BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Chu L, Yan X, Zhao M, Zhang X, Mu H, Sun K. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Mol Pharm 2019;16:518-32. [PMID: 30601014 DOI: 10.1021/acs.molpharmaceut.8b00809] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Shi Y, Liu L, Yin M, Zhao Z, Liang Y, Sun K, Li Y. Mucus- and pH-mediated controlled release of core-shell chitosan nanoparticles in the gastrointestinal tract for diabetes treatment. J Drug Target 2023;31:65-73. [PMID: 35861405 DOI: 10.1080/1061186X.2022.2104296] [Reference Citation Analysis]
2 Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022;352:813-32. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Reference Citation Analysis]
3 Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS Nano 2022;16:15627-52. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hernández-parra H, Cortés H, Avalos-fuentes JA, Del Prado-audelo M, Florán B, Leyva-gómez G, Sharifi-rad J, Cho WC. Repositioning of drugs for Parkinson’s disease and pharmaceutical nanotechnology tools for their optimization. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01612-5] [Reference Citation Analysis]
5 Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022;11:2851. [DOI: 10.3390/cells11182851] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
7 Xu S, Zhang X, Zhu X, Su H, Yan X. A combined arsenic trioxide/tetrandrine nanoparticle formulation with improved inhibitory effect against promyelocytic leukemia. Journal of Drug Delivery Science and Technology 2022;74:103572. [DOI: 10.1016/j.jddst.2022.103572] [Reference Citation Analysis]
8 Zhang J, Liu X, Lin J, Bao X, Peng J, Gong Z, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121979] [Reference Citation Analysis]
9 Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022;14:1255. [PMID: 35745827 DOI: 10.3390/pharmaceutics14061255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhang W, Taheri-ledari R, Ganjali F, Afruzi FH, Hajizadeh Z, Saeidirad M, Qazi FS, Kashtiaray A, Sehat SS, Hamblin MR, Maleki A. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy. Heliyon 2022;8:e09577. [DOI: 10.1016/j.heliyon.2022.e09577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F; PHAGEinLYON study group. Paving the way for phage therapy using novel drug delivery approaches. J Control Release 2022;347:414-24. [PMID: 35569589 DOI: 10.1016/j.jconrel.2022.05.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. Food Reviews International. [DOI: 10.1080/87559129.2022.2062772] [Reference Citation Analysis]
13 Watchorn J, Clasky AJ, Prakash G, Johnston IAE, Chen PZ, Gu FX. Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier. ACS Biomater Sci Eng 2022;8:1396-426. [PMID: 35294187 DOI: 10.1021/acsbiomaterials.2c00047] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022;15:392-408. [PMID: 35386357 DOI: 10.1016/j.bioactmat.2022.02.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Adv Drug Deliv Rev 2022;181:114083. [PMID: 34929251 DOI: 10.1016/j.addr.2021.114083] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 24.0] [Reference Citation Analysis]
16 Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022;12:621-36. [PMID: 35256935 DOI: 10.1016/j.apsb.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wright L, Joyce P, Barnes TJ, Prestidge CA. Mimicking the Gastrointestinal Mucus Barrier: Laboratory-Based Approaches to Facilitate an Enhanced Understanding of Mucus Permeation. ACS Biomater Sci Eng 2021. [PMID: 34784462 DOI: 10.1021/acsbiomaterials.1c00814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Prasher P, Sharma M, R Wich P, Jha NK, Singh SK, Chellappan DK, Dua K. Can dextran-based nanoparticles mitigate inflammatory lung diseases? Future Med Chem 2021;13:2027-31. [PMID: 34596425 DOI: 10.4155/fmc-2021-0218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Li M, Zhao Y, Zhang W, Zhang S, Zhang S. Multiple-therapy strategies via polysaccharides-based nano-systems in fighting cancer. Carbohydr Polym 2021;269:118323. [PMID: 34294335 DOI: 10.1016/j.carbpol.2021.118323] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zhai J, Ou Z, Zhong L, Wang YE, Cao LP, Guan S. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics. Drug Deliv 2020;27:1667-75. [PMID: 33241694 DOI: 10.1080/10717544.2020.1850919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021;175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
22 Ramalho MJ, Loureiro JA, Pereira MC. Poly(lactic- co -glycolic acid) Nanoparticles for the Encapsulation and Gastrointestinal Release of Vitamin B9 and Vitamin B12. ACS Appl Nano Mater 2021;4:6881-92. [DOI: 10.1021/acsanm.1c00954] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm 2021;601:120583. [PMID: 33839225 DOI: 10.1016/j.ijpharm.2021.120583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Rosso A, Andretto V, Chevalier Y, Kryza D, Sidi-Boumedine J, Grenha A, Guerreiro F, Gharsallaoui A, La Padula V, Montembault A, David L, Briançon S, Lollo G. Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release 2021;333:579-92. [PMID: 33838210 DOI: 10.1016/j.jconrel.2021.04.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Ganesh AN, Heusser C, Garad S, Sánchez-félix MV. Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. Medicine in Drug Discovery 2021;9:100079. [DOI: 10.1016/j.medidd.2020.100079] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
26 Cote B, Rao D, Alani AWG. Nanomedicine for Drug Delivery throughout the Alimentary Canal. Mol Pharm 2021. [PMID: 33605146 DOI: 10.1021/acs.molpharmaceut.0c00694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Hamidi O, Chamani M, Ghahri H, Sadeghi AA, Malekinejad H, Palangi V. Effects of Supplemental Chromium Nanoparticles on IFN-γ expression of Heat Stress Broilers. Biol Trace Elem Res 2021. [PMID: 33598892 DOI: 10.1007/s12011-021-02634-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
28 Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021;11:445-70. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
29 Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021;597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Cao S, Lv Z, Guo S, Jiang G, Liu H. An update - Prolonging the action of protein and peptide drugs. Journal of Drug Delivery Science and Technology 2021;61:102124. [DOI: 10.1016/j.jddst.2020.102124] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021;19:32. [PMID: 33499885 DOI: 10.1186/s12951-021-00770-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
32 Gohil D, Thirugnanasambandan T. Nanocarriers in Protein and Peptide Drug Delivery. Nanocarriers: Drug Delivery System 2021. [DOI: 10.1007/978-981-33-4497-6_14] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Sahoo D, Bandaru R, Samal SK, Naik R, Kumar P, Kesharwani P, Dandela R. Oral drug delivery of nanomedicine. Theory and Applications of Nonparenteral Nanomedicines 2021. [DOI: 10.1016/b978-0-12-820466-5.00009-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
34 Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2021;18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
35 Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. Nano Today 2020;35:100961. [PMID: 32904707 DOI: 10.1016/j.nantod.2020.100961] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 11.7] [Reference Citation Analysis]
36 Shi Y, Yin M, Song Y, Wang T, Guo S, Zhang X, Sun K, Li Y. Oral delivery of liraglutide-loaded Poly-N-(2-hydroxypropyl) methacrylamide/chitosan nanoparticles: Preparation, characterization, and pharmacokinetics. J Biomater Appl 2021;35:754-61. [PMID: 32842851 DOI: 10.1177/0885328220947889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
37 Tan X, Yin N, Liu Z, Sun R, Gou J, Yin T, Zhang Y, He H, Tang X. Hydrophilic and Electroneutral Nanoparticles to Overcome Mucus Trapping and Enhance Oral Delivery of Insulin. Mol Pharmaceutics 2020;17:3177-91. [DOI: 10.1021/acs.molpharmaceut.0c00223] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
38 Ismail R, Phan TNQ, Laffleur F, Csóka I, Bernkop-schnürch A. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. European Journal of Pharmaceutics and Biopharmaceutics 2020;152:10-7. [DOI: 10.1016/j.ejpb.2020.04.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
39 Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. Journal of Controlled Release 2020;322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 20.7] [Reference Citation Analysis]
40 Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020;157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 31.0] [Reference Citation Analysis]
41 Yin M, Song Y, Guo S, Zhang X, Sun K, Li Y, Shi Y. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol Pharm 2020;17:1899-909. [PMID: 32267705 DOI: 10.1021/acs.molpharmaceut.9b01307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Manzanares D, Ceña V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics 2020;12:E371. [PMID: 32316537 DOI: 10.3390/pharmaceutics12040371] [Cited by in Crossref: 114] [Cited by in F6Publishing: 128] [Article Influence: 38.0] [Reference Citation Analysis]
43 Babadi D, Dadashzadeh S, Osouli M, Daryabari MS, Haeri A. Nanoformulation strategies for improving intestinal permeability of drugs: A more precise look at permeability assessment methods and pharmacokinetic properties changes. J Control Release 2020;321:669-709. [PMID: 32112856 DOI: 10.1016/j.jconrel.2020.02.041] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
44 Taipaleenmäki E, Städler B. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromol Biosci 2020;20:e1900342. [PMID: 32045102 DOI: 10.1002/mabi.201900342] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
45 Kotak DJ, Devarajan PV. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine: Nanotechnology, Biology and Medicine 2020;24:102153. [DOI: 10.1016/j.nano.2020.102153] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
46 Huang Y, Deng S, Luo X, Liu Y, Xu W, Pan J, Wang M, Xia Z. Evaluation of Intestinal Absorption Mechanism and Pharmacokinetics of Curcumin-Loaded Galactosylated Albumin Nanoparticles. Int J Nanomedicine 2019;14:9721-30. [PMID: 31849464 DOI: 10.2147/IJN.S229992] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
47 Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D, Lu Y, Xue P, Kang Y, Xu Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater Sci 2020;8:473-84. [PMID: 31755481 DOI: 10.1039/c9bm01692a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
48 Zhang X, Zhang T, Ma X, Wang Y, Lu Y, Jia D, Huang X, Chen J, Xu Z, Wen F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci 2020;15:605-16. [PMID: 33193863 DOI: 10.1016/j.ajps.2019.10.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
49 Yong JM, Mantaj J, Cheng Y, Vllasaliu D. Delivery of Nanoparticles across the Intestinal Epithelium via the Transferrin Transport Pathway. Pharmaceutics 2019;11:E298. [PMID: 31248025 DOI: 10.3390/pharmaceutics11070298] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]