BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kaldybekov DB, Filippov SK, Radulescu A, Khutoryanskiy VV. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery. Eur J Pharm Biopharm 2019;143:24-34. [PMID: 31419584 DOI: 10.1016/j.ejpb.2019.08.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed 2023;:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Reference Citation Analysis]
2 Cornu R, Laurent G, Beduneau A. Preparation and characterization of PLGA nanoparticles. Poly(Lactic-Co-glycolic Acid) (PLGA) Nanoparticles for Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91215-0.00012-1] [Reference Citation Analysis]
3 Moiseev RV, Kaldybekov DB, Filippov SK, Radulescu A, Khutoryanskiy VV. Maleimide-Decorated PEGylated Mucoadhesive Liposomes for Ocular Drug Delivery. Langmuir 2022. [DOI: 10.1021/acs.langmuir.2c02086] [Reference Citation Analysis]
4 Miralles E, Kamma-lorger CS, Domènech Ò, Sosa L, Casals I, Calpena AC, Silva-abreu M. Assessment of Efficacy and Safety Using PPAR-γ Agonist-Loaded Nanocarriers for Inflammatory Eye Diseases. IJMS 2022;23:11184. [DOI: 10.3390/ijms231911184] [Reference Citation Analysis]
5 Murmiliuk A, Hladysh S, Filippov SK, Stepanek M. Comprehensive Multidimensional Characterization of Polyelectrolytes and Interpolyelectrolyte Complexes in Aqueous Solutions. rev and adv in chem 2022;12:163-177. [DOI: 10.1134/s263482762260013x] [Reference Citation Analysis]
6 Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Bradley M, Patrojanasophon P. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydrate Polymers 2022;288:119368. [DOI: 10.1016/j.carbpol.2022.119368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Brotherton EE, Neal TJ, Kaldybekov DB, Smallridge MJ, Khutoryanskiy VV, Armes SP. Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion. Chem Sci 2022;13:6888-98. [PMID: 35774174 DOI: 10.1039/d2sc02074b] [Reference Citation Analysis]
8 Nyambura CW, Sampath J, Nance E, Pfaendtner J. Exploring structure and dynamics of the polylactic‐co‐glycolic acid–polyethylene glycol copolymer and its homopolymer constituents in various solvents using all‐atom molecular dynamics. J of Applied Polymer Sci. [DOI: 10.1002/app.52732] [Reference Citation Analysis]
9 Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydrate Polymers 2022;283:119174. [DOI: 10.1016/j.carbpol.2022.119174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
10 Moiseev RV, Steele F, Khutoryanskiy VV. Polyaphron Formulations Stabilised with Different Water-Soluble Polymers for Ocular Drug Delivery. Pharmaceutics 2022;14:926. [DOI: 10.3390/pharmaceutics14050926] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS Nano 2022. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zuo Y, Shen W, Wang L, Wang C, Pu J, Tang M. Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. Computational and Mathematical Methods in Medicine 2022;2022:1-7. [DOI: 10.1155/2022/8524951] [Reference Citation Analysis]
13 Wu K, Yu B, Li D, Tian Y, Liu Y, Jiang J. Recent Advances in Nanoplatforms for the Treatment of Osteosarcoma. Front Oncol 2022;12:805978. [PMID: 35242707 DOI: 10.3389/fonc.2022.805978] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Lai W. Non-aromatic clusteroluminogenic polymers: structural design and applications in bioactive agent delivery. Materials Today Chemistry 2022;23:100712. [DOI: 10.1016/j.mtchem.2021.100712] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Zhou Y, Vinothini K, Dou F, Jing Y, Chuturgoon AA, Arumugam T, Rajan M. Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. Arabian Journal of Chemistry 2022;15:103649. [DOI: 10.1016/j.arabjc.2021.103649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. Polym Sci Ser B 2022;64:1-16. [DOI: 10.1134/s1560090422010055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Jayaramudu T, Varaprasad K, Reddy KK, Sisubalan N, Patil AJ, Sadiku ER, Adamus G. Polymers used in green synthesis of nanoparticles and their importance in pharmaceutical and biomedical applications. Polymeric Biomaterials for Healthcare Applications 2022. [DOI: 10.1016/b978-0-323-85233-3.00004-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Porfiryeva NN, Semina II, Moustafine RI, Khutoryanskiy VV. Intranasal Administration as a Route to Deliver Drugs to the Brain (Review). Razrabotka i registraciâ lekarstvennyh sredstv 2021;10:117-127. [DOI: 10.33380/2305-2066-2021-10-4-117-127] [Reference Citation Analysis]
19 Shan X, Aspinall S, Kaldybekov DB, Buang F, Williams AC, Khutoryanskiy VV. Synthesis and Evaluation of Methacrylated Poly(2-ethyl-2-oxazoline) as a Mucoadhesive Polymer for Nasal Drug Delivery. ACS Appl Polym Mater 2021;3:5882-92. [DOI: 10.1021/acsapm.1c01097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.1985495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Tong T, Guan Y, Gao Y, Xing C, Zhang S, Jiang D, Yang X, Kang Y, Pang J. Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Res 2022;15:2157-76. [DOI: 10.1007/s12274-021-3753-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Sahatsapan N, Rojanarata T, Ngawhirunpat T, Opanasopit P, Patrojanasophon P. Doxorubicin-loaded chitosan-alginate nanoparticles with dual mucoadhesive functionalities for intravesical chemotherapy. Journal of Drug Delivery Science and Technology 2021;63:102481. [DOI: 10.1016/j.jddst.2021.102481] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
23 Waleka E, Stojek Z, Karbarz M. Activity of Povidone in Recent Biomedical Applications with Emphasis on Micro- and Nano Drug Delivery Systems. Pharmaceutics 2021;13:654. [PMID: 34064408 DOI: 10.3390/pharmaceutics13050654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Murmiliuk A, Filippov SK, Rud O, Košovan P, Tošner Z, Radulescu A, Skandalis A, Pispas S, Šlouf M, Štěpánek M. Reversible multilayered vesicle-like structures with fluid hydrophobic and interpolyelectrolyte layers. J Colloid Interface Sci 2021;599:313-25. [PMID: 33957424 DOI: 10.1016/j.jcis.2021.04.050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Sueksakit K, Thongboonkerd V. Optimization of artificial urine formula for in vitro cellular study compared with native urine. Int J Med Sci 2021;18:3271-9. [PMID: 34400896 DOI: 10.7150/ijms.61720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020;167:89-108. [PMID: 32535139 DOI: 10.1016/j.addr.2020.06.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
27 Colone M, Calcabrini A, Stringaro A. Drug Delivery Systems of Natural Products in Oncology. Molecules 2020;25:E4560. [PMID: 33036240 DOI: 10.3390/molecules25194560] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
28 Shah SI, Williams AC, Lau WM, Khutoryanskiy VV. Planarian toxicity fluorescent assay: A rapid and cheap pre-screening tool for potential skin irritants. Toxicol In Vitro 2020;69:105004. [PMID: 33010358 DOI: 10.1016/j.tiv.2020.105004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lai W. Non-conjugated polymers with intrinsic luminescence for drug delivery. Journal of Drug Delivery Science and Technology 2020;59:101916. [DOI: 10.1016/j.jddst.2020.101916] [Cited by in Crossref: 39] [Cited by in F6Publishing: 50] [Article Influence: 13.0] [Reference Citation Analysis]
30 Liu Y, Yang G, Jin S, Zhang R, Chen P, Tengjisi, Wang L, Chen D, Weitz DA, Zhao C. J‐Aggregate‐Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angew Chem Int Ed 2020;59:20065-74. [DOI: 10.1002/anie.202008018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
31 Liu Y, Yang G, Jin S, Zhang R, Chen P, Tengjisi, Wang L, Chen D, Weitz DA, Zhao C. J‐Aggregate‐Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angew Chem 2020;132:20240-9. [DOI: 10.1002/ange.202008018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
32 Yoon HY, Yang HM, Kim CH, Goo YT, Kang MJ, Lee S, Choi YW. Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opinion on Drug Delivery 2020;17:1555-72. [DOI: 10.1080/17425247.2020.1810016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
33 Porfiryeva NN, Khutoryanskiy VV, Moustafine RI. А Study of Haloperidol Release from Polycomplex Nanoparticles Based on Eudragit<sup>®</sup> Copolymers. Razrabotka i registraciâ lekarstvennyh sredstv 2020;9:45-50. [DOI: 10.33380/2305-2066-2020-9-3-45-50] [Reference Citation Analysis]
34 Asim MH, Silberhumer S, Shahzadi I, Jalil A, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold. Carbohydr Polym 2020;237:116092. [PMID: 32241444 DOI: 10.1016/j.carbpol.2020.116092] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
35 Taipaleenmäki E, Städler B. Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration. Macromol Biosci 2020;20:e1900342. [PMID: 32045102 DOI: 10.1002/mabi.201900342] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
36 Hajikhani M, Emam-djomeh Z. Mucoadhesive delivery systems for nanoencapsulated food ingredients. Release and Bioavailability of Nanoencapsulated Food Ingredients. Elsevier; 2020. pp. 395-448. [DOI: 10.1016/b978-0-12-815665-0.00011-4] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]