BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hossain S, Stanislaus A, Chua MJ, Tada S, Tagawa Y, Chowdhury EH, Akaike T. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes. J Control Release 2010;147:101-8. [PMID: 20620182 DOI: 10.1016/j.jconrel.2010.06.024] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
2 Wang Y, Zhong D, Xie F, Chen S, Ma Z, Yang X, Iqbal MZ, Zhang Q, Lu J, Wang S, Zhao R, Kong X. Manganese Phosphate-Doxorubicin-Based Nanomedicines Using Mimetic Mineralization for Cancer Chemotherapy. ACS Biomater Sci Eng 2022;8:1930-41. [PMID: 35380774 DOI: 10.1021/acsbiomaterials.2c00011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021;13:2120. [PMID: 34959401 DOI: 10.3390/pharmaceutics13122120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ashaie M, Chowdhury EH. Nanoparticles-Facilitated Intracellular Transport of siRNAs against Individual Integrin Subunits Inhibits Growth of Breast Cancer Cells. Applied Sciences 2021;11:10782. [DOI: 10.3390/app112210782] [Reference Citation Analysis]
5 Ibnat N, Islam RA, Chowdhury EH. Inhibition of Breast Tumour Growth with Intravenously Administered PRKCA siRNA- and PTEN Tumour Suppressor Gene-Loaded Carbonate Apatite Nanoparticles. Applied Sciences 2021;11:8133. [DOI: 10.3390/app11178133] [Reference Citation Analysis]
6 Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021;9:1208-37. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
7 Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020;21:E6721. [PMID: 32937817 DOI: 10.3390/ijms21186721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
8 Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as Potential Therapeutics against Cancer. J Oncol 2020;2020:8029721. [PMID: 32733559 DOI: 10.1155/2020/8029721] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
9 Sahu S, Mishra M. Hydroxyapatite nanoparticle causes sensory organ defects by targeting the retromer complex in Drosophila melanogaster. NanoImpact 2020;19:100237. [DOI: 10.1016/j.impact.2020.100237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
10 Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials (Basel) 2020;10:E834. [PMID: 32349272 DOI: 10.3390/nano10050834] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
11 Hossain SM, Zainal Abidin SA, Chowdhury EH. Krebs Cycle Intermediate-Modified Carbonate Apatite Nanoparticles Drastically Reduce Mouse Tumor Burden and Toxicity by Restricting Broad Tissue Distribution of Anticancer Drugs. Cancers (Basel) 2020;12:E161. [PMID: 31936503 DOI: 10.3390/cancers12010161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH. Targeting Cell Adhesion Molecules via Carbonate Apatite-Mediated Delivery of Specific siRNAs to Breast Cancer Cells In Vitro and In Vivo. Pharmaceutics 2019;11:E309. [PMID: 31269666 DOI: 10.3390/pharmaceutics11070309] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
13 Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 2019;110:1140-7. [PMID: 30729639 DOI: 10.1111/cas.13965] [Cited by in Crossref: 74] [Cited by in F6Publishing: 83] [Article Influence: 18.5] [Reference Citation Analysis]
14 Tiash S, Chowdhury EH. siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. J Drug Target 2019;27:325-37. [PMID: 30221549 DOI: 10.1080/1061186X.2018.1525388] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
15 Uddin MB, Balaravi Pillai B, Tha KK, Ashaie M, Karim ME, Chowdhury EH. Carbonate Apatite Nanoparticles-Facilitated Intracellular Delivery of siRNA(s) Targeting Calcium Ion Channels Efficiently Kills Breast Cancer Cells. Toxics 2018;6:E34. [PMID: 29949888 DOI: 10.3390/toxics6030034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
16 Kamaruzman NI, Tiash S, Ashaie M, Chowdhury EH. siRNAs Targeting Growth Factor Receptor and Anti-Apoptotic Genes Synergistically Kill Breast Cancer Cells through Inhibition of MAPK and PI-3 Kinase Pathways. Biomedicines 2018;6:E73. [PMID: 29932151 DOI: 10.3390/biomedicines6030073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
17 Takahashi H, Misato K, Aoshi T, Yamamoto Y, Kubota Y, Wu X, Kuroda E, Ishii KJ, Yamamoto H, Yoshioka Y. Carbonate Apatite Nanoparticles Act as Potent Vaccine Adjuvant Delivery Vehicles by Enhancing Cytokine Production Induced by Encapsulated Cytosine-Phosphate-Guanine Oligodeoxynucleotides. Front Immunol 2018;9:783. [PMID: 29720976 DOI: 10.3389/fimmu.2018.00783] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
18 Kimura K, Kamitakahara M, Yokoi T, Ioku K. Formation Process of Hydroxyapatite Granules in Agarose Hydrogel by Electrophoresis. Crystal Growth & Design 2018;18:1961-1966. [DOI: 10.1021/acs.cgd.7b01154] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
19 Mehbuba Hossain S, Chowdhury EH. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells. Pharmaceutics 2018;10:E32. [PMID: 29534497 DOI: 10.3390/pharmaceutics10010032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
20 Fatemian T, Chowdhury EH. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs. Toxics 2018;6:E12. [PMID: 29401738 DOI: 10.3390/toxics6010012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
21 Al Hasan A, Azam AZ. Small RNA-mediated prevention, diagnosis and therapies of cancer. Design of Nanostructures for Theranostics Applications 2018. [DOI: 10.1016/b978-0-12-813669-0.00009-9] [Reference Citation Analysis]
22 Tiash S, Kamaruzman NIB, Chowdhury EH. Carbonate apatite nanoparticles carry siRNA(s) targeting growth factor receptor genes egfr1 and erbb2 to regress mouse breast tumor. Drug Delivery 2017;24:1721-30. [DOI: 10.1080/10717544.2017.1396385] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
23 Arami S, Mahdavi M, Rashidi M, Yekta R, Rahnamay M, Molavi L, Hejazi M, Samadi N. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe3O4-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells. Journal of Pharmaceutical and Biomedical Analysis 2017;142:145-54. [DOI: 10.1016/j.jpba.2017.04.025] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
24 [DOI: 10.1063/1.4981832] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.8] [Reference Citation Analysis]
25 Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, Wang X, Kuang T, Chen F, Chen Z, Zhang A, Yu B, Lee RJ, Teng L, Lee LJ. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016;243:160-71. [PMID: 27742443 DOI: 10.1016/j.jconrel.2016.10.008] [Cited by in Crossref: 117] [Cited by in F6Publishing: 121] [Article Influence: 16.7] [Reference Citation Analysis]
26 Merhautova J, Demlova R, Slaby O. MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers. Front Pharmacol 2016;7:329. [PMID: 27729862 DOI: 10.3389/fphar.2016.00329] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
27 Arami S, Rashidi M, Mahdavi M, Fathi M, Entezami A. Synthesis and characterization of Fe 3 O 4 -PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol 2017;36:227-37. [DOI: 10.1177/0960327116646618] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
28 Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavão MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics. Food and Chemical Toxicology 2016;91:42-57. [DOI: 10.1016/j.fct.2016.03.003] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 12.6] [Reference Citation Analysis]
29 Patel P, Pol A, Jain R, Dandekar P. Cyclodextrin Polyrotaxanes: Drug and Nucleic Acid Delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2015. [DOI: 10.1081/e-ebpp-120050059] [Reference Citation Analysis]
30 Choimet M, Tourrette A, Drouet C. Adsorption of nucleotides on biomimetic apatite: The case of cytidine 5' monophosphate (CMP). J Colloid Interface Sci 2015;456:132-7. [PMID: 26117294 DOI: 10.1016/j.jcis.2015.06.021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
31 Ogawa H, Wu X, Kawamoto K, Nishida N, Konno M, Koseki J, Matsui H, Noguchi K, Gotoh N, Yamamoto T, Miyata K, Nishiyama N, Nagano H, Yamamoto H, Obika S, Kataoka K, Doki Y, Mori M, Ishii H. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells. PLoS One 2015;10:e0127119. [PMID: 25970424 DOI: 10.1371/journal.pone.0127119] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
32 Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, Nishida N, Uemura M, Hata T, Takemasa I. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer. Mol Ther Nucleic Acids. 2015;4:e231. [PMID: 25756961 DOI: 10.1038/mtna.2015.5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 7.3] [Reference Citation Analysis]
33 Wu X, Yamamoto H, Nakanishi H, Yamamoto Y, Inoue A, Tei M, Hirose H, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Hossain S, Akaike T, Matsuura N, Doki Y, Mori M. Innovative delivery of siRNA to solid tumors by super carbonate apatite. PLoS One 2015;10:e0116022. [PMID: 25738937 DOI: 10.1371/journal.pone.0116022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
34 Qin T, Yin Y, Huang L, Yu Q, Yang Q. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. Clin Vaccine Immunol 2015;22:421-9. [PMID: 25673304 DOI: 10.1128/CVI.00778-14] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
35 Oltolina F, Gregoletto L, Colangelo D, Gómez-Morales J, Delgado-López JM, Prat M. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications. Langmuir 2015;31:1766-75. [PMID: 25602940 DOI: 10.1021/la503747s] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
36 Chen W, Liu X, Xiao Y, Tang R. Overcoming multiple drug resistance by spatial-temporal synchronization of epirubicin and pooled siRNAs. Small 2015;11:1775-81. [PMID: 25641804 DOI: 10.1002/smll.201402377] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
37 Jain R, Dandekar P, Loretz B, Koch M, Lehr C. Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. Med Chem Commun 2015;6:691-701. [DOI: 10.1039/c4md00490f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
38 He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014;32:6199-205. [PMID: 25261380 DOI: 10.1016/j.vaccine.2014.09.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
39 Kawakami S, Hashida M. Glycosylation-mediated targeting of carriers. Journal of Controlled Release 2014;190:542-55. [DOI: 10.1016/j.jconrel.2014.06.001] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 6.0] [Reference Citation Analysis]
40 Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014;190:440-50. [PMID: 24874288 DOI: 10.1016/j.jconrel.2014.05.037] [Cited by in Crossref: 60] [Cited by in F6Publishing: 65] [Article Influence: 6.7] [Reference Citation Analysis]
41 Wang YQ, Wu J, Fan QZ, Zhou M, Yue ZG, Ma GH, Su ZG. Novel vaccine delivery system induces robust humoral and cellular immune responses based on multiple mechanisms. Adv Healthc Mater 2014;3:670-81. [PMID: 24574270 DOI: 10.1002/adhm.201300335] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
42 Chen S, Hayakawa S, Shirosaki Y, Hanagata N, Osaka A. Biomedical Applications of Sol-Gel Nanocomposites. Sol-Gel Nanocomposites 2014. [DOI: 10.1007/978-1-4939-1209-4_7] [Reference Citation Analysis]
43 Zarogoulidis P, Darwiche K, Hohenforst-Schmidt W, Huang H, Li Q, Freitag L, Zarogoulidis K. Inhaled gene therapy in lung cancer: proof-of-concept for nano-oncology and nanobiotechnology in the management of lung cancer. Future Oncol 2013;9:1171-94. [PMID: 23902248 DOI: 10.2217/fon.13.67] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
44 Gao K, Huang L. Achieving efficient RNAi therapy: progress and challenges. Acta Pharmaceutica Sinica B 2013;3:213-25. [DOI: 10.1016/j.apsb.2013.06.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
45 Hossain S, Yamamoto H, Chowdhury EH, Wu X, Hirose H, Haque A, Doki Y, Mori M, Akaike T. Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: effect on growth retardation of established colon tumor. PLoS One 2013;8:e60428. [PMID: 23613726 DOI: 10.1371/journal.pone.0060428] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
46 Kamitakahara M, Kimura K, Ioku K. Synthesis of nanosized porous hydroxyapatite granules in hydrogel by electrophoresis. Colloids and Surfaces B: Biointerfaces 2012;97:236-9. [DOI: 10.1016/j.colsurfb.2012.03.033] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
47 Zarogouldis P, Karamanos NK, Porpodis K, Domvri K, Huang H, Hohenforst-Schimdt W, Goldberg EP, Zarogoulidis K. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 2012;13:10828-62. [PMID: 23109824 DOI: 10.3390/ijms130910828] [Cited by in Crossref: 30] [Cited by in F6Publishing: 41] [Article Influence: 2.7] [Reference Citation Analysis]
48 Hossain S, Chowdhury EH, Akaike T. Nanoparticles and toxicity in therapeutic delivery: the ongoing debate. Ther Deliv 2011;2:125-32. [PMID: 22833937 DOI: 10.4155/tde.10.109] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
49 Dandekar P, Jain R, Keil M, Loretz B, Muijs L, Schneider M, Auerbach D, Jung G, Lehr CM, Wenz G. Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes. J Control Release 2012;164:387-93. [PMID: 22789529 DOI: 10.1016/j.jconrel.2012.06.040] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
50 Zhao ZX, Gao SY, Wang JC, Chen CJ, Zhao EY, Hou WJ, Feng Q, Gao LY, Liu XY, Zhang LR, Zhang Q. Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery. Biomaterials 2012;33:6793-807. [PMID: 22721724 DOI: 10.1016/j.biomaterials.2012.05.067] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 8.8] [Reference Citation Analysis]
51 Stanislaus A, Bakhtiar A, Salleh D, Tiash S, Fatemian T, Hossain S, Akaike T, Chowdhury EH. Knockdown of PLC-gamma-2 and calmodulin 1 genes sensitizes human cervical adenocarcinoma cells to doxorubicin and paclitaxel. Cancer Cell Int 2012;12:30. [PMID: 22709569 DOI: 10.1186/1475-2867-12-30] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
52 Li YT, Chua MJ, Kunnath AP, Chowdhury EH. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. Int J Nanomedicine 2012;7:2473-81. [PMID: 22701315 DOI: 10.2147/IJN.S30500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 17] [Article Influence: 0.5] [Reference Citation Analysis]
53 Fathabadi EG, Shelling AN, Al-kassas R. Nanocarrier systems for delivery of siRNA to ovarian cancer tissues. Expert Opinion on Drug Delivery 2012;9:743-54. [DOI: 10.1517/17425247.2012.683173] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
54 Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem 2012;13:2495-506. [PMID: 22467406 DOI: 10.1002/cphc.201200080] [Cited by in Crossref: 84] [Cited by in F6Publishing: 92] [Article Influence: 7.6] [Reference Citation Analysis]
55 Patravale V, Dandekar P, Jain R. Nanoparticles as drug carriers. Nanoparticulate Drug Delivery 2012. [DOI: 10.1533/9781908818195.29] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
56 Hebishima T, Tada S, Takeshima S, Akaike T, Ito Y, Aida Y. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochemical and Biophysical Research Communications 2011;415:597-601. [DOI: 10.1016/j.bbrc.2011.10.114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
57 Kundu AK, Chandra PK, Hazari S, Pramar YV, Dash S, Mandal TK. Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur J Pharm Biopharm 2012;80:257-67. [PMID: 22119665 DOI: 10.1016/j.ejpb.2011.10.023] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
58 Chowdhury EH. Strategies for tumor-directed delivery of siRNA. Expert Opinion on Drug Delivery 2011;8:389-401. [DOI: 10.1517/17425247.2011.554817] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
59 Jeong S, Choi SY, Park J, Seo J, Park J, Cho K, Joo S, Lee SY. Low-toxicity chitosan gold nanoparticles for small hairpin RNA delivery in human lung adenocarcinoma cells. J Mater Chem 2011;21:13853. [DOI: 10.1039/c1jm11913c] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
60 Guo S, Huang L. Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy. Journal of Nanomaterials 2011;2011:1-12. [DOI: 10.1155/2011/742895] [Cited by in Crossref: 90] [Cited by in F6Publishing: 109] [Article Influence: 7.5] [Reference Citation Analysis]