BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hanato J, Kuriyama K, Mizumoto T, Debari K, Hatanaka J, Onoue S, Yamada S. Liposomal formulations of glucagon-like peptide-1: Improved bioavailability and anti-diabetic effect. International Journal of Pharmaceutics 2009;382:111-6. [DOI: 10.1016/j.ijpharm.2009.08.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
Number Citing Articles
1 Nadendla K, Simpson GG, Becher J, Journeaux T, Cabeza-cabrerizo M, Bernardes GJL. Strategies for Conditional Regulation of Proteins. JACS Au 2023. [DOI: 10.1021/jacsau.2c00654] [Reference Citation Analysis]
2 Debele TA, Park Y. Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. Life (Basel) 2022;12. [PMID: 36556443 DOI: 10.3390/life12122078] [Reference Citation Analysis]
3 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
4 Hao W, Jia Y, Wang C, Wang X. Preparation, chemical characterization and determination of the antioxidant, cytotoxicity and therapeutic effects of gold nanoparticles green-synthesized by Calendula officinalis flower extract in diabetes-induced cardiac dysfunction in rat. Inorganic Chemistry Communications 2022. [DOI: 10.1016/j.inoche.2022.109931] [Reference Citation Analysis]
5 Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022;12:621-36. [PMID: 35256935 DOI: 10.1016/j.apsb.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Gültekin HE, Oner E, İlhan M, Karpuz M. Nanovesicles for intravenous drug delivery. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00018-3] [Reference Citation Analysis]
7 Alavi SE, Ebrahimi Shahmabadi H. GLP-1 peptide analogs for targeting pancreatic beta cells. Drug Discov Today 2021;26:1936-43. [PMID: 33839290 DOI: 10.1016/j.drudis.2021.03.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
8 Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine & Pharmacotherapy 2020;131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Cited by in Crossref: 77] [Cited by in F6Publishing: 89] [Article Influence: 25.7] [Reference Citation Analysis]
9 Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021;16:62-76. [PMID: 33613730 DOI: 10.1016/j.ajps.2020.05.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
10 Wong CY, Al-salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. International Journal of Pharmaceutics 2018;549:201-17. [DOI: 10.1016/j.ijpharm.2018.07.041] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 10.6] [Reference Citation Analysis]
11 Moonschi FH, Hughes CB, Mussman GM, Fowlkes JL, Richards CI, Popescu I. Advances in micro- and nanotechnologies for the GLP-1-based therapy and imaging of pancreatic beta-cells. Acta Diabetol 2018;55:405-18. [PMID: 29264724 DOI: 10.1007/s00592-017-1086-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
12 Cheang JY, Moyle PM. Glucagon-Like Peptide-1 (GLP-1)-Based Therapeutics: Current Status and Future Opportunities beyond Type 2 Diabetes. ChemMedChem. 2018;13:662-671. [PMID: 29430842 DOI: 10.1002/cmdc.201700781] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
13 Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, Chin CM, Lee PY, Lee CM, Ooi CH, Choudhury H, Pandey M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 2018;136:52-77. [PMID: 29196152 DOI: 10.1016/j.diabres.2017.11.018] [Cited by in Crossref: 86] [Cited by in F6Publishing: 86] [Article Influence: 14.3] [Reference Citation Analysis]
14 Takata K, Takai H, Yoshizaki Y, Nagata T, Kawahara K, Yoshida Y, Kuzuya A, Ohya Y. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation. Gels 2017;3:E38. [PMID: 30920533 DOI: 10.3390/gels3040038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
15 Chella N, Shastri NR. Lipid Carriers: Role and Applications in Nano Drug Delivery. Particulate Technology for Delivery of Therapeutics 2017. [DOI: 10.1007/978-981-10-3647-7_8] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
16 Lee CY. Glucagon-Like Peptide-1 Formulation--the Present and Future Development in Diabetes Treatment. Basic Clin Pharmacol Toxicol 2016;118:173-80. [PMID: 26551045 DOI: 10.1111/bcpt.12524] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
17 Ryu JS, Kuna M, Raucher D. Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics. Ther Deliv 2014;5:429-45. [PMID: 24856169 DOI: 10.4155/tde.14.14] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
18 Kim JY, Lee H, Oh KS, Kweon S, Jeon OC, Byun Y, Kim K, Kwon IC, Kim SY, Yuk SH. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials 2013;34:8444-9. [PMID: 23895999 DOI: 10.1016/j.biomaterials.2013.07.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
19 Araújo F, Fonte P, Santos HA, Sarmento B. Oral delivery of glucagon-like peptide-1 and analogs: alternatives for diabetes control? J Diabetes Sci Technol 2012;6:1486-97. [PMID: 23294796 DOI: 10.1177/193229681200600630] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
20 Qu W, Li Y, Hovgaard L, Li S, Dai W, Wang J, Zhang X, Zhang Q. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1. Int J Nanomedicine 2012;7:4983-94. [PMID: 23028226 DOI: 10.2147/IJN.S30013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 0.2] [Reference Citation Analysis]
21 Nishijima K, Shukunami K, Yoshinari H, Takahashi J, Maeda H, Takagi H, Kotsuji F. Interactions among pulmonary surfactant, vernix caseosa, and intestinal enterocytes: intra-amniotic administration of fluorescently liposomes to pregnant rabbits. American Journal of Physiology-Lung Cellular and Molecular Physiology 2012;303:L208-14. [DOI: 10.1152/ajplung.00081.2011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
22 Souto E, Fangueiro J, Souto S. Lipid Matrix Nanoparticles in Diabetes. Nanotechnology and Nanomedicine in Diabetes 2012. [DOI: 10.1201/b11775-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Ducat E, Deprez J, Gillet A, Noël A, Evrard B, Peulen O, Piel G. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: Benefits over classical vesicles. International Journal of Pharmaceutics 2011;420:319-32. [DOI: 10.1016/j.ijpharm.2011.08.034] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 3.8] [Reference Citation Analysis]
24 Niu M, Lu Y, Hovgaard L, Wu W. Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine 2011;6:1155-66. [PMID: 21822379 DOI: 10.2147/IJN.S19917] [Cited by in Crossref: 10] [Cited by in F6Publishing: 38] [Article Influence: 0.8] [Reference Citation Analysis]
25 Onoue S, Hanato J, Kuriyama K, Mizumoto T, Yamada S. Development of PACAP38 analogue with improved stability: physicochemical and in vitro/in vivo pharmacological characterization. J Mol Neurosci 2011;43:85-93. [PMID: 20585898 DOI: 10.1007/s12031-010-9415-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
26 Ducat E, Brion M, Lecomte F, Evrard B, Piel G. The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes. AAPS PharmSciTech 2010;11:966-75. [PMID: 20512433 DOI: 10.1208/s12249-010-9463-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]