BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chowdhury EH, Maruyama A, Kano A, Nagaoka M, Kotaka M, Hirose S, Kunou M, Akaike T. pH-sensing nano-crystals of carbonate apatite: effects on intracellular delivery and release of DNA for efficient expression into mammalian cells. Gene 2006;376:87-94. [PMID: 16723196 DOI: 10.1016/j.gene.2006.02.028] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Ibnat N, Chowdhury EH. Retarding breast tumor growth with nanoparticle-facilitated intravenous delivery of BRCA1 and BRCA2 tumor suppressor genes. Sci Rep 2023;13:536. [PMID: 36631481 DOI: 10.1038/s41598-022-25511-9] [Reference Citation Analysis]
2 Yang Y, Cui Y, Cao W, Zhao M, Lin W, Xu R, Xu Y, Chen Y, Li H, Liang J, Lin Y, Fan Y, Zhang X, Sun Y. Nanohydroxyapatite Stimulates PD-L1 Expression to Boost Melanoma Combination Immunotherapy. ACS Nano 2022;16:18921-35. [PMID: 36315589 DOI: 10.1021/acsnano.2c07818] [Reference Citation Analysis]
3 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
4 Haque ST, Karim ME, Othman I, Chowdhury EH. Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. J Pharm Investig . [DOI: 10.1007/s40005-022-00571-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Ibnat N, Islam RA, Chowdhury EH. Inhibition of Breast Tumour Growth with Intravenously Administered PRKCA siRNA- and PTEN Tumour Suppressor Gene-Loaded Carbonate Apatite Nanoparticles. Applied Sciences 2021;11:8133. [DOI: 10.3390/app11178133] [Reference Citation Analysis]
6 Bakhtiar A, Chowdhury EH. PH-responsive strontium nanoparticles for targeted gene therapy against mammary carcinoma cells. Asian J Pharm Sci 2021;16:236-52. [PMID: 33995617 DOI: 10.1016/j.ajps.2020.11.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
7 Haque ST, Islam RA, Gan SH, Chowdhury EH. Characterization and Evaluation of Bone-Derived Nanoparticles as a Novel pH-Responsive Carrier for Delivery of Doxorubicin into Breast Cancer Cells. Int J Mol Sci 2020;21:E6721. [PMID: 32937817 DOI: 10.3390/ijms21186721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
8 Haque ST, Karim ME, Abidin SAZ, Othman I, Holl MMB, Chowdhury EH. Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials (Basel) 2020;10:E834. [PMID: 32349272 DOI: 10.3390/nano10050834] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
9 Hossain SM, Zainal Abidin SA, Chowdhury EH. Krebs Cycle Intermediate-Modified Carbonate Apatite Nanoparticles Drastically Reduce Mouse Tumor Burden and Toxicity by Restricting Broad Tissue Distribution of Anticancer Drugs. Cancers (Basel) 2020;12:E161. [PMID: 31936503 DOI: 10.3390/cancers12010161] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Ibnat N, Kamaruzman NI, Ashaie M, Chowdhury EH. Transfection with p21 and p53 tumor suppressor plasmids suppressed breast tumor growth in syngeneic mouse model. Gene 2019;701:32-40. [PMID: 30898703 DOI: 10.1016/j.gene.2019.02.082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
11 Tiash S, Chowdhury EH. siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. J Drug Target 2019;27:325-37. [PMID: 30221549 DOI: 10.1080/1061186X.2018.1525388] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
12 Hossain SM, Shetty J, Tha KK, Chowdhury EH. α-Ketoglutaric Acid-Modified Carbonate Apatite Enhances Cellular Uptake and Cytotoxicity of a Raf- Kinase Inhibitor in Breast Cancer Cells through Inhibition of MAPK and PI-3 Kinase Pathways. Biomedicines 2019;7:E4. [PMID: 30609867 DOI: 10.3390/biomedicines7010004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
13 Maradze D, Musson D, Zheng Y, Cornish J, Lewis M, Liu Y. High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. Sci Rep 2018;8:10003. [PMID: 29968794 DOI: 10.1038/s41598-018-28476-w] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
14 Takahashi H, Misato K, Aoshi T, Yamamoto Y, Kubota Y, Wu X, Kuroda E, Ishii KJ, Yamamoto H, Yoshioka Y. Carbonate Apatite Nanoparticles Act as Potent Vaccine Adjuvant Delivery Vehicles by Enhancing Cytokine Production Induced by Encapsulated Cytosine-Phosphate-Guanine Oligodeoxynucleotides. Front Immunol 2018;9:783. [PMID: 29720976 DOI: 10.3389/fimmu.2018.00783] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
15 Mehbuba Hossain S, Chowdhury EH. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells. Pharmaceutics 2018;10:E32. [PMID: 29534497 DOI: 10.3390/pharmaceutics10010032] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
16 Fatemian T, Chowdhury EH. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs. Toxics 2018;6:E12. [PMID: 29401738 DOI: 10.3390/toxics6010012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
17 Shubhra QT, Oyane A, Nakamura M, Puentes S, Marushima A, Tsurushima H. Rapid one-pot fabrication of magnetic calcium phosphate nanoparticles immobilizing DNA and iron oxide nanocrystals using injection solutions for magnetofection and magnetic targeting. Materials Today Chemistry 2017;6:51-61. [DOI: 10.1016/j.mtchem.2017.10.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
18 Shubhra QTH, Oyane A, Araki H, Nakamura M, Tsurushima H. Calcium phosphate nanoparticles prepared from infusion fluids for stem cell transfection: process optimization and cytotoxicity analysis. Biomater Sci 2017;5:972-81. [DOI: 10.1039/c6bm00870d] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
19 Shekhar S, Roy A, Hong D, Kumta PN. Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems. Materials Science and Engineering: C 2016;69:486-95. [DOI: 10.1016/j.msec.2016.06.076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
20 Merhautova J, Demlova R, Slaby O. MicroRNA-Based Therapy in Animal Models of Selected Gastrointestinal Cancers. Front Pharmacol 2016;7:329. [PMID: 27729862 DOI: 10.3389/fphar.2016.00329] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
21 Chen MH, Hanagata N, Ikoma T, Huang JY, Li KY, Lin CP, Lin FH. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment. Acta Biomater 2016;37:165-73. [PMID: 27060620 DOI: 10.1016/j.actbio.2016.04.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 6.7] [Reference Citation Analysis]
22 Turon P, Puiggalí J, Bertrán O, Alemán C. Surviving Mass Extinctions through Biomineralized DNA. Chem Eur J 2015;21:18892-8. [DOI: 10.1002/chem.201503030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
23 Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, Nishida N, Uemura M, Hata T, Takemasa I. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer. Mol Ther Nucleic Acids. 2015;4:e231. [PMID: 25756961 DOI: 10.1038/mtna.2015.5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 7.3] [Reference Citation Analysis]
24 Wu X, Yamamoto H, Nakanishi H, Yamamoto Y, Inoue A, Tei M, Hirose H, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Hossain S, Akaike T, Matsuura N, Doki Y, Mori M. Innovative delivery of siRNA to solid tumors by super carbonate apatite. PLoS One 2015;10:e0116022. [PMID: 25738937 DOI: 10.1371/journal.pone.0116022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
25 He P, Takeshima SN, Tada S, Akaike T, Ito Y, Aida Y. pH-sensitive carbonate apatite nanoparticles as DNA vaccine carriers enhance humoral and cellular immunity. Vaccine 2014;32:6199-205. [PMID: 25261380 DOI: 10.1016/j.vaccine.2014.09.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
26 Chen MH, Yoshioka T, Ikoma T, Hanagata N, Lin FH, Tanaka J. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles. Sci Technol Adv Mater 2014;15:055005. [PMID: 27877717 DOI: 10.1088/1468-6996/15/5/055005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
27 Alhaji SY, Chowdhury EH, Rosli R, Hassan F, Abdullah S. Gene delivery potential of biofunctional carbonate apatite nanoparticles in lungs. Biomed Res Int 2014;2014:646787. [PMID: 25143941 DOI: 10.1155/2014/646787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
28 Borah BM, Halter TJ, Xie B, Henneman ZJ, Siudzinski TR, Harris S, Elliott M, Nancollas GH. Kinetics of canine dental calculus crystallization: an in vitro study on the influence of inorganic components of canine saliva. J Colloid Interface Sci 2014;425:20-6. [PMID: 24776659 DOI: 10.1016/j.jcis.2014.03.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
29 Chen S, Hayakawa S, Shirosaki Y, Hanagata N, Osaka A. Biomedical Applications of Sol-Gel Nanocomposites. Sol-Gel Nanocomposites 2014. [DOI: 10.1007/978-1-4939-1209-4_7] [Reference Citation Analysis]
30 Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. Chin Sci Bull 2013;58:4021-30. [DOI: 10.1007/s11434-013-6030-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
31 Fathi MH, Hanifi A. Sol–gel derived nanostructure hydroxyapatite powder and coating: aging time optimisation. Advances in Applied Ceramics 2013;108:363-8. [DOI: 10.1179/174367609x414080] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
32 Qin L, Sun Y, Liu P, Wang Q, Han B, Duan Y. F127/Calcium phosphate hybrid nanoparticles: a promising vector for improving siRNA delivery and gene silencing. J Biomater Sci Polym Ed 2013;24:1757-66. [PMID: 23746331 DOI: 10.1080/09205063.2013.801702] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
33 Hossain S, Yamamoto H, Chowdhury EH, Wu X, Hirose H, Haque A, Doki Y, Mori M, Akaike T. Fabrication and intracellular delivery of doxorubicin/carbonate apatite nanocomposites: effect on growth retardation of established colon tumor. PLoS One 2013;8:e60428. [PMID: 23613726 DOI: 10.1371/journal.pone.0060428] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
34 Hou S, Ma H, Ji Y, Hou W, Jia N. A calcium phosphate nanoparticle-based biocarrier for efficient cellular delivery of antisense oligodeoxynucleotides. ACS Appl Mater Interfaces 2013;5:1131-6. [PMID: 23323641 DOI: 10.1021/am3028926] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
35 Giger EV, Castagner B, Räikkönen J, Mönkkönen J, Leroux JC. siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators. Adv Healthc Mater 2013;2:134-44. [PMID: 23184402 DOI: 10.1002/adhm.201200088] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 4.7] [Reference Citation Analysis]
36 Ren F, Leng Y, Ding Y, Wang K. Hydrothermal growth of biomimetic carbonated apatite nanoparticles with tunable size, morphology and ultrastructure. CrystEngComm 2013;15:2137. [DOI: 10.1039/c3ce26884e] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
37 须 苏. New Gene Therapy Vector—Nano-Hydroxyapatite. MS 2013;03:11-15. [DOI: 10.12677/ms.2013.31003] [Reference Citation Analysis]
38 Oyane A, Araki H, Sogo Y, Ito A, Tsurushima H. Spontaneous assembly of DNA–amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer. CrystEngComm 2013;15:4994. [DOI: 10.1039/c3ce40264a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
39 韩 华. The Sustained-Release Drug Delivery Based on Nano Calcium Carbonate. NAT 2013;03:41-46. [DOI: 10.12677/nat.2013.34006] [Reference Citation Analysis]
40 Dorozhkin SV. Biological and Medical Significance of Nanodimensional and Nanocrystalline Calcium Orthophosphates. In: Tiwari A, Ramalingam M, Kobayashi H, Turner AP, editors. Biomedical Materials and Diagnostic Devices. Hoboken: John Wiley & Sons, Inc.; 2012. pp. 19-99. [DOI: 10.1002/9781118523025.ch2] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
41 Hossain S, Chowdhury EH, Akaike T. Nanoparticles and toxicity in therapeutic delivery: the ongoing debate. Ther Deliv 2011;2:125-32. [PMID: 22833937 DOI: 10.4155/tde.10.109] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
42 Fukuda K, Kutsuzawa K, Maruyama K, Akiyama Y, Chowdhury EH. Synergistic effect of PKC activation and actin filament disruption on carbonate apatite-facilitated lymphocyte transfection. Biochem Biophys Res Commun 2012;419:482-4. [PMID: 22366247 DOI: 10.1016/j.bbrc.2012.02.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
43 Chen S, Zhao D, Li F, Zhuo R, Cheng S. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2012;2:1820. [DOI: 10.1039/c1ra00527h] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 4.6] [Reference Citation Analysis]
44 Kutsuzawa K, Akaike T, Otsuka H. Medical Application of Inorganic Nanoparticles. Journal of the Japan Society of Colour Material 2012;85:283-288. [DOI: 10.4011/shikizai.85.283] [Reference Citation Analysis]
45 Zhao D, Zhuo R, Cheng S. Modification of calcium carbonate based gene and drug delivery systems by a cell-penetrating peptide. Mol BioSyst 2012;8:3288. [DOI: 10.1039/c2mb25233c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
46 Hebishima T, Tada S, Takeshima S, Akaike T, Ito Y, Aida Y. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochemical and Biophysical Research Communications 2011;415:597-601. [DOI: 10.1016/j.bbrc.2011.10.114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
47 Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: a review. Tissue Eng Part B Rev 2012;18:1-14. [PMID: 21707439 DOI: 10.1089/ten.TEB.2011.0081] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
48 Olton DY, Close JM, Sfeir CS, Kumta PN. Intracellular trafficking pathways involved in the gene transfer of nano-structured calcium phosphate-DNA particles. Biomaterials 2011;32:7662-70. [PMID: 21774979 DOI: 10.1016/j.biomaterials.2011.01.043] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
49 Chowdhury EH. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA. Biochem Biophys Res Commun 2011;409:745-7. [PMID: 21624351 DOI: 10.1016/j.bbrc.2011.05.079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
50 Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH. Purification of transcriptionally active multimeric plasmid DNA using zwitterionic detergent and carbonate apatite nano-particles. Plasmid 2011;66:38-46. [PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001] [Reference Citation Analysis]
51 Chen S, Li F, Zhuo R, Cheng S. Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. Mol BioSyst 2011;7:2841. [DOI: 10.1039/c1mb05147d] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
52 Ueno S, Shimabayashi S, Saito H. EFFECT OF TRYPTOPHAN RESIDUES ON ADSORPTION OF A CATIONIC ARGININE RICH POLYPEPTIDE BY HYDROXYAPATITE NANOPARTICLES AND FOLLOWING TRANSLOCATION OF THE POLYPEPTIDE THROUGH A LIPID VESICLE MEMBRANE. Phosphorus Research Bulletin 2011;25:39-44. [DOI: 10.3363/prb.25.39] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
53 Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 2010;6:715-34. [PMID: 19861183 DOI: 10.1016/j.actbio.2009.10.031] [Cited by in Crossref: 386] [Cited by in F6Publishing: 329] [Article Influence: 29.7] [Reference Citation Analysis]
54 Hossain S, Tada S, Akaike T, Chowdhury EH. Influences of electrolytes and glucose on formulation of carbonate apatite nanocrystals for efficient gene delivery to mammalian cells. Analytical Biochemistry 2010;397:156-61. [DOI: 10.1016/j.ab.2009.10.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
55 Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the Dynamics of pH in Endosomes of Live Cells with SERS Nanosensors. J Phys Chem C 2010;114:7421-6. [DOI: 10.1021/jp910034z] [Cited by in Crossref: 162] [Cited by in F6Publishing: 176] [Article Influence: 12.5] [Reference Citation Analysis]
56 Hacker DL, Baldi L, Adam M, Wurm FM. Transient Gene Expression in Mammalian Cells: Promises and Challenges for Medical Biotechnology. Encyclopedia of Industrial Biotechnology 2009. [DOI: 10.1002/9780470054581.eib568] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
57 Dorozhkin S. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine. Materials 2009;2:1975-2045. [DOI: 10.3390/ma2041975] [Cited by in Crossref: 192] [Cited by in F6Publishing: 194] [Article Influence: 13.7] [Reference Citation Analysis]
58 Tada S, Chowdhury EH, Cho CS, Akaike T. pH-sensitive carbonate apatite as an intracellular protein transporter. Biomaterials 2010;31:1453-9. [PMID: 19854503 DOI: 10.1016/j.biomaterials.2009.10.016] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 3.2] [Reference Citation Analysis]
59 Zhang M, Ishii A, Nishiyama N, Matsumoto S, Ishii T, Yamasaki Y, Kataoka K. PEGylated Calcium Phosphate Nanocomposites as Smart Environment-Sensitive Carriers for siRNA Delivery. Adv Mater 2009;21:3520-5. [DOI: 10.1002/adma.200800448] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 6.0] [Reference Citation Analysis]
60 Zohra FT, Chowdhury EH, Akaike T. High performance mRNA transfection through carbonate apatite-cationic liposome conjugates. Biomaterials 2009;30:4006-13. [PMID: 19410288 DOI: 10.1016/j.biomaterials.2009.02.050] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
61 Yamane S, Sugawara A, Sasaki Y, Akiyoshi K. Nanogel–Calcium Phosphate Hybrid Nanoparticles with Negative or Positive Charges for Potential Biomedical Applications. BCSJ 2009;82:416-8. [DOI: 10.1246/bcsj.82.416] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
62 Kutsuzawa K, Tada S, Hossain S, Fukuda K, Maruyama K, Akiyama Y, Akaike T, Chowdhury EH. Disrupting actin filaments promotes efficient transfection of a leukemia cell line using cell adhesive protein-embedded carbonate apatite particles. Anal Biochem 2009;388:164-6. [PMID: 19454213 DOI: 10.1016/j.ab.2009.02.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
63 Huang J. Cellular response to hydroxyapatite and Bioglass ® in tissue engineering and regenerative medicine. Cellular Response to Biomaterials 2009. [DOI: 10.1533/9781845695477.2.371] [Reference Citation Analysis]
64 Kutsuzawa K, Maruyama K, Akiyama Y, Akaike T, Chowdhury EH. Protein kinase C activation enhances transfection efficacy of cell-adhesive protein-anchored carbonate apatite nanocrystals. Anal Biochem 2007;371:116-7. [PMID: 17586455 DOI: 10.1016/j.ab.2007.05.029] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
65 Kutsuzawa K, Akaike T, Chowdhury EH. The influence of the cell-adhesive proteins E-cadherin and fibronectin embedded in carbonate-apatite DNA carrier on transgene delivery and expression in a mouse embryonic stem cell line. Biomaterials 2008;29:370-6. [PMID: 17949808 DOI: 10.1016/j.biomaterials.2007.09.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
66 Chowdhury EH, Akaike T. High performance DNA nano-carriers of carbonate apatite: multiple factors in regulation of particle synthesis and transfection efficiency. Int J Nanomedicine 2007;2:101-6. [PMID: 17722517 DOI: 10.2147/nano.2007.2.1.101] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 2.3] [Reference Citation Analysis]
67 Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 2007;7:2819-23. [PMID: 17696561 DOI: 10.1021/nl071418z] [Cited by in Crossref: 265] [Cited by in F6Publishing: 280] [Article Influence: 16.6] [Reference Citation Analysis]
68 Park IY, Kim TH, Kim YK, Choi YJ, Nah JW, Cho CS. Galactosylated Chitosan/Carbonate Apatite Nanohybridization for Cell Specificity and High Transfection Efficiency as a DNA Carrier. KEM 2007;342-343:437-40. [DOI: 10.4028/www.scientific.net/kem.342-343.437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
69 Chowdhury EH. pH-sensitive nano-crystals of carbonate apatite for smart and cell-specific transgene delivery. Expert Opinion on Drug Delivery 2007;4:193-6. [DOI: 10.1517/17425247.4.3.193] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 2.6] [Reference Citation Analysis]
70 Kutsuzawa K, Chowdhury E, Nagaoka M, Maruyama K, Akiyama Y, Akaike T. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells. Biochemical and Biophysical Research Communications 2006;350:514-20. [DOI: 10.1016/j.bbrc.2006.09.081] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]