011-014-0197-z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 5.4] [Reference Citation Analysis]
408 Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials (Basel) 2021;14:4135. [PMID: 34361329 DOI: 10.3390/ma14154135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
409 Doshi M, Bosak A, Neal CJ, Isis N, Kumar U, Jeyaranjan A, Sakthivel TS, Singh S, Willenberg A, Hines RB, Seal S, Willenberg BJ. Exposure to nanoceria impacts larval survival, life history traits and fecundity of Aedes aegypti. PLoS Negl Trop Dis 2020;14:e0008654. [PMID: 32976503 DOI: 10.1371/journal.pntd.0008654] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
410 Wang G, Zhang J, He X, Zhang Z, Zhao Y. Ceria Nanoparticles as Enzyme Mimetics. Chin J Chem 2017;35:791-800. [DOI: 10.1002/cjoc.201600845] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 4.4] [Reference Citation Analysis]
411 Abuid NJ, Urdaneta ME, Gattas-Asfura KM, Zientek C, Silgo CI, Torres JA, Otto KJ, Stabler CL. Engineering the Multi-Enzymatic Activity of Cerium Oxide Nanoparticle Coatings for the Antioxidant Protection of Implants. Adv Nanobiomed Res 2021;1:2100016. [PMID: 34485991 DOI: 10.1002/anbr.202100016] [Reference Citation Analysis]
412 Qin F, Shen T, Yang H, Qian J, Zou D, Li J, Liu H, Zhang Y, Song X. Dietary nano cerium oxide promotes growth, relieves ammonia nitrogen stress, and improves immunity in crab (Eriocheir sinensis). Fish Shellfish Immunol 2019;92:367-76. [PMID: 31200070 DOI: 10.1016/j.fsi.2019.06.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
413 Yoon KR, Lee KA, Jo S, Yook SH, Lee KY, Kim I, Kim JY. Mussel-Inspired Polydopamine-Treated Reinforced Composite Membranes with Self-Supported CeO x Radical Scavengers for Highly Stable PEM Fuel Cells. Adv Funct Mater 2019;29:1806929. [DOI: 10.1002/adfm.201806929] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
414 Estevez A, Pritchard S, Harper K, Aston J, Lynch A, Lucky J, Ludington J, Chatani P, Mosenthal W, Leiter J, Andreescu S, Erlichman J. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Biology and Medicine 2011;51:1155-63. [DOI: 10.1016/j.freeradbiomed.2011.06.006] [Cited by in Crossref: 170] [Cited by in F6Publishing: 142] [Article Influence: 15.5] [Reference Citation Analysis]
415 Konopko A, Kusio J, Litwinienko G. Antioxidant Activity of Metal Nanoparticles Coated with Tocopherol-Like Residues-The Importance of Studies in Homo- and Heterogeneous Systems. Antioxidants (Basel) 2019;9:E5. [PMID: 31861581 DOI: 10.3390/antiox9010005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
416 Lyu G, Wang Y, Huang X, Zhang H, Sun L, Liu Y, Yan C. Hydrophilic CeO 2 nanocubes protect pancreatic β-cell line INS-1 from H 2 O 2 -induced oxidative stress. Nanoscale 2016;8:7923-32. [DOI: 10.1039/c6nr00826g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
417 Russell-Webster B, Abboud KA, Christou G. Molecular nanoparticles of cerium dioxide: structure-directing effect of halide ions. Chem Commun (Camb) 2020;56:5382-5. [PMID: 32285863 DOI: 10.1039/c9cc08419c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
418 Xue Y, Balmuri SR, Patel A, Sant V, Sant S. Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles. Drug Deliv and Transl Res 2018;8:357-67. [DOI: 10.1007/s13346-017-0396-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
419 Lu M, Zhang Y, Wang Y, Jiang M, Yao X. Insight into Several Factors that Affect the Conversion between Antioxidant and Oxidant Activities of Nanoceria. ACS Appl Mater Interfaces 2016;8:23580-90. [DOI: 10.1021/acsami.6b08219] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 5.7] [Reference Citation Analysis]
420 Wang H, Wan K, Shi X. Recent Advances in Nanozyme Research. Adv Mater 2019;31:e1805368. [PMID: 30589120 DOI: 10.1002/adma.201805368] [Cited by in Crossref: 144] [Cited by in F6Publishing: 129] [Article Influence: 36.0] [Reference Citation Analysis]
421 Soh M, Kang D, Jeong H, Kim D, Kim DY, Yang W, Song C, Baik S, Choi I, Ki S, Kwon HJ, Kim T, Kim CK, Lee S, Hyeon T. Ceria-Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment. Angew Chem 2017;129:11557-61. [DOI: 10.1002/ange.201704904] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
422 Wong LL, Pye QN, Chen L, Seal S, McGinnis JF. Defining the catalytic activity of nanoceria in the P23H-1 rat, a photoreceptor degeneration model. PLoS One 2015;10:e0121977. [PMID: 25822196 DOI: 10.1371/journal.pone.0121977] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
423 Li Y, He X, Yin J, Ma Y, Zhang P, Li J, Ding Y, Zhang J, Zhao Y, Chai Z, Zhang Z. Acquired Superoxide-Scavenging Ability of Ceria Nanoparticles. Angew Chem Int Ed 2015;54:1832-5. [DOI: 10.1002/anie.201410398] [Cited by in Crossref: 122] [Cited by in F6Publishing: 109] [Article Influence: 15.3] [Reference Citation Analysis]
424 Hardas SS, Sultana R, Warrier G, Dan M, Florence RL, Wu P, Grulke EA, Tseng MT, Unrine JM, Graham UM, Yokel RA, Butterfield DA. Rat brain pro-oxidant effects of peripherally administered 5nm ceria 30 days after exposure. NeuroToxicology 2012;33:1147-55. [DOI: 10.1016/j.neuro.2012.06.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
425 Song-il O, Yan J, Wang H, Wang Z, Jiang Q. High catalytic kinetic performance of amorphous CoPt NPs induced on CeOx for H2 generation from hydrous hydrazine. International Journal of Hydrogen Energy 2014;39:3755-61. [DOI: 10.1016/j.ijhydene.2013.12.135] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
426 Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E. Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano 2012;6:3767-75. [DOI: 10.1021/nn2048069] [Cited by in Crossref: 235] [Cited by in F6Publishing: 210] [Article Influence: 23.5] [Reference Citation Analysis]
427 Abdelhamid HN, Mahmoud GA, Sharmouk W. A cerium-based MOFzyme with multi-enzyme-like activity for the disruption and inhibition of fungal recolonization. J Mater Chem B 2020;8:7548-56. [DOI: 10.1039/d0tb00894j] [Cited by in Crossref: 23] [Article Influence: 11.5] [Reference Citation Analysis]
428 Singh S, Kumar A, Karakoti A, Seal S, Self WT. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst. 2010;6:1813-1820. [PMID: 20697616 DOI: 10.1039/c0mb00014k] [Cited by in Crossref: 119] [Cited by in F6Publishing: 109] [Article Influence: 9.9] [Reference Citation Analysis]
429 Sangomla S, Saifi MA, Khurana A, Godugu C. Nanoceria ameliorates doxorubicin induced cardiotoxicity: Possible mitigation via reduction of oxidative stress and inflammation. Journal of Trace Elements in Medicine and Biology 2018;47:53-62. [DOI: 10.1016/j.jtemb.2018.01.016] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 10.3] [Reference Citation Analysis]
430 Laurent S, Boutry S, Muller R. Metal Oxide Particles and Their Prospects for Applications. Iron Oxide Nanoparticles for Biomedical Applications. Elsevier; 2018. pp. 3-42. [DOI: 10.1016/b978-0-08-101925-2.00001-2] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
431 Kaittanis C, Santra S, Asati A, Perez JM. A cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging. Nanoscale 2012;4:2117. [DOI: 10.1039/c2nr11956k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
432 Skiba E, Pietrzak M, Glińska S, Wolf WM. The Combined Effect of ZnO and CeO2 Nanoparticles on Pisum sativum L.: A Photosynthesis and Nutrients Uptake Study. Cells 2021;10:3105. [PMID: 34831328 DOI: 10.3390/cells10113105] [Reference Citation Analysis]
433 Kim YE, Choi SW, Kim MK, Nguyen TL, Kim J. Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress. Nano Lett 2022. [PMID: 35226507 DOI: 10.1021/acs.nanolett.1c04899] [Reference Citation Analysis]
434 Dong W, Liu X, Shi W, Huang Y. Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv 2015;5:17451-7. [DOI: 10.1039/c4ra15840g] [Cited by in Crossref: 85] [Cited by in F6Publishing: 2] [Article Influence: 12.1] [Reference Citation Analysis]
435 Reddy BM, Saikia P, Bharali P, Park S, Muhler M, Grünert W. Physicochemical Characteristics and Catalytic Activity of Alumina-Supported Nanosized Ceria−Terbia Solid Solutions. J Phys Chem C 2009;113:2452-62. [DOI: 10.1021/jp809837g] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
436 Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H, Segatori L, Colvin VL. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano. 2013;7:9693-9703. [PMID: 24079896 DOI: 10.1021/nn4026806] [Cited by in Crossref: 239] [Cited by in F6Publishing: 188] [Article Influence: 26.6] [Reference Citation Analysis]
437 Zheng Q, Fang Y, Zeng L, Li X, Chen H, Song H, Huang J, Shi S. Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization. J Mater Chem B 2019;7:6759-69. [PMID: 31593203 DOI: 10.1039/c9tb01066a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
438 Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 2010;4:5321-31. [PMID: 20690607 DOI: 10.1021/nn100816s] [Cited by in Crossref: 430] [Cited by in F6Publishing: 399] [Article Influence: 39.1] [Reference Citation Analysis]
439 Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, Traversa E. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep 2017;7:4636. [PMID: 28680107 DOI: 10.1038/s41598-017-04098-6] [Cited by in Crossref: 53] [Cited by in F6Publishing: 34] [Article Influence: 10.6] [Reference Citation Analysis]
440 Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021;22:3087. [PMID: 33802993 DOI: 10.3390/ijms22063087] [Reference Citation Analysis]
441 Nguyen PT, Lee J, Cho A, Kim MS, Choi D, Han JW, Kim MI, Lee J. Rational Development of Co‐Doped Mesoporous Ceria with High Peroxidase‐Mimicking Activity at Neutral pH for Paper‐Based Colorimetric Detection of Multiple Biomarkers. Adv Funct Materials. [DOI: 10.1002/adfm.202112428] [Reference Citation Analysis]
442 Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. Ceria Nanoparticles Stabilized by Organic Surface Coatings Activate the Lysosome-Autophagy System and Enhance Autophagic Clearance. ACS Nano 2014;8:10328-42. [DOI: 10.1021/nn505073u] [Cited by in Crossref: 73] [Cited by in F6Publishing: 67] [Article Influence: 9.1] [Reference Citation Analysis]
443 Lv W, Yuan X, Yan C, Ma Q, Wang B, Du J, Zheng B, Xiao D. Dual-readout performance of Eu3+-doped nanoceria as a phosphatase mimic for degradation and detection of organophosphate. Anal Methods 2021;13:4747-55. [PMID: 34559169 DOI: 10.1039/d1ay01080h] [Reference Citation Analysis]
444 Kim CK, Kim T, Choi I, Soh M, Kim D, Kim Y, Jang H, Yang H, Kim JY, Park H, Park SP, Park S, Yu T, Yoon B, Lee S, Hyeon T. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angew Chem Int Ed 2012;51:11039-43. [DOI: 10.1002/anie.201203780] [Cited by in Crossref: 299] [Cited by in F6Publishing: 261] [Article Influence: 29.9] [Reference Citation Analysis]
445 Bülbül G, Hayat A, Liu X, Andreescu S. Reactivity of nanoceria particles exposed to biologically relevant catechol-containing molecules. RSC Adv 2016;6:60007-14. [DOI: 10.1039/c6ra07279h] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
446 Xu C, Bing W, Wang F, Ren J, Qu X. Versatile Dual Photoresponsive System for Precise Control of Chemical Reactions. ACS Nano 2017;11:7770-80. [DOI: 10.1021/acsnano.7b01450] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
447 Falchi L, Bogliolo L, Galleri G, Ariu F, Zedda MT, Pinna A, Malfatti L, Innocenzi P, Ledda S. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology 2016;85:1274-81.e3. [PMID: 26777564 DOI: 10.1016/j.theriogenology.2015.12.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
448 Cho J, Bass M, Babu S, Dowding JM, Self WT, Seal S. Up conversion luminescence of Yb3+–Er3+ codoped CeO2 nanocrystals with imaging applications. Journal of Luminescence 2012;132:743-9. [DOI: 10.1016/j.jlumin.2011.11.011] [Cited by in Crossref: 49] [Cited by in F6Publishing: 23] [Article Influence: 4.9] [Reference Citation Analysis]
449 Kamada K, Yamada A, Soh N. Enhanced catalytic activity of enzymes interacting with nanometric titanate nanosheets. RSC Adv 2015;5:85511-6. [DOI: 10.1039/c5ra14848k] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
450 Diaconeasa Z, Rugină D, Coman C, Socaciu C, Leopold L, Vulpoi A, Tăbăran F, Suciu M, Mesaroş A, Popa LM, Pop O, Simon S, Pintea A. New insights regarding the selectivity and the uptake potential of nanoceria by human cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;532:132-9. [DOI: 10.1016/j.colsurfa.2017.05.081] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
451 Chen H, Motuzas J, Martens W, Diniz da Costa JC. Degradation of orange II dye under dark ambient conditions by MeSrCuO (Me = Mg and Ce) metal oxides. Separation and Purification Technology 2018;205:293-301. [DOI: 10.1016/j.seppur.2018.05.029] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
452 Rebouças JS, Spasojević I, Batinić-haberle I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure–activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem 2008;13:289-302. [DOI: 10.1007/s00775-007-0324-9] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 5.2] [Reference Citation Analysis]
453 Hao C, Tang Y, Shi W, Chen F, Guo F. Facile solvothermal synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chemical Engineering Journal 2021;409:128168. [DOI: 10.1016/j.cej.2020.128168] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 21.0] [Reference Citation Analysis]
454 He X, Kuang Y, Li Y, Zhang H, Ma Y, Bai W, Zhang Z, Wu Z, Zhao Y, Chai Z. Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology 2011;6:233-40. [DOI: 10.3109/17435390.2011.569097] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
455 Bao Q, Hu P, Xu Y, Cheng T, Wei C, Pan L, Shi J. Simultaneous Blood–Brain Barrier Crossing and Protection for Stroke Treatment Based on Edaravone-Loaded Ceria Nanoparticles. ACS Nano 2018;12:6794-805. [DOI: 10.1021/acsnano.8b01994] [Cited by in Crossref: 90] [Cited by in F6Publishing: 83] [Article Influence: 22.5] [Reference Citation Analysis]
456 Wu Y, Yang Y, Zhao W, Xu ZP, Little PJ, Whittaker AK, Zhang R, Ta HT. Novel iron oxide-cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. J Mater Chem B 2018;6:4937-51. [PMID: 32255067 DOI: 10.1039/c8tb00022k] [Cited by in Crossref: 37] [Cited by in F6Publishing: 8] [Article Influence: 9.3] [Reference Citation Analysis]
457 Liu Q, Jiang Y, Zhang L, Zhou X, Lv X, Ding Y, Sun L, Chen P, Yin H. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2. Materials Science and Engineering: C 2016;65:109-15. [DOI: 10.1016/j.msec.2016.04.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
458 Ozel RE, Hayat A, Wallace KN, Andreescu S. Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish. RSC Adv 2013;3:15298-309. [PMID: 24015353 DOI: 10.1039/C3RA41739E] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.7] [Reference Citation Analysis]
459 Liu Y, Shi J. Antioxidative nanomaterials and biomedical applications. Nano Today 2019;27:146-77. [DOI: 10.1016/j.nantod.2019.05.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
460 Girigoswami K. Toxicity of Metal Oxide Nanoparticles. Adv Exp Med Biol 2018;1048:99-122. [PMID: 29453535 DOI: 10.1007/978-3-319-72041-8_7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
461 Hu M, Korschelt K, Daniel P, Landfester K, Tremel W, Bannwarth MB. Fibrous Nanozyme Dressings with Catalase-Like Activity for H 2 O 2 Reduction To Promote Wound Healing. ACS Appl Mater Interfaces 2017;9:38024-31. [DOI: 10.1021/acsami.7b12212] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 7.4] [Reference Citation Analysis]
462 Livraghi S, Paganini MC, Giamello E, Di Liberto G, Tosoni S, Pacchioni G. Formation of Reversible Adducts by Adsorption of Oxygen on Ce–ZrO 2 : An Unusual η 2 Ionic Superoxide. J Phys Chem C 2019;123:27088-96. [DOI: 10.1021/acs.jpcc.9b08615] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
463 Thapa S, Li H, Ohair J, Bhatti S, Chen F, Nasr KA, Johnson T, Zhou S. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019;61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
464 Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I, Herance JR, Rocha M, Vila JM, Victor VM. Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev 2018;2018:6231482. [PMID: 30356429 DOI: 10.1155/2018/6231482] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 12.8] [Reference Citation Analysis]
465 Yuan K, Mei J, Shao D, Zhou F, Qiao H, Liang Y, Li K, Tang T. Cerium Oxide Nanoparticles Regulate Osteoclast Differentiation Bidirectionally by Modulating the Cellular Production of Reactive Oxygen Species. Int J Nanomedicine 2020;15:6355-72. [PMID: 32922006 DOI: 10.2147/IJN.S257741] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
466 Rim K-T. Chapter 1 Trends in Occupational Toxicology of Rare Earth Elements. In: Pagano G, editor. Rare Earth Elements in Human and Environmental Health. Penthouse Level: Pan Stanford Publishing; 2016. pp. 11-46. [DOI: 10.1201/9781315364735-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
467 Singh R, Singh S. Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia. Colloids Surf B Biointerfaces 2019;175:625-35. [PMID: 30583218 DOI: 10.1016/j.colsurfb.2018.12.042] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
468 Kim J, Hong G, Mazaleuskaya L, Hsu JC, Rosario-Berrios DN, Grosser T, Cho-Park PF, Cormode DP. Ultrasmall Antioxidant Cerium Oxide Nanoparticles for Regulation of Acute Inflammation. ACS Appl Mater Interfaces 2021;13:60852-64. [PMID: 34914872 DOI: 10.1021/acsami.1c16126] [Reference Citation Analysis]
469 Liu Y, Liu J. Adsorption of Nanoceria by Phosphocholine Liposomes. Langmuir 2016;32:13276-83. [PMID: 27951710 DOI: 10.1021/acs.langmuir.6b03342] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
470 Yuan C, Jiang B, Xu X, Wan Y, Wang L, Chen J. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. Journal of Experimental Nanoscience 2022;17:113-25. [DOI: 10.1080/17458080.2021.2011860] [Reference Citation Analysis]
471 Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. Nanomedicine 2015;11:2033-40. [PMID: 26255114 DOI: 10.1016/j.nano.2015.07.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
472 Babu S, Thanneeru R, Inerbaev T, Day R, Masunov AE, Schulte A, Seal S. Dopant-mediated oxygen vacancy tuning in ceria nanoparticles. Nanotechnology 2009;20:085713. [DOI: 10.1088/0957-4484/20/8/085713] [Cited by in Crossref: 117] [Cited by in F6Publishing: 79] [Article Influence: 9.0] [Reference Citation Analysis]
473 Li M, Shi P, Xu C, Ren J, Qu X. Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem Sci 2013;4:2536. [DOI: 10.1039/c3sc50697e] [Cited by in Crossref: 96] [Cited by in F6Publishing: 59] [Article Influence: 10.7] [Reference Citation Analysis]
474 Woan K, Tsai Y, Sigmund W. Synthesis and characterization of luminescent cerium oxide nanoparticles. Nanomedicine 2010;5:233-42. [DOI: 10.2217/nnm.09.106] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
475 Strobel C, Förster M, Hilger I. Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells. Beilstein J Nanotechnol 2014;5:1795-807. [PMID: 25383291 DOI: 10.3762/bjnano.5.190] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
476 Jansman MMT, Hosta-rigau L. Cerium- and Iron-Oxide-Based Nanozymes in Tissue Engineering and Regenerative Medicine. Catalysts 2019;9:691. [DOI: 10.3390/catal9080691] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
477 Rzigalinski BA, Carfagna CS, Ehrich M. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27860449 DOI: 10.1002/wnan.1444] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
478 Khan MS, Qureshi NA, Jabeen F. Ameliorative role of nano-ceria against amine coated Ag-NP induced toxicity in Labeo rohita. Appl Nanosci 2018;8:323-37. [DOI: 10.1007/s13204-018-0733-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
479 Malyukin Y, Seminko V, Maksimchuk P, Okrushko E, Sedyh O, Zorenko Y. Hydrogen peroxide sensing using Ce3+ luminescence of cerium oxide (CeO2-x) nanoparticles. Optical Materials 2018;85:303-7. [DOI: 10.1016/j.optmat.2018.08.063] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
480 Huang X, Beck MJ. Surface structure of catalytically-active ceria nanoparticles. Computational Materials Science 2014;91:122-33. [DOI: 10.1016/j.commatsci.2014.04.037] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
481 Cao W, Gong J, Zeng G, Song B, Zhang P, Li J, Fang S, Tang S, Qin L, Ye J, Cai Z. Abiotic mediation of common ions on the co-exposure of CeO2 NPs with Sb (III) or Sb (V) to Glycine max (Linn.) Merrill. (Soybean): Impacts on uptake, accumulation and physiochemical characters. Environ Pollut 2020;267:115594. [PMID: 33254729 DOI: 10.1016/j.envpol.2020.115594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
482 Fa M, Yang D, Gao L, Zhao R, Luo Y, Yao X. The effect of AuNP modification on the antioxidant activity of CeO2 nanomaterials with different morphologies. Applied Surface Science 2018;457:352-9. [DOI: 10.1016/j.apsusc.2018.06.277] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
483 Pan MM, Ouyang Y, Song YL, Si LQ, Jiang M, Yu X, Xu L, Willner I. Au3+ -Functionalized UiO-67 Metal-Organic Framework Nanoparticles: O2 •- and •OH Generating Nanozymes and Their Antibacterial Functions. Small 2022;:e2200548. [PMID: 35460191 DOI: 10.1002/smll.202200548] [Reference Citation Analysis]
484 Khoshgozaran Roudbaneh SZ, Kahbasi S, Sohrabi MJ, Hasan A, Salihi A, Mirzaie A, Niyazmand A, Qadir Nanakali NM, Shekha MS, Aziz FM, Vaghar-lahijani G, Keshtali AB, Ehsani E, Rasti B, Falahati M. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. Journal of Molecular Liquids 2019;296:111839. [DOI: 10.1016/j.molliq.2019.111839] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
485 Alili L, Sack M, Karakoti AS, Teuber S, Puschmann K, Hirst SM, Reilly CM, Zanger K, Stahl W, Das S. Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor-stroma interactions. Biomaterials. 2011;32:2918-2929. [PMID: 21269688 DOI: 10.1016/j.biomaterials.2010.12.056] [Cited by in Crossref: 146] [Cited by in F6Publishing: 131] [Article Influence: 13.3] [Reference Citation Analysis]
486 Ernst LM, Casals E, Italiani P, Boraschi D, Puntes V. The Interactions between Nanoparticles and the Innate Immune System from a Nanotechnologist Perspective. Nanomaterials (Basel) 2021;11:2991. [PMID: 34835755 DOI: 10.3390/nano11112991] [Reference Citation Analysis]
487 Jin H, Ye D, Shen L, Fu R, Tang Y, Jung JC, Zhao H, Zhang J. Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Anal Chem 2022. [PMID: 35014271 DOI: 10.1021/acs.analchem.1c04496] [Reference Citation Analysis]
488 Tułodziecka A, Szydłowska-czerniak A. Determination of Total Antioxidant Capacity of Rapeseed and Its By-Products by a Novel Cerium Oxide Nanoparticle-Based Spectrophotometric Method. Food Anal Methods 2016;9:3053-62. [DOI: 10.1007/s12161-016-0473-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
489 Singh KR, Nayak V, Sarkar T, Singh RP. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 2020;10:27194-214. [DOI: 10.1039/d0ra04736h] [Cited by in Crossref: 30] [Article Influence: 15.0] [Reference Citation Analysis]
490 Dutta D, Mukherjee R, Ghosh S, Patra M, Mukherjee M, Basu T. Cerium Oxide Nanoparticles as Antioxid ant or Pro-oxidant Agents. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.1c04518] [Reference Citation Analysis]
491 Rubio L, Marcos R, Hernández A. Nanoceria acts as antioxidant in tumoral and transformed cells. Chemico-Biological Interactions 2018;291:7-15. [DOI: 10.1016/j.cbi.2018.06.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
492 Nicolini V, Malavasi G, Lusvardi G, Zambon A, Benedetti F, Cerrato G, Valeri S, Luches P. Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity. Ceramics International 2019;45:20910-20. [DOI: 10.1016/j.ceramint.2019.07.080] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
493 Nalabotu SK, Kolli MB, Triest WE, Ma JY, Manne ND, Katta A, Addagarla HS, Rice KM, Blough ER. Intratracheal instillation of cerium oxide nanoparticles induces hepatic toxicity in male Sprague-Dawley rats. Int J Nanomedicine 2011;6:2327-35. [PMID: 22072870 DOI: 10.2147/IJN.S25119] [Cited by in Crossref: 87] [Cited by in F6Publishing: 37] [Article Influence: 7.9] [Reference Citation Analysis]
494 Pardhiya S, Priyadarshini E, Rajamani P. In vitro antioxidant activity of synthesized BSA conjugated manganese dioxide nanoparticles. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03407-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
495 Dong W, Huang Y. CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Mikrochim Acta 2019;187:11. [PMID: 31802246 DOI: 10.1007/s00604-019-4032-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
496 Wang B, Wu P, Yokel RA, Grulke EA. Influence of surface charge on lysozyme adsorption to ceria nanoparticles. Applied Surface Science 2012;258:5332-41. [DOI: 10.1016/j.apsusc.2012.01.142] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
497 Khan SA, Ahmad A. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Materials Research Bulletin 2013;48:4134-8. [DOI: 10.1016/j.materresbull.2013.06.038] [Cited by in Crossref: 45] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
498 Soh M, Kang DW, Jeong HG, Kim D, Kim DY, Yang W, Song C, Baik S, Choi IY, Ki SK, Kwon HJ, Kim T, Kim CK, Lee SH, Hyeon T. Ceria-Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment. Angew Chem Int Ed Engl 2017;56:11399-403. [PMID: 28643857 DOI: 10.1002/anie.201704904] [Cited by in Crossref: 121] [Cited by in F6Publishing: 112] [Article Influence: 24.2] [Reference Citation Analysis]
499 Parnian MJ, Rowshanzamir S, Prasad AK, Advani SG. Effect of ceria loading on performance and durability of sulfonated poly (ether ether ketone) nanocomposite membranes for proton exchange membrane fuel cell applications. Journal of Membrane Science 2018;565:342-57. [DOI: 10.1016/j.memsci.2018.08.029] [Cited by in Crossref: 35] [Cited by in F6Publishing: 13] [Article Influence: 8.8] [Reference Citation Analysis]
500 Bulbul G, Hayat A, Andreescu S. A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag. Nanoscale 2015;7:13230-8. [PMID: 26186604 DOI: 10.1039/c5nr02628h] [Cited by in Crossref: 46] [Cited by in F6Publishing: 12] [Article Influence: 6.6] [Reference Citation Analysis]
501 Trogadas P, Parrondo J, Ramani V. Degradation Mitigation in Polymer Electrolyte Membranes Using Cerium Oxide as a Regenerative Free-Radical Scavenger. Electrochem Solid-State Lett 2008;11:B113. [DOI: 10.1149/1.2916443] [Cited by in Crossref: 132] [Cited by in F6Publishing: 78] [Article Influence: 9.4] [Reference Citation Analysis]
502 Sozarukova MM, Shestakova MA, Teplonogova MA, Izmailov DY, Proskurnina EV, Ivanov VK. Quantification of Free Radical Scavenging Properties and SOD-Like Activity of Cerium Dioxide Nanoparticles in Biochemical Models. Russ J Inorg Chem 2020;65:597-605. [DOI: 10.1134/s0036023620040208] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
503 Babu KS, Anandkumar M, Tsai TY, Kao TH, Inbaraj BS, Chen BH. Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int J Nanomedicine 2014;9:5515-31. [PMID: 25473288 DOI: 10.2147/IJN.S70087] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
504 Kim DH, Hur J, Park HG, Il Kim M. Reagentless colorimetric biosensing platform based on nanoceria within an agarose gel matrix. Biosensors and Bioelectronics 2017;93:226-33. [DOI: 10.1016/j.bios.2016.08.113] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
505 Zatoń M, Rozière J, Jones DJ. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review. Sustainable Energy Fuels 2017;1:409-38. [DOI: 10.1039/c7se00038c] [Cited by in Crossref: 103] [Article Influence: 20.6] [Reference Citation Analysis]
506 Bae J, Lim Y, Park J, Lee D, Hong S, An J, Kim Y. Thermally-Induced Dopant Segregation Effects on the Space Charge Layer and Ionic Conductivity of Nanocrystalline Gadolinia-Doped Ceria. J Electrochem Soc 2016;163:F919-26. [DOI: 10.1149/2.1201608jes] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
507 Canesi L, Balbi T, Fabbri R, Salis A, Damonte G, Volland M, Blasco J. Biomolecular coronas in invertebrate species: Implications in the environmental impact of nanoparticles. NanoImpact 2017;8:89-98. [DOI: 10.1016/j.impact.2017.08.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 7.4] [Reference Citation Analysis]
508 Wang J, Zhang B, Sun J, Wang Y, Wang H. Nanomedicine-Enabled Modulation of Tumor Hypoxic Microenvironment for Enhanced Cancer Therapy. Adv Ther (Weinh) 2020;3:1900083. [PMID: 34277929 DOI: 10.1002/adtp.201900083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
509 Chen S, Hou Y, Cheng G, Zhang C, Wang S, Zhang J. Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress. Biol Trace Elem Res. 2013;154:156-166. [PMID: 23740524 DOI: 10.1007/s12011-013-9678-8] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 8.4] [Reference Citation Analysis]
510 Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. Environ Sci Pollut Res Int 2021. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Reference Citation Analysis]
511 Hasanzadeh L, Darroudi M, Ramezanian N, Zamani P, Aghaee-bakhtiari SH, Nourmohammadi E, Kazemi Oskuee R. Polyethylenimine-associated cerium oxide nanoparticles: A novel promising gene delivery vector. Life Sciences 2019;232:116661. [DOI: 10.1016/j.lfs.2019.116661] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
512 Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008;29:2705-9. [PMID: 18395249 DOI: 10.1016/j.biomaterials.2008.03.014] [Cited by in Crossref: 584] [Cited by in F6Publishing: 509] [Article Influence: 41.7] [Reference Citation Analysis]
513 Vassie JA, Whitelock JM, Lord MS. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater 2017;50:127-41. [PMID: 27940194 DOI: 10.1016/j.actbio.2016.12.010] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
514 Pezzini I, Marino A, Del Turco S, Nesti C, Doccini S, Cappello V, Gemmi M, Parlanti P, Santorelli FM, Mattoli V, Ciofani G. Cerium oxide nanoparticles: the regenerative redox machine in bioenergetic imbalance. Nanomedicine 2017;12:403-16. [DOI: 10.2217/nnm-2016-0342] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 6.6] [Reference Citation Analysis]
515 Neal CJ, Gupta A, Barkam S, Saraf S, Das S, Cho HJ, Seal S. Picomolar Detection of Hydrogen Peroxide using Enzyme-free Inorganic Nanoparticle-based Sensor. Sci Rep 2017;7:1324. [PMID: 28465561 DOI: 10.1038/s41598-017-01356-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
516 Naganuma T. Tunable phosphate-mediated stability of Ce3+ ions in cerium oxide nanoparticles for enhanced switching efficiency of their anti/pro-oxidant activities. Biomater Sci 2021;9:1345-54. [PMID: 33367328 DOI: 10.1039/d0bm01860k] [Reference Citation Analysis]
517 Kar S, Patel C, Santra S. Direct Room Temperature Synthesis of Valence State Engineered Ultra-Small Ceria Nanoparticles: Investigation on the Role of Ethylenediamine as a Capping Agent. J Phys Chem C 2009;113:4862-7. [DOI: 10.1021/jp811275k] [Cited by in Crossref: 52] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
518 Lu W, Chen S, Zhang H, Qiu J, Liu X. Fe-N-C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. Journal of Materiomics 2022. [DOI: 10.1016/j.jmat.2022.04.011] [Reference Citation Analysis]
519 Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, Reilly CM. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2013;28:107-118. [PMID: 21618676 DOI: 10.1002/tox.20704] [Cited by in Crossref: 172] [Cited by in F6Publishing: 154] [Article Influence: 15.6] [Reference Citation Analysis]
520 Rahdar A, Aliahmad M, Hajinezhad MR, Samani M. Xanthan gum-stabilized nano-ceria: Green chemistry based synthesis, characterization, study of biochemical alterations induced by intraperitoneal doses of nanoparticles in rat. Journal of Molecular Structure 2018;1173:166-72. [DOI: 10.1016/j.molstruc.2018.06.092] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
521 Wang L, Advani SG, Prasad AK. Degradation reduction of polymer electrolyte membranes using CeO2 as a free-radical scavenger in catalyst layer. Electrochimica Acta 2013;109:775-80. [DOI: 10.1016/j.electacta.2013.07.189] [Cited by in Crossref: 31] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
522 Sridharan P, Vinothkumar G, Pratheesh P, Babu KS. Biomimetic potential of cerium oxide nanoparticles in modulating the metabolic gene signature in GBM-derived cell lines. J Mater Sci 2020;55:11622-36. [DOI: 10.1007/s10853-020-04872-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
523 Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YV. The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012;409:176-82. [DOI: 10.1016/j.colsurfa.2012.06.019] [Cited by in Crossref: 36] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
524 Nourmohammadi E, Khoshdel-sarkarizi H, Nedaeinia R, Sadeghnia HR, Hasanzadeh L, Darroudi M, Kazemi oskuee R. Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J Cell Physiol 2019;234:4987-96. [DOI: 10.1002/jcp.27303] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
525 Zhang Y, Tian X, Li X. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu(II) binding and co-assembling. J Mater Chem B 2022. [PMID: 35451448 DOI: 10.1039/d2tb00375a] [Reference Citation Analysis]
526 Muthuvel A, Jothibas M, Manoharan C, Jayakumar SJ. Synthesis of CeO2-NPs by chemical and biological methods and their photocatalytic, antibacterial and in vitro antioxidant activity. Res Chem Intermed 2020;46:2705-29. [DOI: 10.1007/s11164-020-04115-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
527 Röhder LA, Brandt T, Sigg L, Behra R. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquatic Toxicology 2014;152:121-30. [DOI: 10.1016/j.aquatox.2014.03.027] [Cited by in Crossref: 66] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
528 Nourmohammadi E, Khoshdel-Sarkarizi H, Nedaeinia R, Darroudi M, Kazemi Oskuee R. Cerium oxide nanoparticles: A promising tool for the treatment of fibrosarcoma in-vivo. Mater Sci Eng C Mater Biol Appl 2020;109:110533. [PMID: 32229006 DOI: 10.1016/j.msec.2019.110533] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
529 Zatoń M, Rozière J, Jones DJ. Mitigation of PFSA membrane chemical degradation using composite cerium oxide–PFSA nanofibres. J Mater Chem A 2017;5:5390-401. [DOI: 10.1039/c6ta10977b] [Cited by in Crossref: 24] [Article Influence: 4.8] [Reference Citation Analysis]
530 Cimini A, D’angelo B, Das S, Gentile R, Benedetti E, Singh V, Monaco AM, Santucci S, Seal S. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomaterialia 2012;8:2056-67. [DOI: 10.1016/j.actbio.2012.01.035] [Cited by in Crossref: 100] [Cited by in F6Publishing: 94] [Article Influence: 10.0] [Reference Citation Analysis]
531 Wang W, Zhu Q, Qin F, Dai Q, Wang X. Fe doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid. Chemical Engineering Journal 2018;333:226-39. [DOI: 10.1016/j.cej.2017.08.065] [Cited by in Crossref: 84] [Cited by in F6Publishing: 47] [Article Influence: 21.0] [Reference Citation Analysis]
532 Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016;3:41-60. [DOI: 10.1039/c5qi00240k] [Cited by in Crossref: 378] [Cited by in F6Publishing: 6] [Article Influence: 63.0] [Reference Citation Analysis]
533 Li Y, Li Y, Bai Y, Lin L, Sun Y. High catalytic efficiency from Er3+-doped CeO2-x nanoprobes for in vivo acute oxidative damage and inflammation therapy. J Mater Chem B 2020;8:8634-43. [PMID: 32839792 DOI: 10.1039/d0tb01463j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
534 Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L. Ce 3+ Ions Determine Redox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles. ACS Nano 2011;5:4537-49. [DOI: 10.1021/nn200126a] [Cited by in Crossref: 256] [Cited by in F6Publishing: 216] [Article Influence: 23.3] [Reference Citation Analysis]
535 Hou Y, Wang J, Liu J, Hou C, Xiu Z, Fan Y, Zhao L, Zhai Y, Li H, Zeng J, Gao X, Zhou S, Li D, Li Y, Dang F, Liang K, Chen P, Li C, Zhao D, Kong B. Interfacial Super‐Assembled Porous CeO 2 /C Frameworks Featuring Efficient and Sensitive Decomposing Li 2 O 2 for Smart Li–O 2 Batteries. Adv Energy Mater 2019;9:1901751. [DOI: 10.1002/aenm.201901751] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 11.7] [Reference Citation Analysis]
536 Yao C, Wang W, Wang P, Zhao M, Li X, Zhang F. Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent pH-/H 2 O 2 -Responsive O 2 -Evolving Synergetic Cancer Therapy. Adv Mater 2018;30:1704833. [DOI: 10.1002/adma.201704833] [Cited by in Crossref: 206] [Cited by in F6Publishing: 183] [Article Influence: 51.5] [Reference Citation Analysis]
537 Hammouda HF, Farag MM, El Deftar MMF, Abdel-gabbar M, Mohamed BM. Effect of Ce-doped bioactive glass/collagen/chitosan nanocomposite scaffolds on the cell morphology and proliferation of rabbit’s bone marrow mesenchymal stem cells-derived osteogenic cells. J Genet Eng Biotechnol 2022;20. [DOI: 10.1186/s43141-022-00302-x] [Reference Citation Analysis]
538 Pautler R, Kelly EY, Huang PJ, Cao J, Liu B, Liu J. Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Appl Mater Interfaces 2013;5:6820-5. [DOI: 10.1021/am4018863] [Cited by in Crossref: 137] [Cited by in F6Publishing: 121] [Article Influence: 15.2] [Reference Citation Analysis]
539 Panky S, Thandavan K, Sivalingam D, Sethuraman S, Krishnan UM, Jeyaprakash BG, Rayappan JBB. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing. Materials Chemistry and Physics 2013;137:892-7. [DOI: 10.1016/j.matchemphys.2012.10.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
540 Wang C, Jing L, Chen M, Meng Z, Chen Z, Chen F, Oh W. Biotemplate Synthesis of Micron Braid Structure CeO2-TiO2 Composite and Analysis of its Catalytic Behavior for CO Oxidation. J Korean Ceram Soc 2017;54:23-7. [DOI: 10.4191/kcers.2017.54.1.07] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
541 Vinothkumar G, Rengaraj S, Arunkumar P, Cha SW, Suresh Babu K. Ionic Radii and Concentration Dependency of RE 3+ (Eu 3+ , Nd 3+ , Pr 3+ , and La 3+ )-Doped Cerium Oxide Nanoparticles for Enhanced Multienzyme-Mimetic and Hydroxyl Radical Scavenging Activity. J Phys Chem C 2019;123:541-53. [DOI: 10.1021/acs.jpcc.8b10108] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
542 Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’silva P, Mugesh G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 2014;5. [DOI: 10.1038/ncomms6301] [Cited by in Crossref: 205] [Cited by in F6Publishing: 179] [Article Influence: 25.6] [Reference Citation Analysis]
543 Podder S, Ghosh CK, Das A, Hardy JG. Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. emergent mater . [DOI: 10.1007/s42247-022-00361-3] [Reference Citation Analysis]
544 Yu T, Lim B, Xia Y. Aqueous-Phase Synthesis of Single-Crystal Ceria Nanosheets. Angewandte Chemie International Edition 2010;49:4484-7. [DOI: 10.1002/anie.201001521] [Cited by in Crossref: 181] [Cited by in F6Publishing: 156] [Article Influence: 15.1] [Reference Citation Analysis]
545 Li Y, He X, Yin J, Ma Y, Zhang P, Li J, Ding Y, Zhang J, Zhao Y, Chai Z, Zhang Z. Acquired Superoxide-Scavenging Ability of Ceria Nanoparticles. Angew Chem 2015;127:1852-5. [DOI: 10.1002/ange.201410398] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
546 Hu X, Saran A, Hou S, Wen T, Ji Y, Liu W, Zhang H, He W, Yin J, Wu X. Au@PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Adv 2013;3:6095. [DOI: 10.1039/c3ra23215h] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
547 Ma X, Cheng Y, Jian H, Feng Y, Chang Y, Zheng R, Wu X, Wang L, Li X, Zhang H. Hollow, Rough, and Nitric Oxide‐Releasing Cerium Oxide Nanoparticles for Promoting Multiple Stages of Wound Healing. Adv Healthcare Mater 2019;8:1900256. [DOI: 10.1002/adhm.201900256] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
548 Meng S, Yao Z, Liu J, Wang E, Li C, Jiang B, Xu Z. Carbon dots capped cerium oxide nanoparticles for highly efficient removal and sensitive detection of fluoride. J Hazard Mater 2022;435:128976. [PMID: 35472541 DOI: 10.1016/j.jhazmat.2022.128976] [Reference Citation Analysis]
549 Pal P, Pahari SK, Sinhamahapatra A, Jayachandran M, Kiruthika GVM, Bajaj HC, Panda AB. CeO2 nanowires with high aspect ratio and excellent catalytic activity for selective oxidation of styrene by molecular oxygen. RSC Adv 2013;3:10837. [DOI: 10.1039/c3ra23485a] [Cited by in Crossref: 41] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
550 Bhushan B, Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B 2015;3:4843-52. [PMID: 32262673 DOI: 10.1039/c5tb00572h] [Cited by in Crossref: 38] [Cited by in F6Publishing: 2] [Article Influence: 5.4] [Reference Citation Analysis]
551 Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021;175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Reference Citation Analysis]
552 Yuk SA, Sanchez-Rodriguez DA, Tsifansky MD, Yeo Y. Recent advances in nanomedicine for sepsis treatment. Ther Deliv. 2018;9:435-450. [PMID: 29722636 DOI: 10.4155/tde-2018-0009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
553 Jiang L, Tinoco M, Fernández-García S, Sun Y, Traviankina M, Nan P, Xue Q, Pan H, Aguinaco A, González-Leal JM, Blanco G, Blanco E, Hungría AB, Calvino JJ, Chen X. Enhanced Artificial Enzyme Activities on the Reconstructed Sawtoothlike Nanofacets of Pure and Pr-Doped Ceria Nanocubes. ACS Appl Mater Interfaces 2021;13:38061-73. [PMID: 34365790 DOI: 10.1021/acsami.1c09992] [Reference Citation Analysis]
554 Shang Y, Liu F, Wang Y, Li N, Ding B. Enzyme Mimic Nanomaterials and Their Biomedical Applications. Chembiochem 2020;21:2408-18. [PMID: 32227615 DOI: 10.1002/cbic.202000123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
555 Xie J, Zhang X, Wang H, Zheng H, Huang Y, Xie J. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends in Analytical Chemistry 2012;39:114-29. [DOI: 10.1016/j.trac.2012.03.021] [Cited by in Crossref: 196] [Cited by in F6Publishing: 162] [Article Influence: 19.6] [Reference Citation Analysis]
556 Hardas SS, Sultana R, Warrier G, Dan M, Wu P, Grulke EA, Tseng MT, Unrine JM, Graham UM, Yokel RA, Butterfield DA. Rat hippocampal responses up to 90 days after a single nanoceria dose extends a hierarchical oxidative stress model for nanoparticle toxicity. Nanotoxicology 2014;8:155-66. [DOI: 10.3109/17435390.2013.868059] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
557 Chen Y, Tan J, Zhang Q, Xin T, Yu Y, Nie Y, Zhang S. Artificial Organelles Based on Cross-Linked Zwitterionic Vesicles. Nano Lett 2020;20:6548-55. [DOI: 10.1021/acs.nanolett.0c02298] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
558 Song H, Wang H, Li X, Peng Y, Pan J, Niu X. Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(Ⅳ) ions. Analytica Chimica Acta 2018;1044:154-61. [DOI: 10.1016/j.aca.2018.09.045] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
559 Hayat A, Andreescu S. Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays. Anal Chem 2013;85:10028-32. [DOI: 10.1021/ac4020963] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 7.2] [Reference Citation Analysis]
560 Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020;25:E4559. [PMID: 33036163 DOI: 10.3390/molecules25194559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
561 Siposova K, Huntosova V, Shlapa Y, Lenkavska L, Macajova M, Belous A, Musatov A. Advances in the Study of Cerium Oxide Nanoparticles: New Insights into Antiamyloidogenic Activity. ACS Appl Bio Mater 2019;2:1884-96. [DOI: 10.1021/acsabm.8b00816] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
562 Singh N, NaveenKumar SK, Geethika M, Mugesh G. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew Chem Int Ed Engl 2021;60:3121-30. [PMID: 33079465 DOI: 10.1002/anie.202011711] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
563 Liu B, Huang Z, Liu J. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F detection. Nanoscale 2016;8:13562-7. [DOI: 10.1039/c6nr02730j] [Cited by in Crossref: 137] [Cited by in F6Publishing: 12] [Article Influence: 22.8] [Reference Citation Analysis]
564 Wang N, Li W, Ren Y, Duan J, Zhai X, Guan F, Wang L, Hou B. Investigating the properties of nano core-shell CeO2@C as haloperoxidase mimicry catalyst for antifouling applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;608:125592. [DOI: 10.1016/j.colsurfa.2020.125592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
565 Prakash V, Peralta-Videa J, Tripathi DK, Ma X, Sharma S. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum. Ecotoxicol Environ Saf 2021;221:112403. [PMID: 34147863 DOI: 10.1016/j.ecoenv.2021.112403] [Reference Citation Analysis]
566 Ruotolo R, De Giorgio G, Minato I, Bianchi MG, Bussolati O, Marmiroli N. Cerium Oxide Nanoparticles Rescue α-Synuclein-Induced Toxicity in a Yeast Model of Parkinson's Disease. Nanomaterials (Basel) 2020;10:E235. [PMID: 32013138 DOI: 10.3390/nano10020235] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
567 Seo J, Moon J, Kim JH, Lee K, Hwang J, Yoon H, Yi DK, Paik U. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption. Applied Surface Science 2016;389:311-5. [DOI: 10.1016/j.apsusc.2016.06.193] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
568 Falchi L, Galleri G, Dore GM, Zedda MT, Pau S, Bogliolo L, Ariu F, Pinna A, Nieddu S, Innocenzi P, Ledda S. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4 °C for 96 hours. Reprod Biol Endocrinol 2018;16:19. [PMID: 29510737 DOI: 10.1186/s12958-018-0339-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
569 Peng L, He X, Zhang P, Zhang J, Li Y, Zhang J, Ma Y, Ding Y, Wu Z, Chai Z, Zhang Z. Comparative pulmonary toxicity of two ceria nanoparticles with the same primary size. Int J Mol Sci 2014;15:6072-85. [PMID: 24727375 DOI: 10.3390/ijms15046072] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
570 Kamada K, Soh N. Enzyme-mimetic activity of Ce-intercalated titanate nanosheets. J Phys Chem B 2015;119:5309-14. [PMID: 25822086 DOI: 10.1021/jp512038x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
571 Liu Y, Wu H, Chong Y, Wamer WG, Xia Q, Cai L, Nie Z, Fu PP, Yin JJ. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics. ACS Appl Mater Interfaces 2015;7:19709-17. [PMID: 26305170 DOI: 10.1021/acsami.5b05180] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
572 Ji P, Wang L, Chen F, Zhang J. Ce3+-Centric Organic Pollutant Elimination by CeO2 in the Presence of H2O2. ChemCatChem 2010;2:1552-4. [DOI: 10.1002/cctc.201000191] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
573 Saleh H, Nassar AMK, Noreldin AE, Samak D, Elshony N, Wasef L, Elewa YHA, Hassan SMA, Saati AA, Hetta HF, Batiha GE, Umezawa M, Shaheen HM, El-Sayed YS. Chemo-Protective Potential of Cerium Oxide Nanoparticles against Fipronil-Induced Oxidative Stress, Apoptosis, Inflammation and Reproductive Dysfunction in Male White Albino Rats. Molecules 2020;25:E3479. [PMID: 32751827 DOI: 10.3390/molecules25153479] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
574 Devasvaran K, Lim V. Green synthesis of metallic nanoparticles using pectin as a reducing agent: a systematic review of the biological activities. Pharm Biol 2021;59:494-503. [PMID: 33905665 DOI: 10.1080/13880209.2021.1910716] [Reference Citation Analysis]
575 Lord MS, Jung M, Teoh WY, Gunawan C, Vassie JA, Amal R, Whitelock JM. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials 2012;33:7915-24. [DOI: 10.1016/j.biomaterials.2012.07.024] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 8.5] [Reference Citation Analysis]
576 Fisher TJ, Zhou Y, Wu T, Wang M, Soo Y, Cheung CL. Structure–activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals. Nanoscale 2019;11:4552-61. [DOI: 10.1039/c8nr09393h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
577 Meng J, Li H, Chen R, Sun X, Sun X. Enzyme‐Like Catalytic Activity of Porphyrin‐Functionalized Ceria Nanotubes for Water Oxidation. ChemPlusChem 2019;84:1816-22. [DOI: 10.1002/cplu.201900625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
578 Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. Nanomicro Lett 2022;14:95. [PMID: 35384520 DOI: 10.1007/s40820-022-00828-2] [Reference Citation Analysis]
579 Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, Ferreira CA, Wang Y, Yao H, Sun T, Jiang D, Li S, Cao T, Liu Z, Engle JW, Hu P, Lan X, Cai W. Ceria Nanoparticles Meet Hepatic Ischemia-Reperfusion Injury: The Perfect Imperfection. Adv Mater 2019;31:e1902956. [PMID: 31418951 DOI: 10.1002/adma.201902956] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
580 Wang X, Gong A, Luo W, Wang H, Lin C, Liu XY, Lin Y. Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump. Chem Commun 2018;54:8641-4. [DOI: 10.1039/c8cc04279a] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
581 Liu Y, Zhou M, Cao W, Wang X, Wang Q, Li S, Wei H. Light-Responsive Metal–Organic Framework as an Oxidase Mimic for Cellular Glutathione Detection. Anal Chem 2019;91:8170-5. [DOI: 10.1021/acs.analchem.9b00512] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 20.3] [Reference Citation Analysis]
582 Liu Y, Cao X, Ge J. Antioxidative Composites Based on Multienzyme Systems Encapsulated in Metal-Organic Frameworks. ACS Appl Mater Interfaces 2021;13:46431-9. [PMID: 34551515 DOI: 10.1021/acsami.1c15506] [Reference Citation Analysis]
583 Wang H, Kang Y, Li H, Huang S, Li W, Zheng M, Huang R, Lei B, Yang X. Salvia miltiorrhiza Derived Carbon Dots and Their Heat Stress Tolerance of Italian Lettuce by Promoting Growth and Enhancing Antioxidant Enzyme Activity. ACS Omega 2021;6:32262-9. [PMID: 34870046 DOI: 10.1021/acsomega.1c05074] [Reference Citation Analysis]
584 Wang T, Li Y, Cornel EJ, Li C, Du J. Combined Antioxidant-Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS Nano 2021;15:9027-38. [PMID: 33881831 DOI: 10.1021/acsnano.1c02102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
585 Pesaraklou A, Mahdavi-Shahri N, Hassanzadeh H, Ghasemi M, Kazemi M, Mousavi NS, Matin MM. Use of cerium oxide nanoparticles: a good candidate to improve skin tissue engineering. Biomed Mater 2019;14:035008. [PMID: 30754036 DOI: 10.1088/1748-605X/ab0679] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
586 Chang Y, Gao S, Liu M, Liu J. Designing signal-on sensors by regulating nanozyme activity. Anal Methods 2020;12:4708-23. [DOI: 10.1039/d0ay01625j] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
587 Caputo F, De Nicola M, Ghibelli L. Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology 2014;92:112-30. [DOI: 10.1016/j.bcp.2014.08.015] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
588 Datta A, Mishra S, Manna K, Saha KD, Mukherjee S, Roy S. Pro-Oxidant Therapeutic Activities of Cerium Oxide Nanoparticles in Colorectal Carcinoma Cells. ACS Omega 2020;5:9714-23. [PMID: 32391458 DOI: 10.1021/acsomega.9b04006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
589 Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021;12:54. [PMID: 34698244 DOI: 10.3390/jfb12040054] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
590 Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, Dozier AK, Hardas SS, Sultana R, Grulke EA, Butterfield DA. In Vivo Processing of Ceria Nanoparticles inside Liver: Impact on Free-Radical Scavenging Activity and Oxidative Stress. Chempluschem 2014;79:1083-8. [PMID: 26322251 DOI: 10.1002/cplu.201402080] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
591 Rojas S, Gispert JD, Abad S, Buaki-sogo M, Victor VM, Garcia H, Herance JR. In Vivo Biodistribution of Amino-Functionalized Ceria Nanoparticles in Rats Using Positron Emission Tomography. Mol Pharmaceutics 2012;9:3543-50. [DOI: 10.1021/mp300382n] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
592 Yang D, Fa M, Gao L, Zhao R, Luo Y, Yao X. The effect of DNA on the oxidase activity of nanoceria with different morphologies. Nanotechnology 2018;29:385101. [DOI: 10.1088/1361-6528/aacf86] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
593 Peng Y, Chen X, Yi G, Gao Z. Mechanism of the oxidation of organic dyes in the presence of nanoceria. Chem Commun 2011;47:2916. [DOI: 10.1039/c0cc04679e] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
594 Dhall A, Burns A, Dowding J, Das S, Seal S, Self W. Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environ Sci : Nano 2017;4:1742-9. [DOI: 10.1039/c7en00394c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 2.6] [Reference Citation Analysis]
595 Singh N. Antioxidant metal oxide nanozymes: role in cellular redox homeostasis and therapeutics. Pure and Applied Chemistry 2021;93:187-205. [DOI: 10.1515/pac-2020-0802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
596 Auguste M, Balbi T, Montagna M, Fabbri R, Sendra M, Blasco J, Canesi L. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2019;219:95-102. [PMID: 30797983 DOI: 10.1016/j.cbpc.2019.02.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
597 Heckman KL, Estevez AY, DeCoteau W, Vangellow S, Ribeiro S, Chiarenzelli J, Hays-Erlichman B, Erlichman JS. Variable in Vivo and in Vitro Biological Effects of Cerium Oxide Nanoparticle Formulations. Front Pharmacol 2019;10:1599. [PMID: 32047435 DOI: 10.3389/fphar.2019.01599] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
598 Sharma E, Agarwal R, Ralebhat S, Krishnamurthy G, Bhagwat S, Adivarekar RV. Process of Incorporation of Cerium Oxide in Viscose to Spin Infrared Reflecting Viscose Fibers. AATCC Journal of Research. [DOI: 10.1177/24723444221084405] [Reference Citation Analysis]
599 Zholobak N, Ivanov V, Shcherbakov A, Shaporev A, Polezhaeva O, Baranchikov A, Spivak N, Tretyakov Y. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. Journal of Photochemistry and Photobiology B: Biology 2011;102:32-8. [DOI: 10.1016/j.jphotobiol.2010.09.002] [Cited by in Crossref: 110] [Cited by in F6Publishing: 77] [Article Influence: 10.0] [Reference Citation Analysis]
600 Rajarathinam N, Arunachalam T, Raja S, Selvasembian R. Fenalan Yellow G adsorption using surface-functionalized green nanoceria: An insight into mechanism and statistical modelling. Environmental Research 2020;181:108920. [DOI: 10.1016/j.envres.2019.108920] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
601 Singh N, Naveenkumar SK, Geethika M, Mugesh G. A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells. Angew Chem 2021;133:3158-67. [DOI: 10.1002/ange.202011711] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
602 Chetty R, Singh M. In-vitro interaction of cerium oxide nanoparticles with hemoglobin, insulin, and dsDNA at 310.15 K: Physicochemical, spectroscopic and in-silico study. Int J Biol Macromol 2020;156:1022-44. [PMID: 32171830 DOI: 10.1016/j.ijbiomac.2020.03.067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
603 Niemiec SM, Louiselle AE, Hilton SA, Dewberry LC, Zhang L, Azeltine M, Xu J, Singh S, Sakthivel TS, Seal S, Liechty KW, Zgheib C. Nanosilk Increases the Strength of Diabetic Skin and Delivers CNP-miR146a to Improve Wound Healing. Front Immunol 2020;11:590285. [PMID: 33193424 DOI: 10.3389/fimmu.2020.590285] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
604 Chetan, Vijayalakshmi U. A systematic review of the interaction and effects generated by antimicrobial metallic substituents in bone tissue engineering. Metallomics 2020;12:1458-79. [DOI: 10.1039/d0mt00127a] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
605 Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater 2014;26:4200-17. [PMID: 24692212 DOI: 10.1002/adma.201400238] [Cited by in Crossref: 248] [Cited by in F6Publishing: 213] [Article Influence: 31.0] [Reference Citation Analysis]
606 Rodea-palomares I, Gonzalo S, Santiago-morales J, Leganés F, García-calvo E, Rosal R, Fernández-piñas F. An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology 2012;122-123:133-43. [DOI: 10.1016/j.aquatox.2012.06.005] [Cited by in Crossref: 75] [Cited by in F6Publishing: 68] [Article Influence: 7.5] [Reference Citation Analysis]
607 Tseng MT, Lu X, Duan X, Hardas SS, Sultana R, Wu P, Unrine JM, Graham U, Butterfield DA, Grulke EA, Yokel RA. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol 2012;260:173-82. [PMID: 22373796 DOI: 10.1016/j.taap.2012.02.008] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 5.8] [Reference Citation Analysis]
608 Averchenko EA, Kavok NS, Klochkov VK, Malyukin YV. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2. J Appl Spectrosc 2014;81:827-33. [DOI: 10.1007/s10812-014-0012-9] [Cited by in Crossref: 9] [Article Influence: 1.1] [Reference Citation Analysis]
609 Wang Z, Zhao H, Chen K, Zhou F, Magdassi S, Lan M. Two-dimensional mesoporous nitrogen-rich carbon nanosheets loaded with CeO2 nanoclusters as nanozymes for the electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2022;209:114229. [PMID: 35390557 DOI: 10.1016/j.bios.2022.114229] [Reference Citation Analysis]
610 Kyosseva SV, Chen L, Seal S, McGinnis JF. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice. Exp Eye Res. 2013;116:63-74. [PMID: 23978600 DOI: 10.1016/j.exer.2013.08.003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 5.2] [Reference Citation Analysis]
611 Li H, Yang Z, Liu C, Zeng Y, Hao Y, Gu Y, Wang W, Li R. PEGylated ceria nanoparticles used for radioprotection on human liver cells under γ-ray irradiation. Free Radical Biology and Medicine 2015;87:26-35. [DOI: 10.1016/j.freeradbiomed.2015.06.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
612 Dashtestani F, Ghourchian H, Eskandari K, Rafiee-pour H. A superoxide dismutase mimic nanocomposite for amperometric sensing of superoxide anions. Microchim Acta 2015;182:1045-53. [DOI: 10.1007/s00604-014-1424-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
613 Dhall A, Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel) 2018;7:E97. [PMID: 30042320 DOI: 10.3390/antiox7080097] [Cited by in Crossref: 122] [Cited by in F6Publishing: 71] [Article Influence: 30.5] [Reference Citation Analysis]
614 Weaver JD, Stabler CL. Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomater 2015;16:136-44. [PMID: 25620795 DOI: 10.1016/j.actbio.2015.01.017] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
615 Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019;119:4357-412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Cited by in Crossref: 654] [Cited by in F6Publishing: 490] [Article Influence: 218.0] [Reference Citation Analysis]
616 Clark A, Zhu A, Petty HR. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis. J Nanopart Res 2013;15:2126. [PMID: 24791147 DOI: 10.1007/s11051-013-2126-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
617 Wang Z, Zhao H, Gao Q, Chen K, Lan M. Facile synthesis of ultrathin two-dimensional graphene-like CeO2-TiO2 mesoporous nanosheet loaded with Ag nanoparticles for non-enzymatic electrochemical detection of superoxide anions in HepG2 cells. Biosens Bioelectron 2021;184:113236. [PMID: 33872979 DOI: 10.1016/j.bios.2021.113236] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
618 Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond). 2013;8:1483-1508. [PMID: 23987111 DOI: 10.2217/nnm.13.133] [Cited by in Crossref: 292] [Cited by in F6Publishing: 236] [Article Influence: 36.5] [Reference Citation Analysis]
619 Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology 2019;17:84. [PMID: 31291944 DOI: 10.1186/s12951-019-0516-9] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 18.7] [Reference Citation Analysis]
620 Ge L, Chen T, Liu Z, Chen F. The effect of gold loading on the catalytic oxidation performance of CeO2/H2O2 system. Catalysis Today 2014;224:209-15. [DOI: 10.1016/j.cattod.2013.10.074] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
621 Bohn DR, Lobato FO, Thill AS, Steffens L, Raabe M, Donida B, Vargas CR, Moura DJ, Bernardi F, Poletto F. Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. J Mater Chem B 2018;6:4920-8. [DOI: 10.1039/c8tb00479j] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
622 Abdelhamid AM, Mahmoud SS, Abdelrahman AE, Said NM, Toam M, Samy W, Amer MA. Protective effect of cerium oxide nanoparticles on cisplatin and oxaliplatin primary toxicities in male albino rats. Naunyn Schmiedebergs Arch Pharmacol 2020;393:2411-25. [PMID: 32710137 DOI: 10.1007/s00210-020-01946-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
623 Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox‐Responsive Nanobiomaterials‐Based Therapeutics for Neurodegenerative Diseases. Small 2020;16:1907308. [DOI: 10.1002/smll.201907308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
624 Sun Y, Liu X, Wang L, Xu L, Liu K, Xu L, Shi F, Zhang Y, Gu N, Xiong F. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater 2022;10:117-30. [PMID: 34901534 DOI: 10.1016/j.bioactmat.2021.08.012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
625 Choi B, Soh M, Manandhar Y, Kim D, Han SI, Baik S, Shin K, Koo S, Kwon HJ, Ko G, Oh J, Hwang H, Hyeon T, Lee SJ. Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale 2019;11:19437-47. [PMID: 31475711 DOI: 10.1039/c9nr02648g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
626 Zhen W, Wang W, Ma Z, Bai J, Jia X, Ruan Y, Wang C, Zhang M, Jiang X. Multienzyme-Mimicking Nanocomposite for Tumor Phototheranostics and Normal Cell Protection. ChemNanoMat 2019;5:101-9. [DOI: 10.1002/cnma.201800397] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
627 Bhushan B, Nandhagopal S, Rajesh Kannan R, Gopinath P. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model. Colloids Surf B Biointerfaces 2016;146:375-86. [PMID: 27388966 DOI: 10.1016/j.colsurfb.2016.06.035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
628 Barkam S, Ortiz J, Saraf S, Eliason N, Mccormack R, Das S, Gupta A, Neal C, Petrovici A, Hanson C, Sevilla MD, Adhikary A, Seal S. Modulating the Catalytic Activity of Cerium Oxide Nanoparticles with the Anion of the Precursor Salt. J Phys Chem C Nanomater Interfaces 2017;121:20039-50. [PMID: 28936278 DOI: 10.1021/acs.jpcc.7b05725] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
629 Batinic-Haberle I, Rajic Z, Tovmasyan A, Reboucas JS, Ye X, Leong KW, Dewhirst MW, Vujaskovic Z, Benov L, Spasojevic I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med 2011;51:1035-53. [PMID: 21616142 DOI: 10.1016/j.freeradbiomed.2011.04.046] [Cited by in Crossref: 103] [Cited by in F6Publishing: 91] [Article Influence: 9.4] [Reference Citation Analysis]
630 Jeon S, Lee DK, Jeong J, Yang SI, Kim JS, Kim J, Cho WS. The reactive oxygen species as pathogenic factors of fragmented microplastics to macrophages. Environ Pollut 2021;281:117006. [PMID: 33812130 DOI: 10.1016/j.envpol.2021.117006] [Reference Citation Analysis]
631 Hanafy BI, Cave GV, Barnett Y, Pierscionek B. Ethylene glycol coated nanoceria protects against oxidative stress in human lens epithelium. RSC Adv 2019;9:16596-605. [DOI: 10.1039/c9ra01252d] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
632 Sargia B, Shah J, Singh R, Arya H, Shah M, Karakoti AS, Singh S. Phosphate-dependent modulation of antibacterial strategy: a redox state-controlled toxicity of cerium oxide nanoparticles. Bull Mater Sci 2017;40:1231-40. [DOI: 10.1007/s12034-017-1480-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
633 Jordán J, Ruíz-moreno JM. Advances in the understanding of retinal drug disposition and the role of blood–ocular barrier transporters. Expert Opinion on Drug Metabolism & Toxicology 2013;9:1181-92. [DOI: 10.1517/17425255.2013.796928] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
634 Xiong Y, Su L, Ye F, Zhao S. Inhibition of NADP(H) supply by highly active phosphatase-like ceria nanozymes to boost oxidative stress and ferroptosis. Materials Today Chemistry 2022;23:100672. [DOI: 10.1016/j.mtchem.2021.100672] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
635 Batinic-haberle I, Tovmasyan A. Superoxide dismutase mimics and other redox-active therapeutics. In: Armstrong D, Stratton RD, editors. Oxidative Stress and Antioxidant Protection. Hoboken: John Wiley & Sons, Inc; 2016. pp. 415-70. [DOI: 10.1002/9781118832431.ch27] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
636 Lee J, Jeong JS, Kim SY, Lee SJ, Shin YJ, Im WJ, Kim SH, Park K, Jeong EJ, Nam SY, Yu WJ. Safety assessment of cerium oxide nanoparticles: combined repeated-dose toxicity with reproductive/developmental toxicity screening and biodistribution in rats. Nanotoxicology 2020;14:696-710. [PMID: 32301357 DOI: 10.1080/17435390.2020.1751322] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
637 Sardesai NP, Andreescu D, Andreescu S. Electroanalytical Evaluation of Antioxidant Activity of Cerium Oxide Nanoparticles by Nanoparticle Collisions at Microelectrodes. J Am Chem Soc 2013;135:16770-3. [DOI: 10.1021/ja408087s] [Cited by in Crossref: 74] [Cited by in F6Publishing: 65] [Article Influence: 8.2] [Reference Citation Analysis]
638 Shcherbakov AB, Zholobak NM, Baranchikov AE, Ryabova AV, Ivanov VK. Cerium fluoride nanoparticles protect cells against oxidative stress. Materials Science and Engineering: C 2015;50:151-9. [DOI: 10.1016/j.msec.2015.01.094] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 4.7] [Reference Citation Analysis]
639 Gu S, Li W, Wang F, Li H, Zhou H. Substitution of Ce (III,IV) ions for Bi in BiVO 4 and its enhanced impact on visible light-driven photocatalytic activities. Catal Sci Technol 2016;6:1870-81. [DOI: 10.1039/c5cy01412c] [Cited by in Crossref: 38] [Cited by in F6Publishing: 1] [Article Influence: 6.3] [Reference Citation Analysis]
640 Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, Dong B, Zhou Y, Wang L, Xu HHK. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater 2019;94:627-43. [PMID: 31212111 DOI: 10.1016/j.actbio.2019.06.023] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 16.3] [Reference Citation Analysis]
641 Zhao Y, Li H, Wang Y, Wang Y, Huang Z, Su H, Liu J. CeO 2 Nanoparticle Transformation to Nanorods and Nanoflowers in Acids with Boosted Oxidative Catalytic Activity. ACS Appl Nano Mater 2021;4:2098-107. [DOI: 10.1021/acsanm.0c03387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
642 Singh S, Ghosh S, Pal VK, Munshi M, Shekar P, Narasimha Murthy DT, Mugesh G, Singh A. Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Mol Med 2021;13:e13314. [PMID: 33793064 DOI: 10.15252/emmm.202013314] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
643 Hsu NS, Tehei M, Hossain MS, Rosenfeld A, Shiddiky MJA, Sluyter R, Dou SX, Yamauchi Y, Konstantinov K. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. ACS Appl Mater Interfaces 2021;13:2204-17. [PMID: 33399455 DOI: 10.1021/acsami.0c17326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
644 Yin Y, Yang J, Pan Y, Gao Y, Huang L, Luan X, Lin Z, Zhu W, Li Y, Song Y. Mesopore to Macropore Transformation of Metal-Organic Framework for Drug Delivery in Inflammatory Bowel Disease. Adv Healthc Mater 2021;10:e2000973. [PMID: 33369176 DOI: 10.1002/adhm.202000973] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
645 Korschelt K, Ragg R, Metzger CS, Kluenker M, Oster M, Barton B, Panthöfer M, Strand D, Kolb U, Mondeshki M, Strand S, Brieger J, Nawaz Tahir M, Tremel W. Glycine-functionalized copper( ii ) hydroxide nanoparticles with high intrinsic superoxide dismutase activity. Nanoscale 2017;9:3952-60. [DOI: 10.1039/c6nr09810j] [Cited by in Crossref: 38] [Cited by in F6Publishing: 6] [Article Influence: 7.6] [Reference Citation Analysis]
646 Hayat A, Gonca Bulbul, Andreescu S. Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity. Biosensors and Bioelectronics 2014;56:334-9. [DOI: 10.1016/j.bios.2014.01.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 7.0] [Reference Citation Analysis]
647 Li H, Wang T, Wang Y, Wang S, Su P, Yang Y. Intrinsic Triple-Enzyme Mimetic Activity of V 6 O 13 Nanotextiles: Mechanism Investigation and Colorimetric and Fluorescent Detections. Ind Eng Chem Res 2018;57:2416-25. [DOI: 10.1021/acs.iecr.7b04821] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
648 Yadav N, Singh S. Polyoxometalate-Mediated Vacancy-Engineered Cerium Oxide Nanoparticles Exhibiting Controlled Biological Enzyme-Mimicking Activities. Inorg Chem 2021;60:7475-89. [PMID: 33939401 DOI: 10.1021/acs.inorgchem.1c00766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
649 Tsai SM, Duran-Robles E, Goshia T, Mesina M, Garcia C, Young J, Sibal A, Chiu MH, Chin WC. CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles. Sci Total Environ 2018;631-632:262-9. [PMID: 29525705 DOI: 10.1016/j.scitotenv.2018.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
650 Xu X, Liu J, Chen P, Wei D, Guan Y, Lu X, Xiao H. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. J Appl Polym Sci 2016;133. [DOI: 10.1002/app.44117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
651 Matsui T, Eguchi K, Shirai K, Ozeki T, Okanishi T, Muroyama H, Eguchi K. Redox-Induced Self-Modification of Cermet Anodes of Ni–CeO 2 -Based Oxide for Solid Oxide Fuel Cells. J Electrochem Soc 2017;164:F1368-74. [DOI: 10.1149/2.0551713jes] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 2.6] [Reference Citation Analysis]
652 Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021;192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Reference Citation Analysis]
653 Davoodbasha M, Park B, Rhee W, Lee S, Kim J. Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study. Archives of Biochemistry and Biophysics 2018;645:42-9. [DOI: 10.1016/j.abb.2018.02.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
654 Cai S, Yang R. Two-Dimensional Nanomaterials With Enzyme-Like Properties for Biomedical Applications. Front Chem 2020;8:565940. [PMID: 33330357 DOI: 10.3389/fchem.2020.565940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
655 Carvajal S, Perramón M, Oró D, Casals E, Fernández-Varo G, Casals G, Parra M, González de la Presa B, Ribera J, Pastor Ó, Morales-Ruíz M, Puntes V, Jiménez W. Cerium oxide nanoparticles display antilipogenic effect in rats with non-alcoholic fatty liver disease. Sci Rep 2019;9:12848. [PMID: 31492960 DOI: 10.1038/s41598-019-49262-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
656 Colon J, Hsieh N, Ferguson A, Kupelian P, Seal S, Jenkins DW, Baker CH. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine: Nanotechnology, Biology and Medicine 2010;6:698-705. [DOI: 10.1016/j.nano.2010.01.010] [Cited by in Crossref: 235] [Cited by in F6Publishing: 208] [Article Influence: 19.6] [Reference Citation Analysis]
657 Wang Y, Shen X, Chen F. Improving the catalytic activity of CeO2/H2O2 system by sulfation pretreatment of CeO2. Journal of Molecular Catalysis A: Chemical 2014;381:38-45. [DOI: 10.1016/j.molcata.2013.10.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]
658 Xiang J, Li J, He J, Tang X, Dou C, Cao Z, Yu B, Zhao C, Kang F, Yang L, Dong S, Yang X. Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by Activating Calcium Channel of Mesenchymal Stem Cells. ACS Appl Mater Interfaces 2016;8:4489-99. [DOI: 10.1021/acsami.6b00158] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
659 Liu J, Dai M, Wang T, Sun P, Liang X, Lu G, Shimanoe K, Yamazoe N. Enhanced Gas Sensing Properties of SnO 2 Hollow Spheres Decorated with CeO 2 Nanoparticles Heterostructure Composite Materials. ACS Appl Mater Interfaces 2016;8:6669-77. [DOI: 10.1021/acsami.6b00169] [Cited by in Crossref: 178] [Cited by in F6Publishing: 118] [Article Influence: 29.7] [Reference Citation Analysis]
660 Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019;48:1004-76. [DOI: 10.1039/c8cs00457a] [Cited by in Crossref: 970] [Cited by in F6Publishing: 145] [Article Influence: 323.3] [Reference Citation Analysis]
661 Chen W, Li S, Wang J, Sun K, Si Y. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 2019;11:15783-93. [DOI: 10.1039/c9nr04771a] [Cited by in Crossref: 27] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
662 Corral-diaz B, Peralta-videa JR, Alvarez-parrilla E, Rodrigo-garcía J, Morales MI, Osuna-avila P, Niu G, Hernandez-viezcas JA, Gardea-torresdey JL. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiology and Biochemistry 2014;84:277-85. [DOI: 10.1016/j.plaphy.2014.09.018] [Cited by in Crossref: 73] [Cited by in F6Publishing: 50] [Article Influence: 9.1] [Reference Citation Analysis]
663 Chen BH, Stephen Inbaraj B. Various physicochemical and surface properties controlling the bioactivity of cerium oxide nanoparticles. Crit Rev Biotechnol 2018;38:1003-24. [PMID: 29402135 DOI: 10.1080/07388551.2018.1426555] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
664 Marzorati S, Cristiani P, Longhi M, Trasatti SP, Traversa E. Nanoceria acting as oxygen reservoir for biocathodes in microbial fuel cells. Electrochimica Acta 2019;325:134954. [DOI: 10.1016/j.electacta.2019.134954] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
665 Babu S, Velez A, Wozniak K, Szydlowska J, Seal S. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles. Chemical Physics Letters 2007;442:405-8. [DOI: 10.1016/j.cplett.2007.06.026] [Cited by in Crossref: 73] [Cited by in F6Publishing: 48] [Article Influence: 4.9] [Reference Citation Analysis]
666 Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B 2021. [PMID: 34355717 DOI: 10.1039/d1tb01091c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
667 Zholobak N, Shcherbakov A, Bogorad-kobelska A, Ivanova O, Baranchikov A, Spivak N, Ivanov V. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. Journal of Photochemistry and Photobiology B: Biology 2014;130:102-8. [DOI: 10.1016/j.jphotobiol.2013.10.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
668 Wang YJ, Dong H, Lyu GM, Zhang HY, Ke J, Kang LQ, Teng JL, Sun LD, Si R, Zhang J, Liu YJ, Zhang YW, Huang YH, Yan CH. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance. Nanoscale 2015;7:13981-90. [PMID: 26228305 DOI: 10.1039/c5nr02588e] [Cited by in Crossref: 69] [Cited by in F6Publishing: 7] [Article Influence: 9.9] [Reference Citation Analysis]
669 Kwon Y, Kim Y, Hong JW, Whang Y, Kim S, Wi DH, Byon HR, Han SW. One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction. J Mater Chem A 2020;8:25842-9. [DOI: 10.1039/d0ta09310f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
670 Barkam S, Das S, Saraf S, Mccormack R, Richardson D, Atencio L, Moosavifazel V, Seal S. The Change in Antioxidant Properties of Dextran-Coated Redox Active Nanoparticles Due to Synergetic Photoreduction-Oxidation. Chem Eur J 2015;21:12646-56. [DOI: 10.1002/chem.201500868] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
671 Khulbe K, Karmakar K, Ghosh S, Chandra K, Chakravortty D, Mugesh G. Nanoceria-Based Phospholipase-Mimetic Cell Membrane Disruptive Antibiofilm Agents. ACS Appl Bio Mater 2020;3:4316-28. [DOI: 10.1021/acsabm.0c00363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
672 He J, Zhou L, Liu J, Yang L, Zou L, Xiang J, Dong S, Yang X. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques. Applied Surface Science 2017;402:469-77. [DOI: 10.1016/j.apsusc.2017.01.149] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
673 Zhu A, Sun K, Petty HR. Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO(2) nanoparticles. Inorg Chem Commun 2012;15:235-7. [PMID: 22287935 DOI: 10.1016/j.inoche.2011.10.034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
674 Wu X, Neil CW, Kim D, Jung H, Jun Y. Co-effects of UV/H 2 O 2 and natural organic matter on the surface chemistry of cerium oxide nanoparticles. Environ Sci : Nano 2018;5:2382-93. [DOI: 10.1039/c8en00435h] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
675 Dunnick KM, Pillai R, Pisane KL, Stefaniak AB, Sabolsky EM, Leonard SS. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity. Biol Trace Elem Res 2015;166:96-107. [PMID: 25778836 DOI: 10.1007/s12011-015-0297-4] [Cited by in Crossref: 59] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]