1 |
Wang S, Meng S, Zhou X, Gao Z, Piao MG. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023;15:820. [DOI: 10.3390/pharmaceutics15030820] [Reference Citation Analysis]
|
2 |
Xiong X, Jiang H, Liao Y, Du Y, Zhang Y, Wang Z, Zheng M, Du Z. Liposome-trimethyl chitosan nanoparticles codeliver insulin and siVEGF to treat corneal alkali burns by inhibiting ferroptosis. Bioeng Transl Med 2023;8:e10499. [PMID: 36925675 DOI: 10.1002/btm2.10499] [Reference Citation Analysis]
|
3 |
Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-Cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS Au 2023;3:344-57. [PMID: 36873677 DOI: 10.1021/jacsau.2c00654] [Reference Citation Analysis]
|
4 |
Lou J, Duan H, Qin Q, Teng Z, Gan F, Zhou X, Zhou X. Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023;15. [PMID: 36839807 DOI: 10.3390/pharmaceutics15020484] [Reference Citation Analysis]
|
5 |
Zhang T, Li L, Chunta S, Wu W, Chen Z, Lu Y. Enhanced oral bioavailability from food protein nanoparticles: A mini review. J Control Release 2023;354:146-54. [PMID: 36566844 DOI: 10.1016/j.jconrel.2022.12.043] [Reference Citation Analysis]
|
6 |
Ma Y, Li Q, Yang J, Cheng Y, Li C, Zhao C, Chen W, Huang D, Qian H. Crosslinked zwitterionic microcapsules to overcome gastrointestinal barriers for oral insulin delivery. Biomater Sci 2023;11:975-84. [PMID: 36541189 DOI: 10.1039/d2bm01606k] [Reference Citation Analysis]
|
7 |
Mohammadpour F, Kamali H, Gholami L, McCloskey AP, Kesharwani P, Sahebkar A. Solid lipid nanoparticles: a promising tool for insulin delivery. Expert Opin Drug Deliv 2022;19:1577-95. [PMID: 36287584 DOI: 10.1080/17425247.2022.2138328] [Reference Citation Analysis]
|
8 |
El Handi K, Sabri M, Valentini F, De Stradis A, Achbani EH, Hafidi M, El Moujabber M, Elbeaino T. Exploring Active Peptides with Antimicrobial Activity In Planta against Xylella fastidiosa. Biology 2022;11:1685. [DOI: 10.3390/biology11111685] [Reference Citation Analysis]
|
9 |
Tătaru I, Dragostin OM, Fulga I, Boros F, Carp A, Maftei A, Zamfir CL, Nechita A. The modern pharmacological approach to diabetes: innovative methods of monitoring and insulin treatment. Expert Rev Med Devices 2022. [PMID: 35962571 DOI: 10.1080/17434440.2022.2113387] [Reference Citation Analysis]
|
10 |
Qiu A, Wang Y, Zhang G, Wang H. Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022;14:3217. [PMID: 35956731 DOI: 10.3390/polym14153217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
11 |
Roy R, Bhattacharya P, Borah A. Targeting the Pathological Hallmarks of Alzheimer's Disease Through Nanovesicleaided Drug Delivery Approach. Curr Drug Metab 2022;23:693-707. [PMID: 35619248 DOI: 10.2174/1389200223666220526094802] [Reference Citation Analysis]
|
12 |
Singh P, Singh N, Mishra N, Nisha R, Alka, Maurya P, Pal RR, Singh S, Saraf SA. Functionalized Bosutinib Liposomes for Target Specific Delivery in management of Estrogen-Positive Cancer. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112763] [Reference Citation Analysis]
|
13 |
Abdul Khalil H, Bashir Yahya E, Jummaat F, Adnan A, Olaiya N, Rizal S, Abdullah C, Pasquini D, Thomas S. Biopolymers based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101014] [Reference Citation Analysis]
|
14 |
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Guo Y, Baldelli A, Singh A, Fathordoobady F, Kitts D, Pratap-Singh A. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques. Sci Rep 2022;12:9949. [PMID: 35705561 DOI: 10.1038/s41598-022-13092-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Minami K, Kataoka M, Takagi H, Asai T, Oku N, Yamashita S. Liposomal Formulation for Oral Delivery of Cyclosporine A: Usefulness as a Semisolid-Dispersion System. Pharm Res 2022. [PMID: 35501532 DOI: 10.1007/s11095-022-03276-0] [Reference Citation Analysis]
|
17 |
Wong CY, Ong HX, Traini D. The application of in vitro cellular assays for analysis of electronic cigarettes impact on the airway. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.120487] [Reference Citation Analysis]
|
18 |
Han L, Lu K, Zhou S, Qi B, Li Y. Co-delivery of insulin and quercetin in W/O/W double emulsions stabilized by different hydrophilic emulsifiers. Food Chem 2022;369:130918. [PMID: 34455318 DOI: 10.1016/j.foodchem.2021.130918] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
19 |
Mardare I, Campbell SM, Meyer JC, Sefah IA, Massele A, Godman B. Enhancing Choices Regarding the Administration of Insulin Among Patients With Diabetes Requiring Insulin Across Countries and Implications for Future Care. Front Pharmacol 2021;12:794363. [PMID: 35095504 DOI: 10.3389/fphar.2021.794363] [Reference Citation Analysis]
|
20 |
Arora M, Zou D, Ravi Kumar M. Nanoparticle-assisted oral delivery of small and large peptides. Oral Delivery of Therapeutic Peptides and Proteins 2022. [DOI: 10.1016/b978-0-12-821061-1.00007-1] [Reference Citation Analysis]
|
21 |
Priya S, Tyagi A, Singh M, Rawat S, Raizaday A, Singh SK, Gupta G. Advanced drug delivery systems for treatment of diabetes mellitus. Drug Delivery Systems for Metabolic Disorders 2022. [DOI: 10.1016/b978-0-323-99616-7.00025-6] [Reference Citation Analysis]
|
22 |
Rydosz A. Diabetes in general. Diabetes Without Needles 2022. [DOI: 10.1016/b978-0-323-99887-1.00001-7] [Reference Citation Analysis]
|
23 |
Reboredo C, González-Navarro CJ, Martínez-López AL, Martínez-Ohárriz C, Sarmento B, Irache JM. Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics 2021;14:39. [PMID: 35056935 DOI: 10.3390/pharmaceutics14010039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Xie H, Ma X, Lin W, Dong S, Liu Q, Chen Y, Gao Q. Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin-Insulin Inclusion Complexes. Polymers (Basel) 2021;13:4187. [PMID: 34883690 DOI: 10.3390/polym13234187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
25 |
Amjadi S, Shahnaz F, Shokouhi B, Azarmi Y, Siahi-Shadbad M, Ghanbarzadeh S, Kouhsoltani M, Ebrahimi A, Hamishehkar H. Nanophytosomes for enhancement of rutin efficacy in oral administration for diabetes treatment in streptozotocin-induced diabetic rats. Int J Pharm 2021;610:121208. [PMID: 34673162 DOI: 10.1016/j.ijpharm.2021.121208] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
26 |
Bezerra JMNA, Oliveira ACJ, Silva-filho EC, Severino P, Souto SB, Souto EB, Soares MFLR, Soares-sobrinho JL. The Potential Role of Polyelectrolyte Complex Nanoparticles Based on Cashew Gum, Tripolyphosphate and Chitosan for the Loading of Insulin. Diabetology 2021;2:107-16. [DOI: 10.3390/diabetology2020009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Carvalho PM, Makowski M, Domingues MM, Martins IC, Santos NC. Lipid membrane-based therapeutics and diagnostics. Arch Biochem Biophys 2021;704:108858. [PMID: 33798534 DOI: 10.1016/j.abb.2021.108858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Wong CYJ, Al-Salami H, Dass CR. β-Cyclodextrin-containing chitosan-oligonucleotide nanoparticles improve insulin bioactivity, gut cellular permeation and glucose consumption. J Pharm Pharmacol 2021;73:726-39. [PMID: 33769519 DOI: 10.1093/jpp/rgaa052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
29 |
Feng QP, Zhu YT, Yuan YZ, Li WJ, Yu HH, Hu MY, Xiang SY, Yu SQ. Oral administration co-delivery nanoparticles of docetaxel and bevacizumab for improving intestinal absorption and enhancing anticancer activity. Mater Sci Eng C Mater Biol Appl 2021;124:112039. [PMID: 33947539 DOI: 10.1016/j.msec.2021.112039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021;29:365-86. [PMID: 32876505 DOI: 10.1080/1061186X.2020.1817042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
31 |
Wang J, Wu J, Li Y, Wen J, Cai J, Tang T, Hu X, Xiang D. The Brief Analysis of Peptide-combined Nanoparticle: Nanomedicine's Unique Value. Curr Protein Pept Sci 2020;21:334-43. [PMID: 32039679 DOI: 10.2174/1389203721666200210103841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
32 |
Nasrollahzadeh M, Bidgoli NSS, Soleimani F, Shafiei N, Nezafat Z, Baran T. Biomedical applications of biopolymer-based (nano)materials. Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications 2021. [DOI: 10.1016/b978-0-323-89970-3.00005-6] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
33 |
Jash A, Ubeyitogullari A, Rizvi SSH. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J Mater Chem B 2021;9:4773-92. [PMID: 34027542 DOI: 10.1039/d1tb00126d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
|
34 |
Li S, Liang N, Yan P, Kawashima Y, Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydrate Polymers 2021;252:117202. [DOI: 10.1016/j.carbpol.2020.117202] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
|
35 |
Frampton MB, Blais A, Raczywolski Z, Castle A, Zelisko PM. Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug delivery vehicles. RSC Adv 2021;11:13014-23. [DOI: 10.1039/d0ra10052h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
36 |
Seyam S, Nordin NA, Alfatama M. Recent Progress of Chitosan and Chitosan Derivatives-Based Nanoparticles: Pharmaceutical Perspectives of Oral Insulin Delivery. Pharmaceuticals (Basel) 2020;13:E307. [PMID: 33066443 DOI: 10.3390/ph13100307] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
37 |
Yazdi JR, Tafaghodi M, Sadri K, Mashreghi M, Nikpoor AR, Nikoofal-sahlabadi S, Chamani J, Vakili R, Moosavian SA, Jaafari MR. Folate targeted PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. Colloids and Surfaces B: Biointerfaces 2020;194:111203. [DOI: 10.1016/j.colsurfb.2020.111203] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
|
38 |
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020;72:1667-93. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
|
39 |
Zhao R, Lu Z, Yang J, Zhang L, Li Y, Zhang X. Drug Delivery System in the Treatment of Diabetes Mellitus. Front Bioeng Biotechnol 2020;8:880. [PMID: 32850735 DOI: 10.3389/fbioe.2020.00880] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
|
40 |
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020;46:1238-52. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
41 |
Wong CY, Al-salami H, Dass CR. Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. Journal of Drug Delivery Science and Technology 2020;57:101738. [DOI: 10.1016/j.jddst.2020.101738] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
42 |
Hoshi A, Nagai N, Daigaku R, Motoyama R, Saijo S, Kaji H, Abe T. Effect of sustained insulin-releasing device made of poly(ethylene glycol) dimethacrylates on retinal function in streptozotocin-induced diabetic rats. J Mater Sci Mater Med 2020;31:52. [PMID: 32462459 DOI: 10.1007/s10856-020-06392-8] [Reference Citation Analysis]
|
43 |
Shen D, Yu H, Wang L, Khan A, Haq F, Chen X, Huang Q, Teng L. Recent progress in design and preparation of glucose-responsive insulin delivery systems. Journal of Controlled Release 2020;321:236-58. [DOI: 10.1016/j.jconrel.2020.02.014] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 15.7] [Reference Citation Analysis]
|
44 |
Wong CY, Al-salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. Journal of Drug Targeting 2020;28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
45 |
Sedyakina N, Feldman N, Lutsenko S. Microemulsions based on polyglycerol polyricinoleate as drug delivery systems. Farmacevticheskoe delo i tehnologija lekarstv (Pharmacy and Pharmaceutical Technology) 2020. [DOI: 10.33920/med-13-2002-02] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
46 |
Wong CY, Al-Salami H, Dass CR. Lyophilisation Improves Bioactivity and Stability of Insulin-Loaded Polymeric-Oligonucleotide Nanoparticles for Diabetes Treatment. AAPS PharmSciTech 2020;21:108. [PMID: 32215761 DOI: 10.1208/s12249-020-01648-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
47 |
Luo C, Wu S, Li J, Li X, Yang P, Li G. Chitosan/calcium phosphate flower-like microparticles as carriers for drug delivery platform. Int J Biol Macromol 2020;155:174-83. [PMID: 32222289 DOI: 10.1016/j.ijbiomac.2020.03.172] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
48 |
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020;277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
49 |
Wong CY, Al-salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. Journal of Drug Targeting 2020;28:585-99. [DOI: 10.1080/1061186x.2020.1726356] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
|
50 |
Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen S, Aguiar-ricardo A, Corvo ML, Santos HA. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 2020;8:3270-7. [DOI: 10.1039/d0bm00743a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
51 |
He W, Du Y, Zhou W, Yao C, Li X. Redox-sensitive dimeric camptothecin phosphatidylcholines-based liposomes for improved anticancer efficacy. Nanomedicine 2019;14:3057-74. [DOI: 10.2217/nnm-2019-0261] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
52 |
Wong CY, Luna G, Martinez J, Al-Salami H, Dass CR. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int J Pharm 2019;572:118720. [PMID: 31715357 DOI: 10.1016/j.ijpharm.2019.118720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
53 |
Hu WY, Wu ZM, Yang QQ, Liu YJ, Li J, Zhang CY. Smart pH-responsive polymeric micelles for programmed oral delivery of insulin. Colloids and Surfaces B: Biointerfaces 2019;183:110443. [DOI: 10.1016/j.colsurfb.2019.110443] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
|
54 |
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release 2019;313:1-13. [PMID: 31622690 DOI: 10.1016/j.jconrel.2019.10.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
|
55 |
Allen D, Ruan CH, King B, Ruan KH. Recent advances and near future of insulin production and therapy. Future Med Chem 2019;11:1513-7. [PMID: 31469334 DOI: 10.4155/fmc-2019-0134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
56 |
Xing Y, Xie X, Xu J, Liu J, He Q, Yang W, Zhang N, Li X, Wang L, Fu J, Zhou J, Gao B, Ming J, Liu X, Lai J, Liu T, Shi M, Ji Q. Efficacy and safety of a needle-free injector in Chinese patients with type 2 diabetes mellitus treated with basal insulin: a multicentre, prospective, randomised, crossover study. Expert Opin Drug Deliv 2019;16:995-1002. [PMID: 31359813 DOI: 10.1080/17425247.2019.1649251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
57 |
Yan X, Cao S, Li Y, Xiao P, Huang Z, Li H, Ma Y. Internalization and subcellular transport mechanisms of different curcumin loaded nanocarriers across Caco-2 cell model. Journal of Drug Delivery Science and Technology 2019;52:660-9. [DOI: 10.1016/j.jddst.2019.05.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Amjadi S, Mesgari Abbasi M, Shokouhi B, Ghorbani M, Hamishehkar H. Enhancement of therapeutic efficacy of betanin for diabetes treatment by liposomal nanocarriers. Journal of Functional Foods 2019;59:119-28. [DOI: 10.1016/j.jff.2019.05.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
|
59 |
Allen D, Ruan C, King B, Ruan K. Recent advances and near future of insulin production and therapy. Future Medicinal Chemistry 2019;11:1513-1517. [DOI: 10.4155/fmc-2019-0134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
60 |
Singh M, Devi S, Rana VS, Mishra BB, Kumar J, Ahluwalia V. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities. J Microencapsul 2019;36:215-35. [PMID: 31092084 DOI: 10.1080/02652048.2019.1617361] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
|
61 |
Zhang T, Luo J, Peng Q, Dong J, Wang Y, Gong T, Zhang Z. Injectable and biodegradable phospholipid-based phase separation gel for sustained delivery of insulin. Colloids and Surfaces B: Biointerfaces 2019;176:194-201. [DOI: 10.1016/j.colsurfb.2019.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
62 |
Roncato JFF, Camara D, Brussulo Pereira TC, Quines CB, Colomé LM, Denardin C, Haas S, Ávila DS. Lipid reducing potential of liposomes loaded with ethanolic extract of purple pitanga (Eugenia uniflora) administered to Caenorhabditis elegans. J Liposome Res 2019;29:274-82. [PMID: 30563398 DOI: 10.1080/08982104.2018.1552705] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|