BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122:221-233. [PMID: 16051147 DOI: 10.1016/j.cell.2005.05.011] [Cited by in Crossref: 808] [Cited by in F6Publishing: 774] [Article Influence: 47.5] [Reference Citation Analysis]
Number Citing Articles
1 Hu Y, Kang C, Philp RJ, Li B. PKC δ phosphorylates p52ShcA at Ser29 to regulate ERK activation in response to H2O2. Cellular Signalling 2007;19:410-8. [DOI: 10.1016/j.cellsig.2006.07.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
2 Murata Y, Wakoh T, Uekawa N, Sugimoto M, Asai A, Miyazaki T, Maruyama M. Death-associated protein 3 regulates cellular senescence through oxidative stress response. FEBS Letters 2006;580:6093-9. [DOI: 10.1016/j.febslet.2006.10.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
3 Derungs R, Camici GG, Spescha RD, Welt T, Tackenberg C, Späni C, Wirth F, Grimm A, Eckert A, Nitsch RM, Kulic L. Genetic ablation of the p66Shc adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer’s disease. Mol Psychiatry 2017;22:605-14. [DOI: 10.1038/mp.2016.112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
4 Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med. 2014;20:282-292. [PMID: 24508276 DOI: 10.1016/j.molmed.2014.01.005] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 10.3] [Reference Citation Analysis]
5 Sergiev PV, Artemov AA, Prokhortchouk EB, Dontsova OA, Berezkin GV. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins? Aging (Albany NY) 2016;8:260-71. [PMID: 26851889 DOI: 10.18632/aging.100889] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
6 Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020;8:E550. [PMID: 33260304 DOI: 10.3390/biomedicines8120550] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Wenz T. Mitochondria and PGC-1α in Aging and Age-Associated Diseases. J Aging Res 2011;2011:810619. [PMID: 21629705 DOI: 10.4061/2011/810619] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
8 Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res. 2018;122:877-902. [PMID: 29700084 DOI: 10.1161/circresaha.117.311401] [Cited by in Crossref: 418] [Cited by in F6Publishing: 265] [Article Influence: 139.3] [Reference Citation Analysis]
9 Szczepanek K, Lesnefsky EJ, Larner AC. Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol 2012;22:429-37. [PMID: 22705015 DOI: 10.1016/j.tcb.2012.05.001] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 7.6] [Reference Citation Analysis]
10 Papaconstantinou J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol 2009;299:89-100. [PMID: 19103250 DOI: 10.1016/j.mce.2008.11.025] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 4.5] [Reference Citation Analysis]
11 Gertz M, Steegborn C. The Lifespan-regulator p66Shc in mitochondria: redox enzyme or redox sensor? Antioxid Redox Signal 2010;13:1417-28. [PMID: 20214499 DOI: 10.1089/ars.2010.3147] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 5.4] [Reference Citation Analysis]
12 Csordás G, Hajnóczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 2009;1787:1352-62. [PMID: 19527680 DOI: 10.1016/j.bbabio.2009.06.004] [Cited by in Crossref: 205] [Cited by in F6Publishing: 195] [Article Influence: 15.8] [Reference Citation Analysis]
13 Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol 2016;594:2061-73. [PMID: 26391109 DOI: 10.1113/JP270538] [Cited by in Crossref: 108] [Cited by in F6Publishing: 68] [Article Influence: 15.4] [Reference Citation Analysis]
14 Qi B, Xu S, Liang Y, Wang J, Zhang Z, Li J, Zhou J. Proapoptotic effects of 2,5‑hexanedione on pheochromocytoma cells via oxidative injury. Mol Med Rep 2019;20:3249-55. [PMID: 31432125 DOI: 10.3892/mmr.2019.10546] [Reference Citation Analysis]
15 Berry A, Bucci M, Raggi C, Eriksson JG, Guzzardi MA, Nuutila P, Huovinen V, Iozzo P, Cirulli F. Dynamic changes in p66Shc mRNA expression in peripheral blood mononuclear cells following resistance training intervention in old frail women born to obese mothers: a pilot study. Aging Clin Exp Res 2018;30:871-6. [PMID: 28952131 DOI: 10.1007/s40520-017-0834-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
16 Trinei M, Migliaccio E, Bernardi P, Paolucci F, Pelicci P, Giorgio M. p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol 2013;528:99-110. [PMID: 23849861 DOI: 10.1016/B978-0-12-405881-1.00006-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
17 Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014;20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 5.3] [Reference Citation Analysis]
18 Sampaio SF, Branco AF, Wojtala A, Vega-naredo I, Wieckowski MR, Oliveira PJ. p66Shc signaling is involved in stress responses elicited by anthracycline treatment of rat cardiomyoblasts. Arch Toxicol 2016;90:1669-84. [DOI: 10.1007/s00204-015-1583-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
19 Zoratti M, De Marchi U, Gulbins E, Szabò I. Novel channels of the inner mitochondrial membrane. Biochim Biophys Acta. 2009;1787:351-363. [PMID: 19111672 DOI: 10.1016/j.bbabio.2008.11.015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
20 Fu GX, Chen AF, Xu QM, Han BB, Huang GZ, Zhong Y. Cathepsin L deficiency results in reactive oxygen species (ROS) accumulation and vascular cells activation. Free Radic Res 2017;51:932-42. [PMID: 29041825 DOI: 10.1080/10715762.2017.1393665] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
21 Chen XF, Wang L, Wu YZ, Song SY, Min HY, Yang Y, He X, Liang Q, Yi L, Wang Y, Gao Q. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Nutr Diabetes 2018;8:1. [PMID: 29330446 DOI: 10.1038/s41387-017-0009-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
22 Zheng Z, Yang J, Zhao D, Gao D, Yan X, Yao Z, Liu Z, Ma Z. Downregulated adaptor protein p66(Shc) mitigates autophagy process by low nutrient and enhances apoptotic resistance in human lung adenocarcinoma A549 cells. FEBS J 2013;280:4522-30. [PMID: 23815759 DOI: 10.1111/febs.12416] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
23 Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 2009;284:27438-27448. [PMID: 19657144 DOI: 10.1074/jbc.m109.023572] [Cited by in Crossref: 179] [Cited by in F6Publishing: 98] [Article Influence: 13.8] [Reference Citation Analysis]
24 Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Lüscher TF, Paneni F, Costantino S. Epigenetic Remodeling in Obesity-Related Vascular Disease. Antioxid Redox Signal 2021;34:1165-99. [PMID: 32808539 DOI: 10.1089/ars.2020.8040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Truong TH, Carroll KS. Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 2013;48:332-56. [PMID: 23639002 DOI: 10.3109/10409238.2013.790873] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 10.8] [Reference Citation Analysis]
26 Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019;51:1-13. [PMID: 31857574 DOI: 10.1038/s12276-019-0355-7] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 28.0] [Reference Citation Analysis]
27 Su K, Bourdette D, Forte M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 2013;4:169. [PMID: 23898299 DOI: 10.3389/fphys.2013.00169] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 4.8] [Reference Citation Analysis]
28 Li J, Xu Z, Tan M, Su W, Gong X. 3-(4-(Benzo[d]thiazol-2-yl)-1-phenyl-1H-pyrazol-3-yl) phenyl acetate induced Hep G2 cell apoptosis through a ROS-mediated pathway. Chemico-Biological Interactions 2010;183:341-8. [DOI: 10.1016/j.cbi.2009.12.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.3] [Reference Citation Analysis]
29 Liu D, Du J, Sun J, Li M. Parathyroid hormone-related protein inhibits nitrogen-containing bisphosphonate-induced apoptosis of human periodontal ligament fibroblasts by activating MKP1 phosphatase. Bioengineered 2021;12:1997-2006. [PMID: 34024253 DOI: 10.1080/21655979.2021.1928930] [Reference Citation Analysis]
30 Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019;135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 14.3] [Reference Citation Analysis]
31 Sagi O, Budovsky A, Wolfson M, Fraifeld VE. ShcC proteins: brain aging and beyond. Ageing Res Rev 2015;19:34-42. [PMID: 25462193 DOI: 10.1016/j.arr.2014.11.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
32 Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1-13. [PMID: 19061483 DOI: 10.1042/bj20081386] [Cited by in Crossref: 4316] [Cited by in F6Publishing: 2170] [Article Influence: 332.0] [Reference Citation Analysis]
33 Janikiewicz J, Szymański J, Malinska D, Patalas-Krawczyk P, Michalska B, Duszyński J, Giorgi C, Bonora M, Dobrzyn A, Wieckowski MR. Mitochondria-associated membranes in aging and senescence: structure, function, and dynamics. Cell Death Dis 2018;9:332. [PMID: 29491385 DOI: 10.1038/s41419-017-0105-5] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 14.8] [Reference Citation Analysis]
34 Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct 2012;2012:329635. [PMID: 22175013 DOI: 10.1155/2012/329635] [Cited by in Crossref: 318] [Cited by in F6Publishing: 325] [Article Influence: 28.9] [Reference Citation Analysis]
35 Carlomosti F, D'agostino M, Beji S, Torcinaro A, Rizzi R, Zaccagnini G, Maimone B, Di Stefano V, De Santa F, Cordisco S, Antonini A, Ciarapica R, Dellambra E, Martelli F, Avitabile D, Capogrossi MC, Magenta A. Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS. Antioxidants & Redox Signaling 2017;27:328-44. [DOI: 10.1089/ars.2016.6643] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Kagan V, Tyurina Y, Bayir H, Chu C, Kapralov A, Vlasova I, Belikova N, Tyurin V, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova A, Jiang J. The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chemico-Biological Interactions 2006;163:15-28. [DOI: 10.1016/j.cbi.2006.04.019] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 4.9] [Reference Citation Analysis]
37 Mao L, Franke J. Hormesis in aging and neurodegeneration-a prodigy awaiting dissection. Int J Mol Sci 2013;14:13109-28. [PMID: 23799363 DOI: 10.3390/ijms140713109] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
38 Hu CA, Donald SP, Yu J, Lin WW, Liu Z, Steel G, Obie C, Valle D, Phang JM. Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol Cell Biochem 2007;295:85-92. [PMID: 16874462 DOI: 10.1007/s11010-006-9276-6] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 3.9] [Reference Citation Analysis]
39 Suski JM, Karkucinska-Wieckowska A, Lebiedzinska M, Giorgi C, Szczepanowska J, Szabadkai G, Duszynski J, Pronicki M, Pinton P, Wieckowski MR. p66Shc aging protein in control of fibroblasts cell fate. Int J Mol Sci 2011;12:5373-89. [PMID: 21954365 DOI: 10.3390/ijms12085373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
40 Wang L, Li M, Cao P, Zhang C, Huang F, Xu X, Liu B, Zhang M. Astin B, a cyclic pentapeptide from Aster tataricus, induces apoptosis and autophagy in human hepatic L-02 cells. Chemico-Biological Interactions 2014;223:1-9. [DOI: 10.1016/j.cbi.2014.09.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
41 Sluijter JP, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, Lecour S, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Van Laake LW; Nucleus of the European Society of Cardiology Working Group Cellular Biology of the Heart. Novel therapeutic strategies for cardioprotection. Pharmacol Ther 2014;144:60-70. [PMID: 24837132 DOI: 10.1016/j.pharmthera.2014.05.005] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 6.8] [Reference Citation Analysis]
42 Cheng A, Kawahata I, Fukunaga K. Fatty Acid Binding Protein 5 Mediates Cell Death by Psychosine Exposure through Mitochondrial Macropores Formation in Oligodendrocytes. Biomedicines 2020;8:E635. [PMID: 33419250 DOI: 10.3390/biomedicines8120635] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Boengler K, Heusch G, Schulz R. Nuclear-encoded mitochondrial proteins and their role in cardioprotection. Biochim Biophys Acta 2011;1813:1286-94. [PMID: 21255616 DOI: 10.1016/j.bbamcr.2011.01.009] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
44 Huang J, Zhao J, Geng X, Chu W, Li S, Chen ZJ, Du Y. Long non-coding RNA lnc-CCNL1-3:1 promotes granulosa cell apoptosis and suppresses glucose uptake in women with polycystic ovary syndrome. Mol Ther Nucleic Acids 2021;23:614-28. [PMID: 33552682 DOI: 10.1016/j.omtn.2020.12.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020;35:101471. [PMID: 32127289 DOI: 10.1016/j.redox.2020.101471] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
46 Hudson J, Ha JR, Sabourin V, Ahn R, La Selva R, Livingstone J, Podmore L, Knight J, Forrest L, Beauchemin N, Hallett M, Park M, Ursini-Siegel J. p66ShcA promotes breast cancer plasticity by inducing an epithelial-to-mesenchymal transition. Mol Cell Biol 2014;34:3689-701. [PMID: 25071152 DOI: 10.1128/MCB.00341-14] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
47 D’agostino M, Martino F, Sileno S, Barillà F, Beji S, Marchetti L, Gangi F, Persico L, Picozza M, Montali A, Martino E, Zanoni C, Avitabile D, Parrotto S, Capogrossi M, Magenta A. Circulating miR-200c is up-regulated in paediatric patients with familial hypercholesterolaemia and correlates with miR-33a/b levels: implication of a ZEB1-dependent mechanism. Clinical Science 2017;131:2397-408. [DOI: 10.1042/cs20171121] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
48 Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021;171:345-64. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E. Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 2006;141:208-19. [PMID: 16531480 DOI: 10.1104/pp.106.078683] [Cited by in Crossref: 147] [Cited by in F6Publishing: 133] [Article Influence: 9.2] [Reference Citation Analysis]
50 Bain NT, Madan P, Betts DH. Elevated p66Shc is associated with intracellular redox imbalance in developmentally compromised bovine embryos. Mol Reprod Dev 2013;80:22-34. [DOI: 10.1002/mrd.22128] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
51 Hüttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol 2012;748:237-64. [PMID: 22729861 DOI: 10.1007/978-1-4614-3573-0_10] [Cited by in Crossref: 75] [Cited by in F6Publishing: 67] [Article Influence: 7.5] [Reference Citation Analysis]
52 Nicolaije C, Koedam M, van Leeuwen JP. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation. J Cell Physiol. 2012;227:1309-1318. [PMID: 21604266 DOI: 10.1002/jcp.22841] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
53 Long YC, Tan TMC, Takao I, Tang BL. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. American Journal of Physiology-Endocrinology and Metabolism 2014;306:E581-91. [DOI: 10.1152/ajpendo.00665.2013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
54 Schibler U. Oxidation of CLOCK boosts circadian rhythms. Nat Cell Biol 2019;21:1464-5. [DOI: 10.1038/s41556-019-0430-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
55 Almeida M, Han L, Ambrogini E, Bartell SM, Manolagas SC. Oxidative stress stimulates apoptosis and activates NF-kappaB in osteoblastic cells via a PKCbeta/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol. 2010;24:2030-2037. [PMID: 20685851 DOI: 10.1210/me.2010-0189] [Cited by in Crossref: 99] [Cited by in F6Publishing: 93] [Article Influence: 8.3] [Reference Citation Analysis]
56 Serrano M, Blasco MA. Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007;8:715-22. [DOI: 10.1038/nrm2242] [Cited by in Crossref: 137] [Cited by in F6Publishing: 130] [Article Influence: 9.1] [Reference Citation Analysis]
57 Song Y, Pinniger GJ, Bakker AJ, Moss TJ, Noble PB, Berry CA, Pillow JJ. Lipopolysaccharide-induced weakness in the preterm diaphragm is associated with mitochondrial electron transport chain dysfunction and oxidative stress. PLoS One 2013;8:e73457. [PMID: 24039949 DOI: 10.1371/journal.pone.0073457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
58 Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 2008;10:1883-1894. [PMID: 18627347 DOI: 10.1089/ars.2008.2114] [Cited by in Crossref: 160] [Cited by in F6Publishing: 156] [Article Influence: 11.4] [Reference Citation Analysis]
59 Feng L, Wang S, Chen F, Zhang C, Wang Q, Zhao Y, Zhang Z. Hepatic Knockdown of Endothelin Type A Receptor (ETAR) Ameliorates Hepatic Insulin Resistance and Hyperglycemia Through Suppressing p66Shc-Mediated Mitochondrial Fragmentation in High-Fat Diet-Fed Mice. Diabetes Metab Syndr Obes 2021;14:963-81. [PMID: 33688230 DOI: 10.2147/DMSO.S299570] [Reference Citation Analysis]
60 Cattaneo F, Patrussi L, Capitani N, Frezzato F, D'Elios MM, Trentin L, Semenzato G, Baldari CT. Expression of the p66Shc protein adaptor is regulated by the activator of transcription STAT4 in normal and chronic lymphocytic leukemia B cells. Oncotarget 2016;7:57086-98. [PMID: 27494881 DOI: 10.18632/oncotarget.10977] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
61 Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondria and vascular pathology. Pharmacol Rep 2009;61:123-30. [PMID: 19307700 DOI: 10.1016/s1734-1140(09)70014-3] [Cited by in Crossref: 69] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
62 Samoylenko A, Hossain JA, Mennerich D, Kellokumpu S, Hiltunen JK, Kietzmann T. Nutritional countermeasures targeting reactive oxygen species in cancer: from mechanisms to biomarkers and clinical evidence. Antioxid Redox Signal 2013;19:2157-96. [PMID: 23458328 DOI: 10.1089/ars.2012.4662] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
63 Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7:504-511. [PMID: 21769097 DOI: 10.1038/nchembio.607] [Cited by in Crossref: 994] [Cited by in F6Publishing: 887] [Article Influence: 90.4] [Reference Citation Analysis]
64 Raffaello A, Rizzuto R. Mitochondrial longevity pathways. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2011;1813:260-8. [DOI: 10.1016/j.bbamcr.2010.10.007] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 5.2] [Reference Citation Analysis]
65 Diaz-Cruz A, Vilchis-Landeros MM, Guinzberg R, Villalobos-Molina R, Piña E. NOX2 activated by α1-adrenoceptors modulates hepatic metabolic routes stimulated by β-adrenoceptors. Free Radic Res 2011;45:1366-78. [PMID: 21958220 DOI: 10.3109/10715762.2011.627920] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
66 Tiberi L, Faisal A, Rossi M, Di Tella L, Franceschi C, Salvioli S. p66(Shc) gene has a pro-apoptotic role in human cell lines and it is activated by a p53-independent pathway. Biochem Biophys Res Commun 2006;342:503-8. [PMID: 16487929 DOI: 10.1016/j.bbrc.2006.02.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
67 Koopman WJ, Distelmaier F, Smeitink JA, Willems PH. OXPHOS mutations and neurodegeneration. EMBO J 2013;32:9-29. [PMID: 23149385 DOI: 10.1038/emboj.2012.300] [Cited by in Crossref: 154] [Cited by in F6Publishing: 148] [Article Influence: 15.4] [Reference Citation Analysis]
68 Rajendran M, Thomes P, Zhang L, Veeramani S, Lin MF. p66Shc--a longevity redox protein in human prostate cancer progression and metastasis : p66Shc in cancer progression and metastasis. Cancer Metastasis Rev 2010;29:207-22. [PMID: 20111892 DOI: 10.1007/s10555-010-9213-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
69 Betts DH, Madan P. Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod 2008;14:445-53. [PMID: 18511487 DOI: 10.1093/molehr/gan035] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 5.6] [Reference Citation Analysis]
70 Borkowska A, Sielicka-Dudzin A, Herman-Antosiewicz A, Wozniak M, Fedeli D, Falcioni G, Antosiewicz J. Diallyl trisulfide-induced prostate cancer cell death is associated with Akt/PKB dephosphorylation mediated by P-p66shc. Eur J Nutr 2012;51:817-25. [PMID: 22020565 DOI: 10.1007/s00394-011-0260-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
71 Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic Biol Med 2008;44:1529-35. [PMID: 18275858 DOI: 10.1016/j.freeradbiomed.2008.01.011] [Cited by in Crossref: 501] [Cited by in F6Publishing: 482] [Article Influence: 35.8] [Reference Citation Analysis]
72 Leroy J, Van Hoeck V, Clemente M, Rizos D, Gutierrez-adan A, Van Soom A, Uytterhoeven M, Bols P. The effect of nutritionally induced hyperlipidaemia on in vitro bovine embryo quality. Human Reproduction 2010;25:768-78. [DOI: 10.1093/humrep/dep420] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 5.2] [Reference Citation Analysis]
73 Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021;24:438-56. [PMID: 33459974 DOI: 10.1007/s11102-020-01117-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
74 Alway SE, Morissette MR, Siu PM. Aging and Apoptosis in Muscle. Handbook of the Biology of Aging. Elsevier; 2011. pp. 63-118. [DOI: 10.1016/b978-0-12-378638-8.00004-x] [Cited by in Crossref: 7] [Article Influence: 0.6] [Reference Citation Analysis]
75 Zhao XM, Hao HS, Du WH, Zhao SJ, Wang HY, Wang N, Wang D, Liu Y, Qin T, Zhu HB. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J Pineal Res 2016;60:132-41. [PMID: 26485053 DOI: 10.1111/jpi.12290] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 9.6] [Reference Citation Analysis]
76 Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019;10:78. [PMID: 30809153 DOI: 10.3389/fphys.2019.00078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
77 Lee SY, An HJ, Kim JM, Sung MJ, Kim DK, Kim HK, Oh J, Jeong HY, Lee YH, Yang T, Kim JH, Lim HJ, Lee S. PINK1 deficiency impairs osteoblast differentiation through aberrant mitochondrial homeostasis. Stem Cell Res Ther 2021;12:589. [PMID: 34823575 DOI: 10.1186/s13287-021-02656-4] [Reference Citation Analysis]
78 Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363-374. [PMID: 16869773 DOI: 10.1101/sqb.2005.70.035] [Cited by in Crossref: 182] [Cited by in F6Publishing: 170] [Article Influence: 11.4] [Reference Citation Analysis]
79 Runchel C, Matsuzawa A, Ichijo H. Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal. 2011;15:205-218. [PMID: 21050144 DOI: 10.1089/ars.2010.3733] [Cited by in Crossref: 121] [Cited by in F6Publishing: 110] [Article Influence: 11.0] [Reference Citation Analysis]
80 Wu L, Sun Y, Hu YJ, Yang Y, Yao LL, Zhou XX, Wang H, Zhang R, Huang X, Kong WJ. Increased p66Shc in the inner ear of D-galactose-induced aging mice with accumulation of mitochondrial DNA 3873-bp deletion: p66Shc and mtDNA damage in the inner ear during aging. PLoS One 2012;7:e50483. [PMID: 23209752 DOI: 10.1371/journal.pone.0050483] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
81 Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 2016;100:14-31. [PMID: 27085844 DOI: 10.1016/j.freeradbiomed.2016.04.001] [Cited by in Crossref: 436] [Cited by in F6Publishing: 407] [Article Influence: 72.7] [Reference Citation Analysis]
82 Yang Y, Su Y, Wang D, Chen Y, Liu Y, Luo S, Wu T, Cui L. Tanshinol Rescues the Impaired Bone Formation Elicited by Glucocorticoid Involved in KLF15 Pathway. Oxid Med Cell Longev 2016;2016:1092746. [PMID: 27051474 DOI: 10.1155/2016/1092746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
83 Trachootham D, Zhang W, Huang P. Oxidative Stress and Drug Resistance in Cancer. In: Siddik ZH, Mehta K, editors. Drug Resistance in Cancer Cells. New York: Springer US; 2009. pp. 137-75. [DOI: 10.1007/978-0-387-89445-4_7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
84 Tian X, Hu Y, Li M, Xia K, Yin J, Chen J, Liu Z. Carnosic acid attenuates acute ethanol-induced liver injury via a SIRT1/p66Shc-mediated mitochondrial pathway. Can J Physiol Pharmacol 2016;94:416-25. [PMID: 26845416 DOI: 10.1139/cjpp-2015-0276] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
85 Xiong Y, Yu Y, Montani JP, Yang Z, Ming XF. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J Am Heart Assoc 2013;2:e000096. [PMID: 23832324 DOI: 10.1161/JAHA.113.000096] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
86 Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30:11-26. [PMID: 25646037 DOI: 10.1007/s12291-014-0446-0] [Cited by in Crossref: 712] [Cited by in F6Publishing: 532] [Article Influence: 89.0] [Reference Citation Analysis]
87 Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AK. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 2014;9:e113534. [PMID: 25436907 DOI: 10.1371/journal.pone.0113534] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
88 Kamiński MM, Röth D, Krammer PH, Gülow K. Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch Immunol Ther Exp (Warsz) 2013;61:367-84. [PMID: 23749029 DOI: 10.1007/s00005-013-0235-0] [Cited by in F6Publishing: 33] [Reference Citation Analysis]
89 Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020;10:509-47. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
90 Kaludercic N, Di Lisa F. Mitochondrial ROS Formation in the Pathogenesis of Diabetic Cardiomyopathy. Front Cardiovasc Med 2020;7:12. [PMID: 32133373 DOI: 10.3389/fcvm.2020.00012] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 25.0] [Reference Citation Analysis]
91 Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579-591. [PMID: 19478820 DOI: 10.1038/nrd2803] [Cited by in Crossref: 3048] [Cited by in F6Publishing: 2858] [Article Influence: 234.5] [Reference Citation Analysis]
92 Zhang X, Zhang Z, Chen XL. The Redox Proteome of Thiol Proteins in the Rice Blast Fungus Magnaporthe oryzae. Front Microbiol 2021;12:648894. [PMID: 33776980 DOI: 10.3389/fmicb.2021.648894] [Reference Citation Analysis]
93 Zhang L, He YL, Li QZ, Hao XH, Zhang ZF, Yuan JX, Bai YP, Jin YL, Liu N, Chen G, Yun X, Yao SQ. N-acetylcysteine alleviated silica-induced lung fibrosis in rats by down-regulation of ROS and mitochondrial apoptosis signaling. Toxicol Mech Methods 2014;24:212-9. [PMID: 24392833 DOI: 10.3109/15376516.2013.879974] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
94 Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622-628. [PMID: 18162611 DOI: 10.1161/atvbaha.107.156059] [Cited by in Crossref: 125] [Cited by in F6Publishing: 52] [Article Influence: 8.3] [Reference Citation Analysis]
95 Wu GJ, Chen TG, Chang HC, Chiu WT, Chang CC, Chen RM. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem 2007;101:1520-31. [PMID: 17492650 DOI: 10.1002/jcb.21268] [Cited by in Crossref: 83] [Cited by in F6Publishing: 79] [Article Influence: 5.9] [Reference Citation Analysis]
96 Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 2012;13:10697-721. [PMID: 23109817 DOI: 10.3390/ijms130910697] [Cited by in Crossref: 129] [Cited by in F6Publishing: 126] [Article Influence: 12.9] [Reference Citation Analysis]
97 Arany I, Hall S, Reed DK, Reed CT, Dixit M. Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney. Nicotine Tob Res 2016;18:1628-34. [PMID: 26896163 DOI: 10.1093/ntr/ntw029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
98 Fuller TF, Kusch A, Chaykovska L, Catar R, Pützer J, Haller M, Troppmair J, Hoff U, Dragun D. Protein kinase C inhibition ameliorates posttransplantation preservation injury in rat renal transplants. Transplantation 2012;94:679-86. [PMID: 22932117 DOI: 10.1097/TP.0b013e318265c4d8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
99 Günther JK, Nikolajevic A, Ebner S, Troppmair J, Khalid S. Rigosertib-Activated JNK1/2 Eliminate Tumor Cells through p66Shc Activation. Biology (Basel) 2020;9:E99. [PMID: 32429320 DOI: 10.3390/biology9050099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Perspective: Quantifying Osteoblast and Osteocyte Apoptosis: Challenges and Rewards. J Bone Miner Res 2007;22:1492-501. [DOI: 10.1359/jbmr.070518] [Cited by in Crossref: 143] [Cited by in F6Publishing: 125] [Article Influence: 9.5] [Reference Citation Analysis]
101 Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013;113:4633-79. [PMID: 23514336 DOI: 10.1021/cr300163e] [Cited by in Crossref: 644] [Cited by in F6Publishing: 566] [Article Influence: 71.6] [Reference Citation Analysis]
102 Kalpage HA, Vaishnav A, Liu J, Varughese A, Wan J, Turner AA, Ji Q, Zurek MP, Kapralov AA, Kagan VE, Brunzelle JS, Recanati MA, Grossman LI, Sanderson TH, Lee I, Salomon AR, Edwards BFP, Hüttemann M. Serine-47 phosphorylation of cytochrome c in the mammalian brain regulates cytochrome c oxidase and caspase-3 activity. FASEB J 2019;33:13503-14. [PMID: 31570002 DOI: 10.1096/fj.201901120R] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
103 Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene 2013;32:4748-57. [DOI: 10.1038/onc.2012.500] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 8.7] [Reference Citation Analysis]
104 Pérez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC. p66Shc Inactivation Modifies RNS Production, Regulates Sirt3 Activity, and Improves Mitochondrial Homeostasis, Delaying the Aging Process in Mouse Brain. Oxid Med Cell Longev 2018;2018:8561892. [PMID: 29721150 DOI: 10.1155/2018/8561892] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
105 Yan X, Liang F, Li D, Zheng J. Ouabain elicits human glioblastoma cells apoptosis by generating reactive oxygen species in ERK-p66SHC-dependent pathway. Mol Cell Biochem 2015;398:95-104. [PMID: 25217205 DOI: 10.1007/s11010-014-2208-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
106 Gutiérrez-Correa J. Trypanosoma cruzi dihydrolipoamide dehydrogenase as target of reactive metabolites generated by cytochrome c/hydrogen peroxide (or linoleic acid hydroperoxide)/phenol systems. Free Radic Res 2010;44:1345-58. [PMID: 20815787 DOI: 10.3109/10715762.2010.507669] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
107 Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87:1157-1180. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Cited by in Crossref: 732] [Cited by in F6Publishing: 690] [Article Influence: 81.3] [Reference Citation Analysis]
108 Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99-163. [PMID: 17237344 DOI: 10.1152/physrev.00013.2006] [Cited by in Crossref: 2366] [Cited by in F6Publishing: 2273] [Article Influence: 157.7] [Reference Citation Analysis]
109 Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ 2nd, Wolf N, Van Remmen H, Richardson A. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 2007;62:932-42. [PMID: 17895430 DOI: 10.1093/gerona/62.9.932] [Cited by in Crossref: 122] [Cited by in F6Publishing: 106] [Article Influence: 8.1] [Reference Citation Analysis]
110 Gertz M, Fischer F, Wolters D, Steegborn C. Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci U S A 2008;105:5705-9. [PMID: 18413607 DOI: 10.1073/pnas.0800691105] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 4.4] [Reference Citation Analysis]
111 Berry A, Greco A, Giorgio M, Pelicci PG, de Kloet R, Alleva E, Minghetti L, Cirulli F. Deletion of the lifespan determinant p66(Shc) improves performance in a spatial memory task, decreases levels of oxidative stress markers in the hippocampus and increases levels of the neurotrophin BDNF in adult mice. Exp Gerontol 2008;43:200-8. [PMID: 18065182 DOI: 10.1016/j.exger.2007.10.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
112 Yang S, Zhao L, Han Y, Liu Y, Chen C, Zhan M, Xiong X, Zhu X, Xiao L, Hu C, Liu F, Zhou Z, Kanwar YS, Sun L. Probucol ameliorates renal injury in diabetic nephropathy by inhibiting the expression of the redox enzyme p66Shc. Redox Biol 2017;13:482-97. [PMID: 28728079 DOI: 10.1016/j.redox.2017.07.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
113 Ciciliot S, Albiero M, Campanaro S, Poncina N, Tedesco S, Scattolini V, Dalla Costa F, Cignarella A, Vettore M, Di Gangi IM, Bogialli S, Avogaro A, Fadini GP. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance. FASEB J 2018;32:4004-15. [PMID: 29466053 DOI: 10.1096/fj.201701409R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
114 Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007;292:R18-R36. [PMID: 16917020 DOI: 10.1152/ajpregu.00327.2006] [Cited by in Crossref: 472] [Cited by in F6Publishing: 437] [Article Influence: 29.5] [Reference Citation Analysis]
115 Robb EL, Christoff CA, Maddalena LA, Stuart JA. Mitochondrial reactive oxygen species (ROS) in animal cells: relevance to aging and normal physiology. Can J Zool 2014;92:603-13. [DOI: 10.1139/cjz-2013-0131] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
116 González‐arzola K, Velázquez‐cruz A, Guerra‐castellano A, Casado‐combreras MÁ, Pérez‐mejías G, Díaz‐quintana A, Díaz‐moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nucleus. FEBS Lett 2019;593:3101-19. [DOI: 10.1002/1873-3468.13655] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
117 Wenceslau CF, McCarthy CG, Szasz T, Spitler K, Goulopoulou S, Webb RC; Working Group on DAMPs in Cardiovascular Disease. Mitochondrial damage-associated molecular patterns and vascular function. Eur Heart J 2014;35:1172-7. [PMID: 24569027 DOI: 10.1093/eurheartj/ehu047] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 9.3] [Reference Citation Analysis]
118 Zurli V, Wimmer G, Cattaneo F, Candi V, Cencini E, Gozzetti A, Raspadori D, Campoccia G, Sanseviero F, Bocchia M, Baldari CT, Kabanova A. Ectopic ILT3 controls BCR-dependent activation of Akt in B-cell chronic lymphocytic leukemia. Blood 2017;130:2006-17. [PMID: 28931525 DOI: 10.1182/blood-2017-03-775858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
119 Al-gubory KH. Mitochondria: Omega-3 in the route of mitochondrial reactive oxygen species. The International Journal of Biochemistry & Cell Biology 2012;44:1569-73. [DOI: 10.1016/j.biocel.2012.06.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
120 Soliman MA, Abdel Rahman AM, Lamming DW, Birsoy K, Pawling J, Frigolet ME, Lu H, Fantus IG, Pasculescu A, Zheng Y, Sabatini DM, Dennis JW, Pawson T. The adaptor protein p66Shc inhibits mTOR-dependent anabolic metabolism. Sci Signal 2014;7:ra17. [PMID: 24550542 DOI: 10.1126/scisignal.2004785] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
121 Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 2008;8:361-75. [PMID: 18432251 DOI: 10.1038/nrc2374] [Cited by in Crossref: 433] [Cited by in F6Publishing: 430] [Article Influence: 30.9] [Reference Citation Analysis]
122 Arany I, Clark J, Reed DK, Juncos LA. Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Nephrol Dial Transplant 2013;28:1417-25. [PMID: 23328708 DOI: 10.1093/ndt/gfs596] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
123 Pezzicoli A, Ulivieri C, Capitani N, Ventura A, Pelicci P, Baldari CT. Expression in T-cells of the proapoptotic protein p66SHC is controlled by promoter demethylation. Biochem Biophys Res Commun 2006;349:322-8. [PMID: 16934220 DOI: 10.1016/j.bbrc.2006.08.039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
124 Zou X, Ratti BA, O'Brien JG, Lautenschlager SO, Gius DR, Bonini MG, Zhu Y. Manganese superoxide dismutase (SOD2): is there a center in the universe of mitochondrial redox signaling? J Bioenerg Biomembr 2017;49:325-33. [PMID: 28616679 DOI: 10.1007/s10863-017-9718-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
125 Vlachantoni D, Bramall AN, Murphy MP, Taylor RW, Shu X, Tulloch B, Van Veen T, Turnbull DM, McInnes RR, Wright AF. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 2011;20:322-35. [PMID: 21051333 DOI: 10.1093/hmg/ddq467] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
126 Xin H, Sim WJ, Namgung B, Choi Y, Li B, Lee LP. Quantum biological tunnel junction for electron transfer imaging in live cells. Nat Commun 2019;10:3245. [PMID: 31324797 DOI: 10.1038/s41467-019-11212-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
127 Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 2009;1788:2022-31. [PMID: 19450542 DOI: 10.1016/j.bbamem.2009.05.004] [Cited by in Crossref: 185] [Cited by in F6Publishing: 180] [Article Influence: 14.2] [Reference Citation Analysis]
128 Steliou K, Perrine SP, Faller DV. Lactic acid in cancer and mitochondrial disease. Drug Dev Res 2009;70:499-511. [DOI: 10.1002/ddr.20342] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
129 Kim SW, Kyung Lee Y, Yeon Lee J, Hee Hong J, Khang D. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology 2017;28:465102. [PMID: 29053471 DOI: 10.1088/1361-6528/aa8c31] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
130 Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal. 2010;13:1051-1085. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Cited by in Crossref: 94] [Cited by in F6Publishing: 90] [Article Influence: 8.5] [Reference Citation Analysis]
131 van Hameren G, Campbell G, Deck M, Berthelot J, Gautier B, Quintana P, Chrast R, Tricaud N. In vivo real-time dynamics of ATP and ROS production in axonal mitochondria show decoupling in mouse models of peripheral neuropathies. Acta Neuropathol Commun 2019;7:86. [PMID: 31186069 DOI: 10.1186/s40478-019-0740-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
132 Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 2011;15:1517-30. [PMID: 21194353 DOI: 10.1089/ars.2010.3642] [Cited by in Crossref: 117] [Cited by in F6Publishing: 109] [Article Influence: 10.6] [Reference Citation Analysis]
133 Frijhoff J, Dagnell M, Augsten M, Beltrami E, Giorgio M, Östman A. The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radical Biology and Medicine 2014;68:268-77. [DOI: 10.1016/j.freeradbiomed.2013.12.022] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
134 Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021;320:H2080-100. [PMID: 33834868 DOI: 10.1152/ajpheart.00917.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
135 Albiero M, D'Anna M, Bonora BM, Zuccolotto G, Rosato A, Giorgio M, Iori E, Avogaro A, Fadini GP. Hematopoietic and non-hematopoietic p66Shc differentially regulates stem cell traffic and vascular response to ischemia in diabetes. Antioxid Redox Signal 2021. [PMID: 34538132 DOI: 10.1089/ars.2021.0097] [Reference Citation Analysis]
136 Pei JF, Li XK, Li WQ, Gao Q, Zhang Y, Wang XM, Fu JQ, Cui SS, Qu JH, Zhao X, Hao DL, Ju D, Liu N, Carroll KS, Yang J, Zhang EE, Cao JM, Chen HZ, Liu DP. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat Cell Biol 2019;21:1553-64. [PMID: 31768048 DOI: 10.1038/s41556-019-0420-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
137 Kim HG, Ju MS, Kim DH, Hong J, Cho SH, Cho KH, Park W, Lee EH, Kim SY, Oh MS. Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson's disease. Basic Clin Pharmacol Toxicol 2010;107:958-64. [PMID: 20629656 DOI: 10.1111/j.1742-7843.2010.00612.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
138 Avogaro A, de Kreutzenberg SV, Fadini GP. Oxidative stress and vascular disease in diabetes: Is the dichotomization of insulin signaling still valid? Free Radical Biology and Medicine 2008;44:1209-15. [DOI: 10.1016/j.freeradbiomed.2007.12.021] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
139 Zhang T, Zhao X, Hai R, Li R, Zhang W, Zhang J. p66Shc is associated with hydrogen peroxide-induced oxidative stress in preimplantation sheep embryos. Mol Reprod Dev 2019;86:342-50. [PMID: 30636355 DOI: 10.1002/mrd.23110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
140 Camara AK, Lesnefsky EJ, Stowe DF. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal 2010;13:279-347. [PMID: 20001744 DOI: 10.1089/ars.2009.2788] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 9.7] [Reference Citation Analysis]
141 Wang Z, Zhao Y, Zhao H, Zhou J, Feng D, Tang F, Li Y, Lv L, Chen Z, Ma X, Tian X, Yao J. Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression. Mol Ther Nucleic Acids 2020;21:751-63. [PMID: 32781430 DOI: 10.1016/j.omtn.2020.07.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
142 Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB. The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 2009;20:2380-8. [PMID: 19797472 DOI: 10.1681/ASN.2008111138] [Cited by in Crossref: 118] [Cited by in F6Publishing: 60] [Article Influence: 9.1] [Reference Citation Analysis]
143 Yan D, Zhu D, Zhao X, Su J. SHP-2 restricts apoptosis induced by chemotherapeutic agents via Parkin-dependent autophagy in cervical cancer. Cancer Cell Int 2018;18:8. [PMID: 29371831 DOI: 10.1186/s12935-018-0505-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
144 Redshaw Z, Loughna PT. Oxygen concentration modulates the differentiation of muscle stem cells toward myogenic and adipogenic fates. Differentiation 2012;84:193-202. [PMID: 22790207 DOI: 10.1016/j.diff.2012.06.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
145 Paillard M, Gomez L, Augeul L, Loufouat J, Lesnefsky EJ, Ovize M. Postconditioning inhibits mPTP opening independent of oxidative phosphorylation and membrane potential. J Mol Cell Cardiol. 2009;46:902-909. [PMID: 19254723 DOI: 10.1016/j.yjmcc.2009.02.017] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 5.1] [Reference Citation Analysis]
146 Teng YC, Wang JY, Chi YH, Tsai TF. Exercise and the Cisd2 Prolongevity Gene: Two Promising Strategies to Delay the Aging of Skeletal Muscle. Int J Mol Sci 2020;21:E9059. [PMID: 33260577 DOI: 10.3390/ijms21239059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
147 Legøy TA, Ghila L, Vethe H, Abadpour S, Mathisen AF, Paulo JA, Scholz H, Raeder H, Chera S. In vivo hyperglycaemia exposure elicits distinct period-dependent effects on human pancreatic progenitor differentiation, conveyed by oxidative stress. Acta Physiol (Oxf) 2020;228:e13433. [PMID: 31872528 DOI: 10.1111/apha.13433] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
148 Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial glutathione: hepatocellular survival-death switch. J Gastroenterol Hepatol 2006;21 Suppl 3:S3-6. [PMID: 16958667 DOI: 10.1111/j.1440-1746.2006.04570.x] [Cited by in Crossref: 80] [Cited by in F6Publishing: 79] [Article Influence: 5.3] [Reference Citation Analysis]
149 Ren K, Li X, Yan J, Huang G, Zhou S, Yang B, Ma X, Lu C. Knockdown of p66Shc by siRNA injection rescues arsenite-induced developmental retardation in mouse preimplantation embryos. Reprod Toxicol 2014;43:8-18. [PMID: 24184494 DOI: 10.1016/j.reprotox.2013.10.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
150 Ingersoll MA, Chou YW, Lin JS, Yuan TC, Miller DR, Xie Y, Tu Y, Oberley-Deegan RE, Batra SK, Lin MF. p66Shc regulates migration of castration-resistant prostate cancer cells. Cell Signal 2018;46:1-14. [PMID: 29462661 DOI: 10.1016/j.cellsig.2018.02.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
151 Laina A, Stellos K, Stamatelopoulos K. Vascular ageing: Underlying mechanisms and clinical implications. Exp Gerontol 2018;109:16-30. [PMID: 28624356 DOI: 10.1016/j.exger.2017.06.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
152 Díaz-Moreno I, García-Heredia JM, Díaz-Quintana A, Teixeira M, De la Rosa MA. Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin. Biochim Biophys Acta 2011;1807:1616-23. [PMID: 21967884 DOI: 10.1016/j.bbabio.2011.09.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
153 Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2016;30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
154 Kim HJ, Park C, Han M, Hong S, Kim G, Hoon Hong S, Deuk Kim N, Choi YH. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells: INDUCTION OF APOPTOSIS BY BAICALEIN. Drug Dev Res 2016;77:73-86. [DOI: 10.1002/ddr.21298] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
155 Martinovich GG, Golubeva EN, Martinovich IV, Cherenkevich SN. Redox regulation of calcium signaling in cancer cells by ascorbic Acid involving the mitochondrial electron transport chain. J Biophys 2012;2012:921653. [PMID: 23227042 DOI: 10.1155/2012/921653] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
156 Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O'Rourke B, Maack C. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010;121:1606-13. [PMID: 20351235 DOI: 10.1161/CIRCULATIONAHA.109.914911] [Cited by in Crossref: 215] [Cited by in F6Publishing: 137] [Article Influence: 17.9] [Reference Citation Analysis]
157 Pellegrini L, Scorrano L. A cut short to death: Parl and Opa1 in the regulation of mitochondrial morphology and apoptosis. Cell Death Differ 2007;14:1275-84. [PMID: 17464328 DOI: 10.1038/sj.cdd.4402145] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 6.5] [Reference Citation Analysis]
158 Veeramani S, Chou YW, Lin FC, Muniyan S, Lin FF, Kumar S, Xie Y, Lele SM, Tu Y, Lin MF. Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells. Free Radic Biol Med 2012;53:95-108. [PMID: 22561705 DOI: 10.1016/j.freeradbiomed.2012.03.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
159 Chinopoulos C. Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Exp Neurol 2020;327:113218. [PMID: 32035071 DOI: 10.1016/j.expneurol.2020.113218] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
160 Chen TG, Chen TL, Chang HC, Tai YT, Cherng YG, Chang YT, Chen RM. Oxidized low-density lipoprotein induces apoptotic insults to mouse cerebral endothelial cells via a Bax-mitochondria-caspase protease pathway. Toxicol Appl Pharmacol 2007;219:42-53. [PMID: 17239413 DOI: 10.1016/j.taap.2006.11.031] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 2.7] [Reference Citation Analysis]
161 Reitman ZJ, Sinenko SA, Spana EP, Yan H. Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and D-2-hydroxyglutarate in Drosophila. Blood 2015;125:336-45. [PMID: 25398939 DOI: 10.1182/blood-2014-05-577940] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
162 Toborek M, Seelbach MJ, Rashid CS, András IE, Chen L, Park M, Esser KA. Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood-brain barrier. Mol Neurodegener 2013;8:22. [PMID: 23799892 DOI: 10.1186/1750-1326-8-22] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
163 Pang Y, Jiang X, Zhao S, Huang Z, Zhu H. Beneficial role of melatonin in protecting mammalian gametes and embryos from oxidative damage. Journal of Integrative Agriculture 2018;17:2320-35. [DOI: 10.1016/s2095-3119(18)61942-2] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
164 Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 2012;942:93-136. [PMID: 22399420 DOI: 10.1007/978-94-007-2869-1_5] [Cited by in Crossref: 119] [Cited by in F6Publishing: 109] [Article Influence: 11.9] [Reference Citation Analysis]
165 Patrussi L, Giommoni N, Pellegrini M, Gamberucci A, Baldari CT. p66Shc-dependent apoptosis requires Lck and CamKII activity. Apoptosis 2012;17:174-86. [DOI: 10.1007/s10495-011-0663-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
166 Zhu L, Lu Y, Zhang J, Hu Q. Subcellular Redox Signaling. In: Wang Y, editor. Pulmonary Vasculature Redox Signaling in Health and Disease. Cham: Springer International Publishing; 2017. pp. 385-98. [DOI: 10.1007/978-3-319-63245-2_25] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
167 Gao P, Yan Z, Zhu Z. Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases. Front Cell Dev Biol 2020;8:604240. [PMID: 33240899 DOI: 10.3389/fcell.2020.604240] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
168 Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 2006;25:6731-48. [PMID: 17072325 DOI: 10.1038/sj.onc.1209936] [Cited by in Crossref: 284] [Cited by in F6Publishing: 281] [Article Influence: 17.8] [Reference Citation Analysis]
169 Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol. 2017;70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Cited by in Crossref: 125] [Cited by in F6Publishing: 117] [Article Influence: 25.0] [Reference Citation Analysis]
170 Cheng Y, Cong X, Dai D, Zhang Y, Dai Y. Argirein alleviates corpus cavernosum dysfunction by suppressing pro-inflammatory factors p66Shc and ER stress chaperone Bip in diabetic rats. Journal of Pharmacy and Pharmacology 2013;65:94-101. [DOI: 10.1111/j.2042-7158.2012.01565.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
171 Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2017;170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 7.5] [Reference Citation Analysis]
172 Rusin A, Seymour C, Mothersill C. Chronic fatigue and immune deficiency syndrome (CFIDS), cellular metabolism, and ionizing radiation: a review of contemporary scientific literature and suggested directions for future research. International Journal of Radiation Biology 2018;94:212-28. [DOI: 10.1080/09553002.2018.1422871] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
173 Giovannini C, Masella R. Role of polyphenols in cell death control. Nutritional Neuroscience 2013;15:134-49. [DOI: 10.1179/1476830512y.0000000006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
174 Ahmed SBM, Amer S, Emad M, Rahmani M, Prigent SA. Studying the ShcD and ERK interaction under acute oxidative stress conditions in melanoma cells. Int J Biochem Cell Biol 2019;112:123-33. [PMID: 31121283 DOI: 10.1016/j.biocel.2019.05.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
175 Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017;4:38. [PMID: 28612009 DOI: 10.3389/fcvm.2017.00038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
176 Holzerová E, Prokisch H. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol 2015;63:16-20. [PMID: 25666559 DOI: 10.1016/j.biocel.2015.01.021] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
177 Yang S, Xiao L, Li J, Liu F, Sun L. Oxidative stress, a common molecular pathway for kidney disease: Role of the redox enzyme p66Shc. Renal Failure 2013;36:313-20. [DOI: 10.3109/0886022x.2013.846867] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
178 Boengler K, Heusch G, Schulz R. Mitochondria in postconditioning. Antioxid Redox Signal. 2011;14:863-880. [PMID: 20578961 DOI: 10.1089/ars.2010.3309] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.8] [Reference Citation Analysis]
179 Kong D, Han Y, Wang C, Chen X, Jiang Q, Wang Q, Han Z. Cytoprotective Effects of Oleanolic Acid in Human Umbilical Vascular Endothelial Cells is Mediated Via UCP2/ROS/Cytochrome C/AIF Pathway: . Journal of Cardiovascular Pharmacology 2016;67:344-50. [DOI: 10.1097/fjc.0000000000000360] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
180 Pellegrini M, Finetti F, Petronilli V, Ulivieri C, Giusti F, Lupetti P, Giorgio M, Pelicci PG, Bernardi P, Baldari CT. p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death Differ 2007;14:338-47. [DOI: 10.1038/sj.cdd.4401997] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 1.9] [Reference Citation Analysis]
181 Han YH, Buffolo M, Pires KM, Pei S, Scherer PE, Boudina S. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis. Diabetes 2016;65:2639-51. [PMID: 27284109 DOI: 10.2337/db16-0283] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
182 Hagenbuchner J, Ausserlechner MJ. Mitochondria and FOXO3: breath or die. Front Physiol 2013;4:147. [PMID: 23801966 DOI: 10.3389/fphys.2013.00147] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
183 Zhao Y, Wang Z, Feng D, Zhao H, Lin M, Hu Y, Zhang N, Lv L, Gao Z, Zhai X, Tian X, Yao J. p66Shc Contributes to Liver Fibrosis through the Regulation of Mitochondrial Reactive Oxygen Species. Theranostics 2019;9:1510-22. [PMID: 30867846 DOI: 10.7150/thno.29620] [Cited by in Crossref: 24] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
184 Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol 2016;81:281-93. [PMID: 27373679 DOI: 10.1016/j.biocel.2016.06.015] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 12.7] [Reference Citation Analysis]
185 Cong X, Wu Y, Dai D, Ding M, Zhang Y, Dai Y. Activation of AQP4, p66Shc and endoplasmic reticulum stress is involved in inflammation by carrageenan and is suppressed by argirein, a derivative of rhein. Journal of Pharmacy and Pharmacology 2012;64:1138-45. [DOI: 10.1111/j.2042-7158.2012.01507.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
186 Singh PK, Kumar A. Mitochondria mediates caspase-dependent and independent retinal cell death in Staphylococcus aureus endophthalmitis. Cell Death Discov 2016;2:16034. [PMID: 27551524 DOI: 10.1038/cddiscovery.2016.34] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
187 Wang G, Chen Z, Zhang F, Jing H, Xu W, Ning S, Li Z, Liu K, Yao J, Tian X. Blockade of PKCβ protects against remote organ injury induced by intestinal ischemia and reperfusion via a p66shc-mediated mitochondrial apoptotic pathway. Apoptosis. 2014;19:1342-1353. [PMID: 24930012 DOI: 10.1007/s10495-014-1008-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
188 Hawkins BJ, Solt LA, Chowdhury I, Kazi AS, Abid MR, Aird WC, May MJ, Foskett JK, Madesh M. G protein-coupled receptor Ca2+-linked mitochondrial reactive oxygen species are essential for endothelial/leukocyte adherence. Mol Cell Biol 2007;27:7582-93. [PMID: 17724077 DOI: 10.1128/MCB.00493-07] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
189 Fadini GP, Albiero M, Bonora BM, Poncina N, Vigili de Kreutzenberg S, Avogaro A. p66Shc gene expression in peripheral blood mononuclear cells and progression of diabetic complications. Cardiovasc Diabetol 2018;17:16. [PMID: 29343271 DOI: 10.1186/s12933-018-0660-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
190 Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Ylä-Herttuala S, Levonen AL, Koistinaho J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 2008;39:302-13. [PMID: 18706502 DOI: 10.1016/j.mcn.2008.07.010] [Cited by in Crossref: 160] [Cited by in F6Publishing: 156] [Article Influence: 11.4] [Reference Citation Analysis]
191 Zhou X, Liu J, Yang S, Su Y, Meng Z, Hu Y. Ketamine ameliorates hypoxia-induced endothelial injury in human umbilical vein endothelial cells. Clinics (Sao Paulo) 2020;75:e1865. [PMID: 32935825 DOI: 10.6061/clinics/2020/e1865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
192 Favetta LA, St John EJ, King WA, Betts DH. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med 2007;42:1201-10. [PMID: 17382201 DOI: 10.1016/j.freeradbiomed.2007.01.018] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 5.7] [Reference Citation Analysis]
193 Volpe M, Battistoni A, Savoia C, Tocci G. Understanding and treating hypertension in diabetic populations. Cardiovasc Diagn Ther 2015;5:353-63. [PMID: 26543822 DOI: 10.3978/j.issn.2223-3652.2015.06.02] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
194 Watson R, Parekh AB. Mitochondrial regulation of CRAC channel-driven cellular responses. Cell Calcium 2012;52:52-6. [DOI: 10.1016/j.ceca.2012.02.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
195 Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008;10:1343-74. [PMID: 18522489 DOI: 10.1089/ars.2007.1957] [Cited by in Crossref: 1076] [Cited by in F6Publishing: 1001] [Article Influence: 76.9] [Reference Citation Analysis]
196 Gao X, Zhang C, Zheng P, Dan Q, Luo H, Ma X, Lu C. Arsenic suppresses GDF1 expression via ROS-dependent downregulation of specificity protein 1. Environmental Pollution 2021;271:116302. [DOI: 10.1016/j.envpol.2020.116302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
197 Zoccarato F, Cappellotto M, Alexandre A. Clorgyline and other propargylamine derivatives as inhibitors of succinate-dependent H(2)O(2) release at NADH:UBIQUINONE oxidoreductase (Complex I) in brain mitochondria. J Bioenerg Biomembr 2008;40:289-96. [PMID: 18763029 DOI: 10.1007/s10863-008-9160-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
198 Su KG, Savino C, Marracci G, Chaudhary P, Yu X, Morris B, Galipeau D, Giorgio M, Forte M, Bourdette D. Genetic inactivation of the p66 isoform of ShcA is neuroprotective in a murine model of multiple sclerosis. Eur J Neurosci 2012;35:562-71. [PMID: 22277070 DOI: 10.1111/j.1460-9568.2011.07972.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
199 Favetta LA, Madan P, Mastromonaco GF, St John EJ, King WA, Betts DH. The oxidative stress adaptor p66Shc is required for permanent embryo arrest in vitro. BMC Dev Biol 2007;7:132. [PMID: 18047664 DOI: 10.1186/1471-213X-7-132] [Cited by in Crossref: 42] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
200 Paneni F, Costantino S, Cosentino F. Role of oxidative stress in endothelial insulin resistance. World J Diabetes 2015; 6(2): 326-332 [PMID: 25789114 DOI: 10.4239/wjd.v6.i2.326] [Cited by in CrossRef: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
201 Xie ZZ, Liu Y, Bian JS. Hydrogen Sulfide and Cellular Redox Homeostasis. Oxid Med Cell Longev 2016;2016:6043038. [PMID: 26881033 DOI: 10.1155/2016/6043038] [Cited by in Crossref: 89] [Cited by in F6Publishing: 93] [Article Influence: 14.8] [Reference Citation Analysis]
202 Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z, Wang X. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1. Mol Cell 2021;81:355-369.e10. [PMID: 33321093 DOI: 10.1016/j.molcel.2020.11.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
203 Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells 2011;32:491-509. [PMID: 22207195 DOI: 10.1007/s10059-011-0276-3] [Cited by in Crossref: 358] [Cited by in F6Publishing: 319] [Article Influence: 32.5] [Reference Citation Analysis]
204 Fato R, Bergamini C, Leoni S, Strocchi P, Lenaz G. Generation of Reactive Oxygen Species by Mitochondrial Complex I: Implications in Neurodegeneration. Neurochem Res 2008;33:2487-501. [DOI: 10.1007/s11064-008-9747-0] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 4.4] [Reference Citation Analysis]
205 Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective action of neurotrophic factors and estrogen against oxidative stress-mediated neurodegeneration. J Toxicol. 2011;2011:405194. [PMID: 21776259 DOI: 10.1155/2011/405194] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 6.2] [Reference Citation Analysis]
206 Berry A, Cirulli F. The p66Shc gene paves the way for healthspan: Evolutionary and mechanistic perspectives. Neuroscience & Biobehavioral Reviews 2013;37:790-802. [DOI: 10.1016/j.neubiorev.2013.03.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
207 Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C. Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromolecular Med 2014;16:772-81. [PMID: 25151272 DOI: 10.1007/s12017-014-8326-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
208 Lee K, Hardy DB. Metabolic Consequences of Gestational Cannabinoid Exposure. Int J Mol Sci 2021;22:9528. [PMID: 34502436 DOI: 10.3390/ijms22179528] [Reference Citation Analysis]
209 Neumann-Haefelin E, Qi W, Finkbeiner E, Walz G, Baumeister R, Hertweck M. SHC-1/p52Shc targets the insulin/IGF-1 and JNK signaling pathways to modulate life span and stress response in C. elegans. Genes Dev 2008;22:2721-35. [PMID: 18832074 DOI: 10.1101/gad.478408] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
210 Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006;99:970-8. [PMID: 17008601 DOI: 10.1161/01.RES.0000247068.75808.3f] [Cited by in Crossref: 134] [Cited by in F6Publishing: 73] [Article Influence: 8.4] [Reference Citation Analysis]
211 Bereiter-hahn J. Do we age because we have mitochondria? Protoplasma 2014;251:3-23. [DOI: 10.1007/s00709-013-0515-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
212 Kiselyov K, Muallem S. Mitochondrial Ca2+ homeostasis in lysosomal storage diseases. Cell Calcium 2008;44:103-11. [PMID: 18242695 DOI: 10.1016/j.ceca.2007.12.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
213 Hughes WE, Hockenberry J, Miller B, Sorokin A, Beyer AM. Modulation of p66Shc impairs cerebrovascular myogenic tone in low renin but not low nitric oxide models of systemic hypertension. Am J Physiol Heart Circ Physiol 2021;321:H1096-102. [PMID: 34714691 DOI: 10.1152/ajpheart.00542.2021] [Reference Citation Analysis]
214 Tome ME, Lee K, Jaramillo MC, Briehl MM. Mitochondria are the primary source of the H(2)O(2) signal for glucocorticoid-induced apoptosis of lymphoma cells. Exp Ther Med 2012;4:237-42. [PMID: 22844350 DOI: 10.3892/etm.2012.595] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
215 Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2012;12:77-85. [PMID: 21798374 DOI: 10.1016/j.mito.2011.07.004] [Cited by in Crossref: 109] [Cited by in F6Publishing: 100] [Article Influence: 9.9] [Reference Citation Analysis]
216 Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017;8:349-69. [PMID: 28432755 DOI: 10.1002/jcsm.12178] [Cited by in Crossref: 118] [Cited by in F6Publishing: 104] [Article Influence: 23.6] [Reference Citation Analysis]
217 Khalid S, Drasche A, Thurner M, Hermann M, Ashraf MI, Fresser F, Baier G, Kremser L, Lindner H, Troppmair J. cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep 2016;6:20930. [PMID: 26868434 DOI: 10.1038/srep20930] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
218 Mori N, Mori M. Neuronal Shc: A gene of longevity in the brain? Medical Hypotheses 2011;77:996-9. [DOI: 10.1016/j.mehy.2011.08.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
219 Koch OR, Fusco S, Ranieri SC, Maulucci G, Palozza P, Larocca LM, Cravero AA, Farre' SM, De Spirito M, Galeotti T, Pani G. Role of the life span determinant P66(shcA) in ethanol-induced liver damage. Lab Invest 2008;88:750-60. [PMID: 18490896 DOI: 10.1038/labinvest.2008.44] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
220 Raez-Villanueva S, Debnath A, Hardy DB, Holloway AC. Prenatal nicotine exposure leads to decreased histone H3 lysine 9 (H3K9) methylation and increased p66shc expression in the neonatal pancreas. J Dev Orig Health Dis 2021;:1-5. [PMID: 34047687 DOI: 10.1017/S2040174421000283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
221 Savino C, Pelicci P, Giorgio M. The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. Oxid Med Cell Longev 2013;2013:719407. [PMID: 23766859 DOI: 10.1155/2013/719407] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
222 Lewis K, Kiepas A, Hudson J, Senecal J, Ha JR, Voorand E, Annis MG, Sabourin V, Ahn R, La Selva R, Tabariès S, Hsu BE, Siegel MJ, Dankner M, Canedo EC, Lajoie M, Watson IR, Brown CM, Siegel PM, Ursini-Siegel J. p66ShcA functions as a contextual promoter of breast cancer metastasis. Breast Cancer Res 2020;22:7. [PMID: 31941526 DOI: 10.1186/s13058-020-1245-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
223 Hernández-García D, Wood CD, Castro-Obregón S, Covarrubias L. Reactive oxygen species: A radical role in development? Free Radic Biol Med 2010;49:130-43. [PMID: 20353819 DOI: 10.1016/j.freeradbiomed.2010.03.020] [Cited by in Crossref: 135] [Cited by in F6Publishing: 118] [Article Influence: 11.3] [Reference Citation Analysis]
224 Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011;18:1628-1639. [PMID: 21527937 DOI: 10.1038/cdd.2011.42] [Cited by in Crossref: 295] [Cited by in F6Publishing: 290] [Article Influence: 26.8] [Reference Citation Analysis]
225 Kumar S. P66Shc and vascular endothelial function. Biosci Rep 2019;39:BSR20182134. [PMID: 30918103 DOI: 10.1042/BSR20182134] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
226 Gierhardt M, Pak O, Sydykov A, Kraut S, Schäffer J, Garcia C, Veith C, Zeidan EM, Brosien M, Quanz K, Esfandiary A, Saraji A, Hadzic S, Kojonazarov B, Wilhelm J, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Herden C, Schulz R, Weissmann N, Heger J, Sommer N. Genetic Deletion of p66shc and/or Cyclophilin D Results in Decreased Pulmonary Vascular Tone. Cardiovasc Res 2020:cvaa310. [PMID: 33119054 DOI: 10.1093/cvr/cvaa310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
227 Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, Franzin C, Cortivo R, Rossato M, Vettor R, Abatangelo G, Pozzan T, Pinton P, Rizzuto R. High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A 2008;105:1226-31. [PMID: 18212116 DOI: 10.1073/pnas.0711402105] [Cited by in Crossref: 184] [Cited by in F6Publishing: 181] [Article Influence: 13.1] [Reference Citation Analysis]
228 Genova ML, Lenaz G. The Interplay Between Respiratory Supercomplexes and ROS in Aging. Antioxidants & Redox Signaling 2015;23:208-38. [DOI: 10.1089/ars.2014.6214] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 10.9] [Reference Citation Analysis]
229 Nakano H, Nakajima A, Sakon-komazawa S, Piao J, Xue X, Okumura K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ 2006;13:730-7. [DOI: 10.1038/sj.cdd.4401830] [Cited by in Crossref: 263] [Cited by in F6Publishing: 244] [Article Influence: 15.5] [Reference Citation Analysis]
230 Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014;5:151. [PMID: 25024695 DOI: 10.3389/fphar.2014.00151] [Cited by in Crossref: 229] [Cited by in F6Publishing: 206] [Article Influence: 28.6] [Reference Citation Analysis]
231 Shin N, Shin HJ, Yi Y, Beom J, Lee W, Lee CH, Kim DW. p66shc siRNA-Encapsulated PLGA Nanoparticles Ameliorate Neuropathic Pain Following Spinal Nerve Ligation. Polymers (Basel) 2020;12:E1014. [PMID: 32365512 DOI: 10.3390/polym12051014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
232 Zhu H, Jia Z, Misra H, Li YR. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence. J Dig Dis. 2012;13:133-142. [PMID: 22356308 DOI: 10.1111/j.1751-2980.2011.00569.x] [Cited by in Crossref: 97] [Cited by in F6Publishing: 84] [Article Influence: 9.7] [Reference Citation Analysis]
233 Oktyabrsky ON, Smirnova GV. Redox regulation of cellular functions. Biochemistry (Mosc) 2007;72:132-45. [PMID: 17367290 DOI: 10.1134/s0006297907020022] [Cited by in Crossref: 80] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
234 Jabbarzadeh Kaboli P, Afzalipour Khoshkbejari M, Mohammadi M, Abiri A, Mokhtarian R, Vazifemand R, Amanollahi S, Yazdi Sani S, Li M, Zhao Y, Wu X, Shen J, Cho CH, Xiao Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives. Biomed Pharmacother 2020;121:109635. [PMID: 31739165 DOI: 10.1016/j.biopha.2019.109635] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
235 Derdak Z, Villegas KA, Wands JR. Early growth response-1 transcription factor promotes hepatic fibrosis and steatosis in long-term ethanol-fed Long-Evans rats. Liver Int 2012;32:761-70. [PMID: 22292946 DOI: 10.1111/j.1478-3231.2012.02752.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
236 Szewczyk A, Jarmuszkiewicz W, Koziel A, Sobieraj I, Nobik W, Lukasiak A, Skup A, Bednarczyk P, Drabarek B, Dymkowska D, Wrzosek A, Zablocki K. Mitochondrial mechanisms of endothelial dysfunction. Pharmacol Rep 2015;67:704-10. [PMID: 26321271 DOI: 10.1016/j.pharep.2015.04.009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 8.7] [Reference Citation Analysis]
237 Essex DW. Redox control of platelet function. Antioxid Redox Signal 2009;11:1191-225. [PMID: 19061441 DOI: 10.1089/ars.2008.2322] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 6.7] [Reference Citation Analysis]
238 Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. Biochim Biophys Acta 2016;1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 13.0] [Reference Citation Analysis]
239 Patergnani S, Missiroli S, Marchi S, Giorgi C. Mitochondria-Associated Endoplasmic Reticulum Membranes Microenvironment: Targeting Autophagic and Apoptotic Pathways in Cancer Therapy. Front Oncol 2015;5:173. [PMID: 26284195 DOI: 10.3389/fonc.2015.00173] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.9] [Reference Citation Analysis]
240 Han C, Wang Z, Xu Y, Chen S, Han Y, Li L, Wang M, Jin X. Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer. Biomed Res Int 2020;2020:1269624. [PMID: 33062666 DOI: 10.1155/2020/1269624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
241 Wan J, Kalpage HA, Vaishnav A, Liu J, Lee I, Mahapatra G, Turner AA, Zurek MP, Ji Q, Moraes CT, Recanati MA, Grossman LI, Salomon AR, Edwards BFP, Hüttemann M. Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation. Sci Rep 2019;9:15815. [PMID: 31676852 DOI: 10.1038/s41598-019-52101-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
242 Zoccarato F, Cavallini L, Alexandre A. Succinate is the controller of O 2 − /H2O2 release at mitochondrial complex I : negative modulation by malate, positive by cyanide. J Bioenerg Biomembr 2009;41:387-93. [DOI: 10.1007/s10863-009-9238-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
243 Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol 2011; 3(6): 186-200 [PMID: 21772945 DOI: 10.4330/wjc.v3.i6.186] [Cited by in Crossref: 194] [Cited by in F6Publishing: 185] [Article Influence: 17.6] [Reference Citation Analysis]
244 Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal 2011;9:19. [PMID: 21939514 DOI: 10.1186/1478-811X-9-19] [Cited by in Crossref: 215] [Cited by in F6Publishing: 123] [Article Influence: 19.5] [Reference Citation Analysis]
245 Ma Y, Wang J, Gao J, Yang H, Wang Y, Manithody C, Li J, Rezaie AR. Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury. Thromb Haemost 2015;113:338-49. [PMID: 25230600 DOI: 10.1160/TH14-04-0360] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
246 Du W, Jiang Y, Zheng Z, Zhang Z, Chen N, Ma Z, Yao Z, Terada L, Liu Z. Feedback loop between p66(Shc) and Nrf2 promotes lung cancer progression. Cancer Lett 2013;337:58-65. [PMID: 23689140 DOI: 10.1016/j.canlet.2013.05.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
247 Krammer PH, Kamiński M, Kießling M, Gülow K. No Life Without Death. Elsevier; 2007. pp. 111-38. [DOI: 10.1016/s0065-230x(06)97005-5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
248 Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis 2007;12:913-22. [DOI: 10.1007/s10495-007-0756-2] [Cited by in Crossref: 1226] [Cited by in F6Publishing: 1166] [Article Influence: 81.7] [Reference Citation Analysis]
249 Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008;27:6407-18. [PMID: 18955969 DOI: 10.1038/onc.2008.308] [Cited by in Crossref: 688] [Cited by in F6Publishing: 669] [Article Influence: 49.1] [Reference Citation Analysis]
250 Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019;33:1540-53. [PMID: 30222078 DOI: 10.1096/fj.201801417R] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
251 Vettor R, Milan G, Franzin C, Sanna M, De Coppi P, Rizzuto R, Federspil G. The origin of intermuscular adipose tissue and its pathophysiological implications. American Journal of Physiology-Endocrinology and Metabolism 2009;297:E987-98. [DOI: 10.1152/ajpendo.00229.2009] [Cited by in Crossref: 165] [Cited by in F6Publishing: 170] [Article Influence: 12.7] [Reference Citation Analysis]
252 Menini S, Iacobini C, Ricci C, Oddi G, Pesce C, Pugliese F, Block K, Abboud HE, Giorgio M, Migliaccio E, Pelicci PG, Pugliese G. Ablation of the gene encoding p66Shc protects mice against AGE-induced glomerulopathy by preventing oxidant-dependent tissue injury and further AGE accumulation. Diabetologia 2007;50:1997-2007. [DOI: 10.1007/s00125-007-0728-7] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 3.3] [Reference Citation Analysis]
253 Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal. 2013;18:1557-1593. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Cited by in Crossref: 121] [Cited by in F6Publishing: 116] [Article Influence: 13.4] [Reference Citation Analysis]
254 Hollenberg AM, Smith CO, Shum LC, Awad H, Eliseev RA. Lactate Dehydrogenase Inhibition With Oxamate Exerts Bone Anabolic Effect. J Bone Miner Res 2020;35:2432-43. [PMID: 32729639 DOI: 10.1002/jbmr.4142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
255 Wang Y, Qu H, Liu J. P66Shc Deletion Ameliorates Oxidative Stress and Cardiac Dysfunction in Pressure Overload-Induced Heart Failure. J Card Fail 2020;26:243-53. [PMID: 31536807 DOI: 10.1016/j.cardfail.2019.09.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
256 Chiriacò M, Georgiopoulos G, Duranti E, Antonioli L, Puxeddu I, Nannipieri M, Rosada J, Blandizzi C, Taddei S, Virdis A, Masi S. Inflammation and Vascular Ageing: From Telomeres to Novel Emerging Mechanisms. High Blood Press Cardiovasc Prev 2019;26:321-9. [DOI: 10.1007/s40292-019-00331-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
257 Greer EL, Brunet A. Signaling networks in aging. J Cell Sci 2008;121:407-12. [PMID: 18256383 DOI: 10.1242/jcs.021519] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 4.6] [Reference Citation Analysis]
258 Kim KM, Kim DY, Lee DS, Kim JW, Koh JT, Kim EJ, Jang WG. Peroxiredoxin II negatively regulates BMP2-induced osteoblast differentiation and bone formation via PP2A Cα-mediated Smad1/5/9 dephosphorylation. Exp Mol Med 2019;51:1-11. [PMID: 31160554 DOI: 10.1038/s12276-019-0263-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
259 Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011;11:369-81. [PMID: 21296189 DOI: 10.1016/j.mito.2011.01.010] [Cited by in Crossref: 310] [Cited by in F6Publishing: 281] [Article Influence: 28.2] [Reference Citation Analysis]
260 Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Lüscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 2006;99:42-52. [PMID: 16763167 DOI: 10.1161/01.RES.0000231289.63468.08] [Cited by in Crossref: 261] [Cited by in F6Publishing: 128] [Article Influence: 16.3] [Reference Citation Analysis]
261 Mammucari C, Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 2010;131:536-43. [PMID: 20655326 DOI: 10.1016/j.mad.2010.07.003] [Cited by in Crossref: 159] [Cited by in F6Publishing: 151] [Article Influence: 13.3] [Reference Citation Analysis]
262 Zhang M, Zheng J, Nussinov R, Ma B. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Sci Rep 2017;7:2635. [PMID: 28572603 DOI: 10.1038/s41598-017-02825-7] [Cited by in Crossref: 46] [Cited by in F6Publishing: 54] [Article Influence: 9.2] [Reference Citation Analysis]
263 Matsuzawa A, Ichijo H. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 2008;1780:1325-36. [PMID: 18206122 DOI: 10.1016/j.bbagen.2007.12.011] [Cited by in Crossref: 351] [Cited by in F6Publishing: 341] [Article Influence: 25.1] [Reference Citation Analysis]
264 Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol 2015;89:1209-26. [PMID: 26047665 DOI: 10.1007/s00204-015-1520-y] [Cited by in Crossref: 155] [Cited by in F6Publishing: 143] [Article Influence: 22.1] [Reference Citation Analysis]
265 Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev 2010;29:351-78. [PMID: 20386957 DOI: 10.1007/s10555-010-9225-4] [Cited by in Crossref: 200] [Cited by in F6Publishing: 182] [Article Influence: 16.7] [Reference Citation Analysis]
266 Simoes ICM, Morciano G, Lebiedzinska-Arciszewska M, Aguiari G, Pinton P, Potes Y, Wieckowski MR. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis 2020;1866:165834. [PMID: 32437958 DOI: 10.1016/j.bbadis.2020.165834] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
267 Kharroubi W, Nury T, Ahmed SH, Andreoletti P, Sakly R, Hammami M, Lizard G. Induction by arsenate of cell-type-specific cytotoxic effects in nerve and hepatoma cells. Hum Exp Toxicol 2017;36:1256-69. [PMID: 28071239 DOI: 10.1177/0960327116687893] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
268 Hoyos B, Acin-Perez R, Fischman DA, Manfredi G, Hammerling U. Hiding in plain sight: uncovering a new function of vitamin A in redox signaling. Biochim Biophys Acta 2012;1821:241-7. [PMID: 21763457 DOI: 10.1016/j.bbalip.2011.06.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
269 Ranieri SC, Fusco S, Pani G. p66ShcA. Obesity. Elsevier; 2013. pp. 219-41. [DOI: 10.1016/b978-0-12-407766-9.00009-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
270 Demaurex N, Scorrano L. Reactive oxygen species are NOXious for neurons. Nat Neurosci 2009;12:819-20. [PMID: 19554046 DOI: 10.1038/nn0709-819] [Cited by in F6Publishing: 29] [Reference Citation Analysis]
271 Zhang M, Tang J, Shan H, Zhang Q, Yang X, Zhang J, Li Y. p66Shc Mediates Mitochondrial Dysfunction Dependent on PKC Activation in Airway Epithelial Cells Induced by Cigarette Smoke. Oxid Med Cell Longev 2018;2018:5837123. [PMID: 29849902 DOI: 10.1155/2018/5837123] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
272 Franzeck FC, Hof D, Spescha RD, Hasun M, Akhmedov A, Steffel J, Shi Y, Cosentino F, Tanner FC, von Eckardstein A, Maier W, Lüscher TF, Wyss CA, Camici GG. Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 2012;220:282-6. [DOI: 10.1016/j.atherosclerosis.2011.10.035] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
273 Natalicchio A, Tortosa F, Labarbuta R, Biondi G, Marrano N, Carchia E, Leonardini A, Cignarelli A, Bugliani M, Marchetti P, Fadini GP, Giorgio M, Avogaro A, Perrini S, Laviola L, Giorgino F. The p66(Shc) redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia 2015;58:1260-71. [PMID: 25810038 DOI: 10.1007/s00125-015-3563-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
274 Nakajima A, Kojima Y, Nakayama M, Yagita H, Okumura K, Nakano H. Downregulation of c-FLIP promotes caspase-dependent JNK activation and reactive oxygen species accumulation in tumor cells. Oncogene 2008;27:76-84. [PMID: 17599041 DOI: 10.1038/sj.onc.1210624] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
275 Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12:815-833. [PMID: 17294078 DOI: 10.1007/s10495-007-0723-y] [Cited by in Crossref: 348] [Cited by in F6Publishing: 341] [Article Influence: 24.9] [Reference Citation Analysis]
276 Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep 2018;23:100-17. [PMID: 29298131 DOI: 10.1080/13510002.2017.1416773] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 17.0] [Reference Citation Analysis]
277 Labunskyy VM, Gladyshev VN. Role of reactive oxygen species-mediated signaling in aging. Antioxid Redox Signal 2013;19:1362-72. [PMID: 22901002 DOI: 10.1089/ars.2012.4891] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 6.6] [Reference Citation Analysis]
278 Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 2007;177:1029-36. [PMID: 17562787 DOI: 10.1083/jcb.200609074] [Cited by in Crossref: 387] [Cited by in F6Publishing: 363] [Article Influence: 25.8] [Reference Citation Analysis]
279 Muniyan S, Chou YW, Tsai TJ, Thomes P, Veeramani S, Benigno BB, Walker LD, McDonald JF, Khan SA, Lin FF, Lele SM, Lin MF. p66Shc longevity protein regulates the proliferation of human ovarian cancer cells. Mol Carcinog 2015;54:618-31. [PMID: 24395385 DOI: 10.1002/mc.22129] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
280 Kumar S, Kim YR, Vikram A, Naqvi A, Li Q, Kassan M, Kumar V, Bachschmid MM, Jacobs JS, Kumar A, Irani K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci U S A 2017;114:1714-9. [PMID: 28137876 DOI: 10.1073/pnas.1614112114] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 11.0] [Reference Citation Analysis]
281 Tao L, Jia L, Li Y, Song C, Chen Z. Recent advances of adapter proteins in the regulation of heart diseases. Heart Fail Rev 2017;22:99-107. [PMID: 27623843 DOI: 10.1007/s10741-016-9582-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
282 Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, Su X, Ke Y, Ling W. Inhibition of S-Adenosylhomocysteine Hydrolase Induces Endothelial Dysfunction via Epigenetic Regulation of p66shc-Mediated Oxidative Stress Pathway. Circulation 2019;139:2260-77. [PMID: 30773021 DOI: 10.1161/CIRCULATIONAHA.118.036336] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
283 Ki M, Lee H, Park J, Hong I, Han S, You S, Lee E, Kim A, Lee S, Jeong K. Ascorbate promotes carbon tetrachloride-induced hepatic injury in senescence marker protein 30-deficient mice by enhancing inflammation. The Journal of Nutritional Biochemistry 2011;22:535-42. [DOI: 10.1016/j.jnutbio.2010.04.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
284 Vasconsuelo A, Milanesi L, Boland R. Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging. Ageing Research Reviews 2013;12:907-17. [DOI: 10.1016/j.arr.2013.09.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
285 Yang J, Qiu B, Li X, Zhang H, Liu W. p53-p66shc/miR-21-Sod2 signaling is critical for the inhibitory effect of betulinic acid on hepatocellular carcinoma. Toxicology Letters 2015;238:1-10. [DOI: 10.1016/j.toxlet.2015.07.016] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
286 Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2021. [PMID: 34668625 DOI: 10.1111/febs.16241] [Reference Citation Analysis]
287 Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 2017;24:76. [PMID: 28927401 DOI: 10.1186/s12929-017-0379-z] [Cited by in Crossref: 110] [Cited by in F6Publishing: 97] [Article Influence: 22.0] [Reference Citation Analysis]
288 Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19. [PMID: 23442817 DOI: 10.1186/1756-8722-6-19] [Cited by in Crossref: 365] [Cited by in F6Publishing: 348] [Article Influence: 40.6] [Reference Citation Analysis]
289 Seifert EL, Estey C, Xuan JY, Harper ME. Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem. 2010;285:5748-5758. [PMID: 20032466 DOI: 10.1074/jbc.m109.026203] [Cited by in Crossref: 173] [Cited by in F6Publishing: 93] [Article Influence: 13.3] [Reference Citation Analysis]
290 Lyu D, Tang N, Womack AW, He YJ, Lin Q. Neonatal ketamine exposure-induced hippocampal neuroapoptosis in the developing brain impairs adult spatial learning ability. Neural Regen Res 2020;15:880-6. [PMID: 31719253 DOI: 10.4103/1673-5374.268929] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
291 Mahapatra G, Varughese A, Ji Q, Lee I, Liu J, Vaishnav A, Sinkler C, Kapralov AA, Moraes CT, Sanderson TH, Stemmler TL, Grossman LI, Kagan VE, Brunzelle JS, Salomon AR, Edwards BF, Hüttemann M. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE. J Biol Chem 2017;292:64-79. [PMID: 27758862 DOI: 10.1074/jbc.M116.744664] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
292 Nakajima A, Komazawa-Sakon S, Takekawa M, Sasazuki T, Yeh WC, Yagita H, Okumura K, Nakano H. An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J 2006;25:5549-59. [PMID: 17110930 DOI: 10.1038/sj.emboj.7601423] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 4.9] [Reference Citation Analysis]
293 Patrussi L, Capitani N, Cannizzaro E, Finetti F, Lucherini OM, Pelicci PG, Baldari CT. Negative regulation of chemokine receptor signaling and B-cell chemotaxis by p66Shc. Cell Death Dis 2014;5:e1068. [PMID: 24556683 DOI: 10.1038/cddis.2014.44] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
294 Wang H, Jiang W, Wang Y, Liu X, Yao J, Yuan L, Wu Z, Li D, Song B, Chen H. Catalase-like and Peroxidase-like Catalytic Activities of Silicon Nanowire Arrays. Langmuir 2013;29:3-7. [DOI: 10.1021/la304378w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
295 Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 2017;312:C749-64. [PMID: 28424170 DOI: 10.1152/ajpcell.00346.2016] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 18.8] [Reference Citation Analysis]
296 Andriantsitohaina R, Duluc L, García-Rodríguez JC, Gil-del Valle L, Guevara-Garcia M, Simard G, Soleti R, Su DF, Velásquez-Pérez L, Wilson JX, Laher I. Systems biology of antioxidants. Clin Sci (Lond) 2012;123:173-92. [PMID: 22494160 DOI: 10.1042/CS20110643] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
297 Zhu M, Ding J, Jiang H, Kong L, Sun Z, Chen J, Miao C. Propofol ameliorates endothelial inflammation induced by hypoxia/reoxygenation in human umbilical vein endothelial cells: Role of phosphatase A2. Vascul Pharmacol 2015;73:149-57. [PMID: 26070526 DOI: 10.1016/j.vph.2015.06.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
298 Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021;9:216. [PMID: 33672477 DOI: 10.3390/biomedicines9020216] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
299 Tomilov AA, Bicocca V, Schoenfeld RA, Giorgio M, Migliaccio E, Ramsey JJ, Hagopian K, Pelicci PG, Cortopassi GA. Decreased superoxide production in macrophages of long-lived p66Shc knock-out mice. J Biol Chem 2010;285:1153-65. [PMID: 19892704 DOI: 10.1074/jbc.M109.017491] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
300 Sáez-Freire MDM, Blanco-Gómez A, Castillo-Lluva S, Gómez-Vecino A, Galvis-Jiménez JM, Martín-Seisdedos C, Isidoro-García M, Hontecillas-Prieto L, García-Cenador MB, García-Criado FJ, Patino-Alonso MC, Galindo-Villardón P, Mao JH, Prieto C, Castellanos-Martín A, Kaderali L, Pérez-Losada J. The biological age linked to oxidative stress modifies breast cancer aggressiveness. Free Radic Biol Med 2018;120:133-46. [PMID: 29550329 DOI: 10.1016/j.freeradbiomed.2018.03.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
301 Betts DH, Bain NT, Madan P. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 2014;9:e86978. [PMID: 24475205 DOI: 10.1371/journal.pone.0086978] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
302 Miller B, Palygin O, El-Meanawy A, Mattson DL, Geurts AM, Staruschenko A, Sorokin A. p66Shc-mediated hydrogen peroxide production impairs nephrogenesis causing reduction of number of glomeruli. Life Sci 2021;279:119661. [PMID: 34087282 DOI: 10.1016/j.lfs.2021.119661] [Reference Citation Analysis]
303 García-Heredia JM, Díaz-Quintana A, Salzano M, Orzáez M, Pérez-Payá E, Teixeira M, De la Rosa MA, Díaz-Moreno I. Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem 2011;16:1155-68. [PMID: 21706253 DOI: 10.1007/s00775-011-0804-9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 4.4] [Reference Citation Analysis]
304 Kirmani D, Bhat HF, Bashir M, Zargar MA, Khanday FA. P66Shc-rac1 pathway-mediated ROS production and cell migration is downregulated by ascorbic acid. J Recept Signal Transduct Res 2013;33:107-13. [PMID: 23461363 DOI: 10.3109/10799893.2013.770527] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
305 Cervantes Gracia K, Llanas-Cornejo D, Husi H. CVD and Oxidative Stress. J Clin Med 2017;6:E22. [PMID: 28230726 DOI: 10.3390/jcm6020022] [Cited by in Crossref: 120] [Cited by in F6Publishing: 86] [Article Influence: 24.0] [Reference Citation Analysis]
306 Bertini I, Cavallaro G, Rosato A. Cytochrome c :  Occurrence and Functions. Chem Rev 2006;106:90-115. [DOI: 10.1021/cr050241v] [Cited by in Crossref: 192] [Cited by in F6Publishing: 163] [Article Influence: 11.3] [Reference Citation Analysis]
307 Parvez S, Long MJC, Poganik JR, Aye Y. Redox Signaling by Reactive Electrophiles and Oxidants. Chem Rev 2018;118:8798-888. [PMID: 30148624 DOI: 10.1021/acs.chemrev.7b00698] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 24.8] [Reference Citation Analysis]
308 Nicolaije C, Diderich KE, Botter SM, Priemel M, Waarsing JH, Day JS, Brandt RM, Schilling AF, Weinans H, Van der Eerden BC, van der Horst GT, Hoeijmakers JH, van Leeuwen JP. Age-related skeletal dynamics and decrease in bone strength in DNA repair deficient male trichothiodystrophy mice. PLoS One 2012;7:e35246. [PMID: 22506075 DOI: 10.1371/journal.pone.0035246] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
309 Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285-27297. [PMID: 17623659 DOI: 10.1074/jbc.m702810200] [Cited by in Crossref: 435] [Cited by in F6Publishing: 256] [Article Influence: 29.0] [Reference Citation Analysis]
310 Galimov ER, Sidorenko AS, Tereshkova AV, Pletyushkina OY, Chernyak BV, Chumakov PM. The effect of p66shc protein on the resistance of the RKO colon cancer cell line to oxidative stress. Mol Biol 2012;46:126-33. [DOI: 10.1134/s0026893312010062] [Cited by in Crossref: 8] [Article Influence: 0.8] [Reference Citation Analysis]
311 von Montfort C, Matias N, Fernandez A, Fucho R, Conde de la Rosa L, Martinez-Chantar ML, Mato JM, Machida K, Tsukamoto H, Murphy MP. Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. J Hepatol. 2012;57:852-859. [PMID: 22687340 DOI: 10.1016/j.jhep.2012.05.024] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 4.8] [Reference Citation Analysis]
312 Zanetti F, Carpi A, Menabò R, Giorgio M, Schulz R, Valen G, Baysa A, Massimino ML, Sorgato MC, Bertoli A, Di Lisa F. The cellular prion protein counteracts cardiac oxidative stress. Cardiovasc Res 2014;104:93-102. [PMID: 25139744 DOI: 10.1093/cvr/cvu194] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
313 Dallner G, Bentinger M, Hussain S, Sinha I, Yang J, Schwank-Xu C, Zheng X, Swiezewska E, Brismar K, Valladolid-Acebes I, Tekle M. Dehydro-Tocotrienol-β Counteracts Oxidative-Stress-Induced Diabetes Complications in db/db Mice. Antioxidants (Basel) 2021;10:1070. [PMID: 34356303 DOI: 10.3390/antiox10071070] [Reference Citation Analysis]
314 Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal 2018;29:257-74. [PMID: 28891325 DOI: 10.1089/ars.2017.7299] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
315 Xu J, Hao Z, Gou X, Tian W, Jin Y, Cui S, Guo J, Sun Y, Wang Y, Xu Z. Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc Res Tech 2013;76:612-7. [PMID: 23580478 DOI: 10.1002/jemt.22207] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
316 Díaz-moreno I, García-heredia JM, Díaz-quintana A, De la Rosa MA. Cytochrome c signalosome in mitochondria. Eur Biophys J 2011;40:1301-15. [DOI: 10.1007/s00249-011-0774-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
317 Rezaei-Tavirani M, Mansouri V, Rezaei Tavirani M, Rostami-Nejad M, Bashash D, Zamanian Azodi M. Gene and Biochemical Pathway Evaluation of Burns Injury via Protein-Protein Interaction Network Analysis. Galen Med J 2019;8:e1257. [PMID: 34466480 DOI: 10.31661/gmj.v8i0.1257] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
318 D'Oria R, Schipani R, Leonardini A, Natalicchio A, Perrini S, Cignarelli A, Laviola L, Giorgino F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid Med Cell Longev 2020;2020:5732956. [PMID: 32509147 DOI: 10.1155/2020/5732956] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 20.0] [Reference Citation Analysis]
319 Hirschhäuser C, Sydykov A, Wolf A, Esfandiary A, Bornbaum J, Kutsche HS, Boengler K, Sommer N, Schreckenberg R, Schlüter KD, Weissmann N, Schermuly R, Schulz R. Lack of Contribution of p66shc to Pressure Overload-Induced Right Heart Hypertrophy. Int J Mol Sci 2020;21:E9339. [PMID: 33302436 DOI: 10.3390/ijms21249339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
320 Lee MK, Smith SM, Banerjee MM, Li C, Minoo P, Volpe MV, Nielsen HC. The p66Shc adapter protein regulates the morphogenesis and epithelial maturation of fetal mouse lungs. Am J Physiol Lung Cell Mol Physiol 2014;306:L316-25. [PMID: 24375794 DOI: 10.1152/ajplung.00062.2013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
321 Trinei M, Berniakovich I, Beltrami E, Migliaccio E, Fassina A, Pelicci P, Giorgio M. P66Shc signals to age. Aging (Albany NY) 2009;1:503-10. [PMID: 20157533 DOI: 10.18632/aging.100057] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 5.2] [Reference Citation Analysis]
322 Wang D, Wang T, Wang R, Zhang X, Wang L, Xiang Z, Zhuang L, Shen S, Wang H, Gao Q, Wang Y. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J Transl Med 2020;18:84. [PMID: 32066482 DOI: 10.1186/s12967-020-02249-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
323 Petrungaro C, Riemer J. Mechanisms and physiological impact of the dual localization of mitochondrial intermembrane space proteins. Biochem Soc Trans 2014;42:952-8. [PMID: 25109985 DOI: 10.1042/BST20140104] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
324 Szabò I, Zoratti M, Gulbins E. Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Letters 2010;584:2049-56. [DOI: 10.1016/j.febslet.2010.01.038] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
325 Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One 2014;9:e113234. [PMID: 25401329 DOI: 10.1371/journal.pone.0113234] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
326 Ardura JA, Portal-Núñez S, Castelbón-Calvo I, Martínez de Toda I, De la Fuente M, Esbrit P. Parathyroid Hormone-Related Protein Protects Osteoblastic Cells From Oxidative Stress by Activation of MKP1 Phosphatase. J Cell Physiol 2017;232:785-96. [PMID: 27357344 DOI: 10.1002/jcp.25473] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
327 Muntean DM, Sturza A, Dănilă MD, Borza C, Duicu OM, Mornoș C. The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid Med Cell Longev 2016;2016:8254942. [PMID: 27200148 DOI: 10.1155/2016/8254942] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 10.5] [Reference Citation Analysis]
328 Martinovich GG, Martinovich IV, Vcherashniaya AV, Shadyro OI, Cherenkevich SN. Thymoquinone, a biologically active component of Nigella sativa, induces mitochondrial production of reactive oxygen species and programmed death of tumor cells. BIOPHYSICS 2016;61:963-70. [DOI: 10.1134/s0006350916060154] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
329 Yoboue ED, Sitia R, Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis 2018;9:331. [PMID: 29491367 DOI: 10.1038/s41419-017-0033-4] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 21.3] [Reference Citation Analysis]
330 Gupta P, Singh A, Tiwari S, Mishra A, Maurya R, Singh S. Ulmosides A: Flavonoid 6-C-glycosides from Ulmus wallichiana attenuates lipopolysacchride induced oxidative stress, apoptosis and neuronal death. Neurotoxicology 2019;73:100-11. [PMID: 30857974 DOI: 10.1016/j.neuro.2019.02.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
331 Gogvadze V, Orrenius S, Zhivotovsky B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta. 2006;1757:639-647. [PMID: 16678785 DOI: 10.1016/j.bbabio.2006.03.016] [Cited by in Crossref: 283] [Cited by in F6Publishing: 276] [Article Influence: 17.7] [Reference Citation Analysis]
332 Halon M, Kaczor JJ, Ziolkowski W, Flis DJ, Borkowska A, Popowska U, Nyka W, Wozniak M, Antosiewicz J. Changes in skeletal muscle iron metabolism outpace amyotrophic lateral sclerosis onset in transgenic rats bearing the G93A hmSOD1 gene mutation. Free Radic Res 2014;48:1363-70. [PMID: 25175826 DOI: 10.3109/10715762.2014.955484] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
333 Natalicchio A, Tortosa F, Perrini S, Laviola L, Giorgino F. p66Shc, a multifaceted protein linking Erk signalling, glucose metabolism, and oxidative stress. Arch Physiol Biochem 2011;117:116-24. [PMID: 21506908 DOI: 10.3109/13813455.2011.562513] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
334 Wolmarans E, Sippel K, McKenna R, Joubert A. Induction of the intrinsic apoptotic pathway via a new antimitotic agent in an esophageal carcinoma cell line. Cell Biosci 2014;4:68. [PMID: 25937890 DOI: 10.1186/2045-3701-4-68] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
335 Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015;6:372-85. [PMID: 26339717 DOI: 10.1016/j.redox.2015.08.016] [Cited by in Crossref: 181] [Cited by in F6Publishing: 164] [Article Influence: 25.9] [Reference Citation Analysis]
336 Ravasz D, Kacso G, Fodor V, Horvath K, Adam-Vizi V, Chinopoulos C. Reduction of 2-methoxy-1,4-naphtoquinone by mitochondrially-localized Nqo1 yielding NAD+ supports substrate-level phosphorylation during respiratory inhibition. Biochim Biophys Acta Bioenerg 2018;1859:909-24. [PMID: 29746824 DOI: 10.1016/j.bbabio.2018.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
337 Lu B, Poirier C, Gaspar T, Gratzke C, Harrison W, Busija D, Matzuk MM, Andersson KE, Overbeek PA, Bishop CE. A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 2008;78:601-10. [PMID: 18094351 DOI: 10.1095/biolreprod.107.065987] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 4.8] [Reference Citation Analysis]
338 Liu H, Liu Y, Zhang F, Wang H, Zhang G, Zhou B, Zuo Y, Cai S, Bu X, Du J. Identification of potential pathways involved in the induction of cell cycle arrest and apoptosis by a new 4-arylidene curcumin analogue T63 in lung cancer cells: a comparative proteomic analysis. Mol BioSyst 2014;10:1320. [DOI: 10.1039/c3mb70553f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
339 Maiocchi SL, Ku J, Thai T, Chan E, Rees MD, Thomas SR. Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2021;221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
340 Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d'Azzo A. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 2009;36:500-11. [PMID: 19917257 DOI: 10.1016/j.molcel.2009.10.021] [Cited by in Crossref: 194] [Cited by in F6Publishing: 187] [Article Influence: 16.2] [Reference Citation Analysis]
341 Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG, Giorgio M. p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 2008;283:34283-93. [PMID: 18838380 DOI: 10.1074/jbc.M804362200] [Cited by in Crossref: 123] [Cited by in F6Publishing: 63] [Article Influence: 8.8] [Reference Citation Analysis]
342 Arany I, Carter A, Hall S, Fulop T, Dixit M. Coenzyme Q10 protects renal proximal tubule cells against nicotine-induced apoptosis through induction of p66shc-dependent antioxidant responses. Apoptosis 2017;22:220-8. [DOI: 10.1007/s10495-016-1309-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
343 Perrone M, Caroccia N, Genovese I, Missiroli S, Modesti L, Pedriali G, Vezzani B, Vitto VAM, Antenori M, Lebiedzinska-Arciszewska M, Wieckowski MR, Giorgi C, Pinton P. The role of mitochondria-associated membranes in cellular homeostasis and diseases. Int Rev Cell Mol Biol 2020;350:119-96. [PMID: 32138899 DOI: 10.1016/bs.ircmb.2019.11.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
344 Andreyev AY, Kushnareva YE, Murphy AN, Starkov AA. Mitochondrial ROS Metabolism: 10 Years Later. Biochemistry (Mosc) 2015;80:517-31. [PMID: 26071769 DOI: 10.1134/S0006297915050028] [Cited by in Crossref: 100] [Cited by in F6Publishing: 56] [Article Influence: 16.7] [Reference Citation Analysis]
345 Song P, Yang S, Xiao L, Xu X, Tang C, Yang Y, Ma M, Zhu J, Liu F, Sun L. PKCδ promotes high glucose induced renal tubular oxidative damage via regulating activation and translocation of p66Shc. Oxid Med Cell Longev 2014;2014:746531. [PMID: 25371776 DOI: 10.1155/2014/746531] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
346 Koncsos G, Varga ZV, Baranyai T, Ferdinandy P, Schulz R, Giricz Z, Boengler K. Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. Journal of Pharmacological and Toxicological Methods 2018;91:50-8. [DOI: 10.1016/j.vascn.2018.01.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
347 Paneni F, Costantino S, Volpe M, Lüscher TF, Cosentino F. Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis. 2013;230:191-197. [PMID: 24075743 DOI: 10.1016/j.atherosclerosis.2013.07.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 5.3] [Reference Citation Analysis]
348 Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021;73:1218-29. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Reference Citation Analysis]
349 Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL, Zhao Y, Tsai KS, Zhu H, Chuang LM, Boeke JD. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011;146:969-79. [PMID: 21906795 DOI: 10.1016/j.cell.2011.07.044] [Cited by in Crossref: 99] [Cited by in F6Publishing: 98] [Article Influence: 9.0] [Reference Citation Analysis]
350 Ranieri SC, Fusco S, Panieri E, Labate V, Mele M, Tesori V, Ferrara AM, Maulucci G, De Spirito M, Martorana GE, Galeotti T, Pani G. Mammalian life-span determinant p66shcA mediates obesity-induced insulin resistance. Proc Natl Acad Sci U S A 2010;107:13420-5. [PMID: 20624962 DOI: 10.1073/pnas.1008647107] [Cited by in Crossref: 77] [Cited by in F6Publishing: 76] [Article Influence: 6.4] [Reference Citation Analysis]
351 Tuma RS. Making ROS for apoptosis. Journal of Cell Biology 2005;170:513-513. [DOI: 10.1083/jcb1704rr3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
352 Hammerling U. Vitamin A as PKC Co-factor and Regulator of Mitochondrial Energetics. In: Asson-batres MA, Rochette-egly C, editors. The Biochemistry of Retinoid Signaling II. Dordrecht: Springer Netherlands; 2016. pp. 201-30. [DOI: 10.1007/978-94-024-0945-1_8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
353 Antonucci S, Di Lisa F, Kaludercic N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium 2021;94:102344. [PMID: 33556741 DOI: 10.1016/j.ceca.2020.102344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
354 Chen X, Yi L, Song S, Wang L, Liang Q, Wang Y, Wu Y, Gao Q. Puerarin attenuates palmitate-induced mitochondrial dysfunction, impaired mitophagy and inflammation in L6 myotubes. Life Sciences 2018;206:84-92. [DOI: 10.1016/j.lfs.2018.05.041] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
355 Lebiedzinska M, Duszynski J, Rizzuto R, Pinton P, Wieckowski M. Age-related changes in levels of p66Shc and serine 36-phosphorylated p66Shc in organs and mouse tissues. Archives of Biochemistry and Biophysics 2009;486:73-80. [DOI: 10.1016/j.abb.2009.03.007] [Cited by in Crossref: 73] [Cited by in F6Publishing: 71] [Article Influence: 5.6] [Reference Citation Analysis]
356 Manolagas SC, Almeida M. Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 2007;21:2605-2614. [PMID: 17622581 DOI: 10.1210/me.2007-0259] [Cited by in Crossref: 227] [Cited by in F6Publishing: 214] [Article Influence: 15.1] [Reference Citation Analysis]
357 Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 2011;1813:1323-32. [PMID: 20869994 DOI: 10.1016/j.bbamcr.2010.09.010] [Cited by in Crossref: 97] [Cited by in F6Publishing: 98] [Article Influence: 8.1] [Reference Citation Analysis]
358 Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012;24:981-90. [PMID: 22286106 DOI: 10.1016/j.cellsig.2012.01.008] [Cited by in Crossref: 2196] [Cited by in F6Publishing: 1978] [Article Influence: 219.6] [Reference Citation Analysis]
359 Haller M, Khalid S, Kremser L, Fresser F, Furlan T, Hermann M, Guenther J, Drasche A, Leitges M, Giorgio M, Baier G, Lindner H, Troppmair J. Novel Insights into the PKCβ-dependent Regulation of the Oxidoreductase p66Shc. J Biol Chem 2016;291:23557-68. [PMID: 27624939 DOI: 10.1074/jbc.M116.752766] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
360 Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res. 2013;47:894-904. [PMID: 23800214 DOI: 10.3109/10715762.2013.819428] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
361 Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS. Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III. J Biol Chem 2009;284:8470-7. [PMID: 19176523 DOI: 10.1074/jbc.M808981200] [Cited by in Crossref: 85] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
362 Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I. Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010;1797:1251-9. [DOI: 10.1016/j.bbabio.2010.01.018] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 4.4] [Reference Citation Analysis]
363 Clark JS, Faisal A, Baliga R, Nagamine Y, Arany I. Cisplatin induces apoptosis through the ERK-p66shc pathway in renal proximal tubule cells. Cancer Lett 2010;297:165-70. [PMID: 20547441 DOI: 10.1016/j.canlet.2010.05.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
364 Sinenko SA, Shim J, Banerjee U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep 2011;13:83-9. [PMID: 22134547 DOI: 10.1038/embor.2011.223] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 6.9] [Reference Citation Analysis]
365 Finetti F, Pellegrini M, Ulivieri C, Savino MT, Paccagnini E, Ginanneschi C, Lanfrancone L, Pelicci PG, Baldari CT. The proapoptotic and antimitogenic protein p66SHC acts as a negative regulator of lymphocyte activation and autoimmunity. Blood 2008;111:5017-27. [DOI: 10.1182/blood-2007-12-130856] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
366 Du Y, Meng Y, Zhu J, Kang L, Jia X, Guo L, Zhang L, Ye M, Hu L, Zhao X, Gu J, Yang B, Zou H. Quantitative proteomic study of myocardial mitochondria in urea transporter B knockout mice. Proteomics 2014;14:2072-83. [PMID: 25044461 DOI: 10.1002/pmic.201400123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
367 Lenaz G, Strocchi P. Reactive Oxygen Species in the Induction of Toxicity. In: Ballantyne B, Marrs TC, Syversen T, editors. General and Applied Toxicology. Chichester: John Wiley & Sons, Ltd; 2009. [DOI: 10.1002/9780470744307.gat024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
368 Liang Q, Wang XP, Chen TS. Resveratrol protects rabbit articular chondrocyte against sodium nitroprusside-induced apoptosis via scavenging ROS. Apoptosis 2014;19:1354-63. [PMID: 25001340 DOI: 10.1007/s10495-014-1012-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
369 El-osta A. Redox Mediating Epigenetic Changes Confer Metabolic Memories. Circ Res 2012;111:262-4. [DOI: 10.1161/circresaha.112.274936] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
370 Li G, Zhang Y, Fan Z. Cellular Signal Transduction Pathways Involved in Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion. Oxid Med Cell Longev 2021;2021:9985701. [PMID: 34188755 DOI: 10.1155/2021/9985701] [Reference Citation Analysis]
371 Lee O, O’brien P. Modifications of Mitochondrial Function by Toxicants. Comprehensive Toxicology. Elsevier; 2010. pp. 411-45. [DOI: 10.1016/b978-0-08-046884-6.00119-6] [Cited by in Crossref: 6] [Article Influence: 0.5] [Reference Citation Analysis]
372 Lv X, Zhou X, Yan J, Jiang J, Jiang H. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B. Biomedicine & Pharmacotherapy 2017;87:180-7. [DOI: 10.1016/j.biopha.2016.12.074] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
373 Li X, Xu Z, Du W, Zhang Z, Wei Y, Wang H, Zhu Z, Qin L, Wang L, Niu Q, Zhao X, Girard L, Gong Y, Ma Z, Sun B, Yao Z, Minna JD, Terada LS, Liu Z. Aiolos promotes anchorage independence by silencing p66Shc transcription in cancer cells. Cancer Cell 2014;25:575-89. [PMID: 24823637 DOI: 10.1016/j.ccr.2014.03.020] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
374 Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jędrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Węgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int Rev Cell Mol Biol 2018;340:209-344. [PMID: 30072092 DOI: 10.1016/bs.ircmb.2018.05.006] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 16.3] [Reference Citation Analysis]
375 Miller DR, Ingersoll MA, Chatterjee A, Baker B, Shrishrimal S, Kosmacek EA, Zhu Y, Cheng PW, Oberley-Deegan RE, Lin MF. p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance. Free Radic Biol Med 2019;139:24-34. [PMID: 31100478 DOI: 10.1016/j.freeradbiomed.2019.05.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
376 Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol 2018;9:1857. [PMID: 30705633 DOI: 10.3389/fphys.2018.01857] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
377 Osto E, Cosentino F. The Role of Oxidative Stress in Endothelial Dysfunction and Vascular Inflammation. Nitric Oxide. Elsevier; 2010. pp. 705-54. [DOI: 10.1016/b978-0-12-373866-0.00022-8] [Cited by in Crossref: 7] [Article Influence: 0.6] [Reference Citation Analysis]
378 Kim MH, Park SJ, Kim JH, Seong JB, Kim KM, Woo HA, Lee DS. Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 2018;123:27-38. [PMID: 29777756 DOI: 10.1016/j.freeradbiomed.2018.05.061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
379 Ahmed SBM, Prigent SA. Insights into the Shc Family of Adaptor Proteins. J Mol Signal 2017;12:2. [PMID: 30210578 DOI: 10.5334/1750-2187-12-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
380 Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M. Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol. 2009;104:131-139. [PMID: 19242637 DOI: 10.1007/s00395-009-0008-4] [Cited by in Crossref: 118] [Cited by in F6Publishing: 110] [Article Influence: 9.1] [Reference Citation Analysis]
381 Tian XY, Ma S, Tse G, Wong WT, Huang Y. Uncoupling Protein 2 in Cardiovascular Health and Disease. Front Physiol 2018;9:1060. [PMID: 30116205 DOI: 10.3389/fphys.2018.01060] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
382 Zhao L, Liu T, Dou ZJ, Wang MT, Hu ZX, Wang B. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. BMC Nephrol 2021;22:153. [PMID: 33902473 DOI: 10.1186/s12882-021-02362-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
383 Das SK, Yuan YF, Li MQ. An Overview on Current Issues and Challenges of Endothelial Progenitor Cell-Based Neovascularization in Patients with Diabetic Foot Ulcer. Cell Reprogram 2017;19:75-87. [PMID: 28266867 DOI: 10.1089/cell.2016.0050] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
384 Oke SL, Lee K, Papp R, Laviolette SR, Hardy DB. In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver. Int J Mol Sci 2021;22:7502. [PMID: 34299119 DOI: 10.3390/ijms22147502] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
385 Trinei M, Berniakovich I, Pelicci PG, Giorgio M. Mitochondrial DNA copy number is regulated by cellular proliferation: a role for Ras and p66(Shc). Biochim Biophys Acta 2006;1757:624-30. [PMID: 16829231 DOI: 10.1016/j.bbabio.2006.05.029] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.4] [Reference Citation Analysis]
386 Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P. Mitochondria and cardioprotection. Heart Fail Rev. 2007;12:249-260. [PMID: 17516167 DOI: 10.1007/s10741-007-9028-z] [Cited by in Crossref: 114] [Cited by in F6Publishing: 108] [Article Influence: 7.6] [Reference Citation Analysis]
387 Bhat SS, Anand D, Khanday FA. p66Shc as a switch in bringing about contrasting responses in cell growth: implications on cell proliferation and apoptosis. Mol Cancer 2015;14:76. [PMID: 25890053 DOI: 10.1186/s12943-015-0354-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
388 Paneni F, Costantino S, Cosentino F. Molecular mechanisms of vascular dysfunction and cardiovascular biomarkers in type 2 diabetes. Cardiovasc Diagn Ther 2014;4:324-32. [PMID: 25276618 DOI: 10.3978/j.issn.2223-3652.2014.08.02] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
389 Ding YN, Tang X, Chen HZ, Liu DP. Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. Adv Exp Med Biol 2018;1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
390 Moltedo O, Remondelli P, Amodio G. The Mitochondria-Endoplasmic Reticulum Contacts and Their Critical Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 2019;7:172. [PMID: 31497601 DOI: 10.3389/fcell.2019.00172] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 16.3] [Reference Citation Analysis]
391 Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020;1866:165768. [PMID: 32173461 DOI: 10.1016/j.bbadis.2020.165768] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
392 Cañedo EC, Totten S, Ahn R, Savage P, MacNeil D, Hudson J, Autexier C, Deblois G, Park M, Witcher M, Ursini-Siegel J. p66ShcA potentiates the cytotoxic response of triple-negative breast cancers to PARP inhibitors. JCI Insight 2021;6:138382. [PMID: 33470989 DOI: 10.1172/jci.insight.138382] [Reference Citation Analysis]
393 He M, Dong C, Konishi T, Tu W, Liu W, Shiomi N, Kobayashi A, Uchihori Y, Furusawa Y, Hei TK, Dang B, Shao C. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation. Life Sci Space Res (Amst) 2014;1:53-9. [PMID: 26432589 DOI: 10.1016/j.lssr.2014.02.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
394 Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallée JP, Mach F, Lüscher TF. Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 2015;36:516-26a. [PMID: 25336219 DOI: 10.1093/eurheartj/ehu400] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
395 Wan D, Lai SH, Zeng CC, Zhang C, Tang B, Liu YJ. Ruthenium(II) polypyridyl complexes: Synthesis, characterization and anticancer activity studies on BEL-7402 cells. J Inorg Biochem 2017;173:1-11. [PMID: 28472754 DOI: 10.1016/j.jinorgbio.2017.04.026] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
396 Galaris D, Skiada V, Barbouti A. Redox signaling and cancer: The role of “labile” iron. Cancer Letters 2008;266:21-9. [DOI: 10.1016/j.canlet.2008.02.038] [Cited by in Crossref: 195] [Cited by in F6Publishing: 173] [Article Influence: 13.9] [Reference Citation Analysis]
397 Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013;61:473-501. [PMID: 23583330 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Cited by in Crossref: 129] [Cited by in F6Publishing: 123] [Article Influence: 14.3] [Reference Citation Analysis]
398 Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, Zhang R, Cai H, Liu DP, Liang CC. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 2011;109:639-48. [PMID: 21778425 DOI: 10.1161/CIRCRESAHA.111.243592] [Cited by in Crossref: 187] [Cited by in F6Publishing: 101] [Article Influence: 17.0] [Reference Citation Analysis]
399 Kajstura J, Lecapitaine N, Loredo M, Giorgio M, Mitchell TS, Valentini S, Rotatori F, Pelicci PG. Cardiac Stem Cells and Diabetic Cardiomyopathy. In: Leri A, Anversa P, Frishman WH, editors. Cardiovascular Regeneration and Stem Cell Therapy. Oxford: Blackwell Publishing Ltd; 2007. pp. 161-9. [DOI: 10.1002/9780470988909.ch17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
400 von Zglinicki T, Wan T, Miwa S. Senescence in Post-Mitotic Cells: A Driver of Aging? Antioxid Redox Signal 2021;34:308-23. [PMID: 32164429 DOI: 10.1089/ars.2020.8048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
401 Di Lisa F, Semenzato M, Carpi A, Menazza S, Kaludercic N, Menabò R, Canton M. Mitochondrial Dysfunction in Cell Injury and Cardiotoxicity. In: Minotti G, editor. Cardiotoxicity of Non-Cardiovascular Drugs. Chichester: John Wiley & Sons, Ltd; 2010. pp. 1-23. [DOI: 10.1002/9780470660379.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
402 Lenaz G, Genova ML. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010;12:961-1008. [PMID: 19739941 DOI: 10.1089/ars.2009.2704] [Cited by in Crossref: 166] [Cited by in F6Publishing: 159] [Article Influence: 13.8] [Reference Citation Analysis]
403 Pani G. P66SHC and ageing: ROS and TOR? Aging (Albany NY) 2010;2:514-8. [PMID: 20689155 DOI: 10.18632/aging.100182] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.1] [Reference Citation Analysis]
404 Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS, Dmitriev AA. ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. Oxid Med Cell Longev 2019;2019:6175804. [PMID: 31467634 DOI: 10.1155/2019/6175804] [Cited by in Crossref: 132] [Cited by in F6Publishing: 122] [Article Influence: 44.0] [Reference Citation Analysis]
405 Marí M, Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernández-Checa JC. Redox control of liver function in health and disease. Antioxid Redox Signal. 2010;12:1295-1331. [PMID: 19803748 DOI: 10.1089/ars.2009.2634] [Cited by in Crossref: 114] [Cited by in F6Publishing: 94] [Article Influence: 9.5] [Reference Citation Analysis]
406 Giorgio M, Stendardo M, Migliaccio E, Pelicci PG. P66SHC deletion improves fertility and progeric phenotype of late-generation TERC-deficient mice but not their short lifespan. Aging Cell 2016;15:446-54. [PMID: 26968134 DOI: 10.1111/acel.12448] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
407 Keune W, Jones DR, Divecha N. PtdIns5P and Pin1 in oxidative stress signaling. Advances in Biological Regulation 2013;53:179-89. [DOI: 10.1016/j.jbior.2013.02.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
408 Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015;95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Cited by in Crossref: 340] [Cited by in F6Publishing: 320] [Article Influence: 48.6] [Reference Citation Analysis]
409 Hermann M, Kuznetsov A, Maglione M, Smigelskaite J, Margreiter R, Troppmair J. Cytoplasmic signaling in the control of mitochondrial uproar? Cell Commun Signal 2008;6:4. [PMID: 18713454 DOI: 10.1186/1478-811X-6-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
410 Kaludercic N, Giorgio V. The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase. Oxid Med Cell Longev 2016;2016:3869610. [PMID: 27034734 DOI: 10.1155/2016/3869610] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
411 Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012;52:36-43. [PMID: 22480931 DOI: 10.1016/j.ceca.2012.02.008] [Cited by in Crossref: 236] [Cited by in F6Publishing: 232] [Article Influence: 23.6] [Reference Citation Analysis]
412 Li X, Wu Q, Sui Y, Li S, Xie B, Sun Z. Dietary supplementation of A-type procyanidins from litchi pericarp improves glucose homeostasis by modulating mTOR signaling and oxidative stress in diabetic ICR mice. Journal of Functional Foods 2018;44:155-65. [DOI: 10.1016/j.jff.2017.12.024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
413 Berry A, Capone F, Giorgio M, Pelicci PG, de Kloet E, Alleva E, Minghetti L, Cirulli F. Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Experimental Gerontology 2007;42:37-45. [DOI: 10.1016/j.exger.2006.05.018] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 3.9] [Reference Citation Analysis]
414 Liu H, Fang Y, Zou C. Pomelo polysaccharide extract inhibits oxidative stress, inflammation, and mitochondrial apoptosis of Epinephelus coioides. Aquaculture 2021;544:737040. [DOI: 10.1016/j.aquaculture.2021.737040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
415 Su K, Bourdette D, Forte M. Genetic inactivation of mitochondria-targeted redox enzyme p66ShcA preserves neuronal viability and mitochondrial integrity in response to oxidative challenges. Front Physiol 2012;3:285. [PMID: 22833725 DOI: 10.3389/fphys.2012.00285] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
416 Zhao MH, Hu J, Li S, Wu Q, Lu P. P66Shc expression in diabetic rat retina. BMC Ophthalmol 2018;18:58. [PMID: 29482510 DOI: 10.1186/s12886-018-0724-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
417 Feng D, Wang Z, Zhao Y, Li Y, Liu D, Chen Z, Ning S, Hu Y, Yao J, Tian X. circ-PRKCB acts as a ceRNA to regulate p66Shc-mediated oxidative stress in intestinal ischemia/reperfusion. Theranostics 2020;10:10680-96. [PMID: 32929374 DOI: 10.7150/thno.44250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
418 Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC. Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta. 2013;1830:3317-3328. [PMID: 23123815 DOI: 10.1016/j.bbagen.2012.10.018] [Cited by in Crossref: 116] [Cited by in F6Publishing: 111] [Article Influence: 11.6] [Reference Citation Analysis]
419 Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood). 2013;238:450-460. [PMID: 23856898 DOI: 10.1177/1535370213493069] [Cited by in Crossref: 189] [Cited by in F6Publishing: 173] [Article Influence: 21.0] [Reference Citation Analysis]
420 Dudek J, Kutschka I, Maack C. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxid Redox Signal 2021;35:163-81. [PMID: 33121253 DOI: 10.1089/ars.2020.8201] [Reference Citation Analysis]
421 Pronsato L, Milanesi L. Effect of testosterone on the regulation of p53 and p66Shc during oxidative stress damage in C2C12 cells. Steroids 2016;106:41-54. [PMID: 26703444 DOI: 10.1016/j.steroids.2015.12.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
422 Almeida M. Unraveling the role of FoxOs in bone--insights from mouse models. Bone 2011;49:319-27. [PMID: 21664311 DOI: 10.1016/j.bone.2011.05.023] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 5.0] [Reference Citation Analysis]
423 Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2014;171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
424 Jezek P, Plecitá-Hlavatá L. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. Int J Biochem Cell Biol 2009;41:1790-804. [PMID: 19703650 DOI: 10.1016/j.biocel.2009.02.014] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 5.1] [Reference Citation Analysis]
425 Li X, Lin Z, Wang H, Zhao D, Xu X, Wei Y, Li X, Li X, Xiang Y, Terada LS, Liu Z. Heritable, Allele-Specific Chromosomal Looping between Tandem Promoters Specifies Promoter Usage of SHC1. Mol Cell Biol 2018;38:e00658-17. [PMID: 29440311 DOI: 10.1128/MCB.00658-17] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
426 Faulkner A, Tamiato A, Cathery W, Rampin A, Caravaggi CM, Jover E, Allen S, Mellor H, Hauton D, Heather LC, Spinetti G, Madeddu P. Dimethyl-2-oxoglutarate improves redox balance and mitochondrial function in muscle pericytes of individuals with diabetes mellitus. Diabetologia 2020;63:2205-17. [PMID: 32728894 DOI: 10.1007/s00125-020-05230-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
427 Kusch A, Hoff U, Bubalo G, Zhu Y, Fechner M, Schmidt-ullrich R, Marko L, Müller DN, Schmidt-ott KM, Gürgen D, Blum M, Schunck W, Dragun D. Novel signalling mechanisms and targets in renal ischaemia and reperfusion injury. Acta Physiol 2013;208:25-40. [DOI: 10.1111/apha.12089] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
428 Miller BS, Blumenthal SR, Shalygin A, Wright KD, Staruschenko A, Imig JD, Sorokin A. Inactivation of p66Shc Decreases Afferent Arteriolar KATP Channel Activity and Decreases Renal Damage in Diabetic Dahl SS Rats. Diabetes 2018;67:2206-12. [PMID: 30131395 DOI: 10.2337/db18-0308] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
429 Marín R, Chiarello DI, Abad C, Rojas D, Toledo F, Sobrevia L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020;1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
430 Abe N, Watanabe J, Tsunoda S, Kuramoto H, Okayasu I. Significance of nuclear p-Akt in endometrial carcinogenesis: rapid translocation of p-Akt into the nucleus by estrogen, possibly resulting in inhibition of apoptosis. Int J Gynecol Cancer 2011;21:194-202. [PMID: 21270601 DOI: 10.1097/IGC.0b013e318207964c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
431 Bock F, Shahzad K, Wang H, Stoyanov S, Wolter J, Dong W, Pelicci PG, Kashif M, Ranjan S, Schmidt S, Ritzel R, Schwenger V, Reymann KG, Esmon CT, Madhusudhan T, Nawroth PP, Isermann B. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc Natl Acad Sci U S A 2013;110:648-53. [PMID: 23267072 DOI: 10.1073/pnas.1218667110] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 9.0] [Reference Citation Analysis]
432 Costantino S, Paneni F, Mitchell K, Mohammed SA, Hussain S, Gkolfos C, Berrino L, Volpe M, Schwarzwald C, Lüscher TF, Cosentino F. Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66Shc. Int J Cardiol 2018;268:179-86. [PMID: 30047409 DOI: 10.1016/j.ijcard.2018.04.082] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
433 Infante-Menéndez J, López-Pastor AR, González-López P, Gómez-Hernández A, Escribano O. The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants (Basel) 2020;9:E607. [PMID: 32664383 DOI: 10.3390/antiox9070607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
434 Turco MY, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, Simeone A, Constam D, Faretta M, Lanfrancone L. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells 2012;30:2423-36. [PMID: 22948967 DOI: 10.1002/stem.1217] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
435 Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol. 2010;5:47-62. [PMID: 19957967 DOI: 10.1021/cb900258z] [Cited by in Crossref: 365] [Cited by in F6Publishing: 340] [Article Influence: 30.4] [Reference Citation Analysis]
436 Zhang M, Xie Y, Yan R, Shan H, Tang J, Cai Y, Yin J, Chen M, Zhang J, Yang X, Zhang Q, Li Y. Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sciences 2016;164:1-8. [DOI: 10.1016/j.lfs.2016.09.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
437 Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial Metabolism in Aging Heart. Circ Res 2016;118:1593-611. [PMID: 27174952 DOI: 10.1161/CIRCRESAHA.116.307505] [Cited by in Crossref: 141] [Cited by in F6Publishing: 86] [Article Influence: 28.2] [Reference Citation Analysis]
438 Almeida M, Martin-Millan M, Ambrogini E, Bradsher R 3rd, Han L, Chen XD, Roberson PK, Weinstein RS, O'Brien CA, Jilka RL, Manolagas SC. Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha. J Bone Miner Res 2010;25:769-81. [PMID: 19821774 DOI: 10.1359/jbmr.091017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 51] [Article Influence: 1.3] [Reference Citation Analysis]
439 Kozlov AV, Bahrami S, Calzia E, Dungel P, Gille L, Kuznetsov AV, Troppmair J. Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure? Ann Intensive Care 2011;1:41. [PMID: 21942988 DOI: 10.1186/2110-5820-1-41] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
440 Kong H, Chandel NS. Regulation of redox balance in cancer and T cells. J Biol Chem 2018;293:7499-507. [PMID: 29282291 DOI: 10.1074/jbc.TM117.000257] [Cited by in Crossref: 62] [Cited by in F6Publishing: 41] [Article Influence: 12.4] [Reference Citation Analysis]
441 Patrussi L, Capitani N, Baldari CT. P66Shc: A Pleiotropic Regulator of B Cell Trafficking and a Gatekeeper in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020;12:E1006. [PMID: 32325830 DOI: 10.3390/cancers12041006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
442 Cheng W, Zhang R, Yao C, He L, Jia K, Yang B, Du P, Zhuang H, Chen J, Liu Z, Ding X, Hua Z. A critical role of Fas-associated protein with death domain phosphorylation in intracellular reactive oxygen species homeostasis and aging. Antioxid Redox Signal 2014;21:33-45. [PMID: 24295239 DOI: 10.1089/ars.2013.5390] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
443 Gong J, Hoyos B, Acin-Perez R, Vinogradov V, Shabrova E, Zhao F, Leitges M, Fischman D, Manfredi G, Hammerling U. Two protein kinase C isoforms, δ and ε, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex. FASEB J 2012;26:3537-49. [PMID: 22573912 DOI: 10.1096/fj.11-197376] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
444 Lee I, Hüttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim Biophys Acta 2014;1842:1579-86. [PMID: 24905734 DOI: 10.1016/j.bbadis.2014.05.031] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 9.3] [Reference Citation Analysis]
445 Soubannier V, McBride HM. Positioning mitochondrial plasticity within cellular signaling cascades. Biochim Biophys Acta 2009;1793:154-70. [PMID: 18694785 DOI: 10.1016/j.bbamcr.2008.07.008] [Cited by in F6Publishing: 102] [Reference Citation Analysis]
446 Ashrafizadeh M, Ahmadi Z, Samarghandian S, Mohammadinejad R, Yaribeygi H, Sathyapalan T, Sahebkar A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci 2020;244:117329. [PMID: 31954747 DOI: 10.1016/j.lfs.2020.117329] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
447 Minami Y, Sonoda N, Hayashida E, Makimura H, Ide M, Ikeda N, Ohgidani M, Kato TA, Seki Y, Maeda Y, Kanba S, Takayanagi R, Ogawa Y, Inoguchi T. p66Shc Signaling Mediates Diabetes-Related Cognitive Decline. Sci Rep 2018;8:3213. [PMID: 29453337 DOI: 10.1038/s41598-018-21426-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
448 Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. Mol BioSyst 2015;11:678-97. [DOI: 10.1039/c4mb00571f] [Cited by in Crossref: 56] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
449 Thompson J, Maceyka M, Chen Q. Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart. Mech Ageing Dev 2020;192:111380. [PMID: 33045249 DOI: 10.1016/j.mad.2020.111380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
450 Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig MJ, Peris-Frau P, Martín-Maestro A, Ortiz JA, Del Rocío Fernández-Santos M, Garde JJ, Gutiérrez-Adán A, Soler AJ. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Sci 2020;213:106279. [PMID: 31987329 DOI: 10.1016/j.anireprosci.2020.106279] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
451 Dell'agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M. Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007;16:431-44. [PMID: 17210671 DOI: 10.1093/hmg/ddl477] [Cited by in Crossref: 198] [Cited by in F6Publishing: 202] [Article Influence: 13.2] [Reference Citation Analysis]
452 Berndt N, Bulik S, Wallach I, Wünsch T, König M, Stockmann M, Meierhofer D, Holzhütter HG. HEPATOKIN1 is a biochemistry-based model of liver metabolism for applications in medicine and pharmacology. Nat Commun 2018;9:2386. [PMID: 29921957 DOI: 10.1038/s41467-018-04720-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
453 Ma W, Li J, Hu J, Cheng Y, Wang J, Zhang X, Xu M. miR214-regulated p53-NOX4/p66shc pathway plays a crucial role in the protective effect of Ginkgolide B against cisplatin-induced cytotoxicity in HEI-OC1 cells. Chemico-Biological Interactions 2016;245:72-81. [DOI: 10.1016/j.cbi.2016.01.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
454 Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 2015;460:72-81. [PMID: 25998735 DOI: 10.1016/j.bbrc.2015.01.137] [Cited by in Crossref: 251] [Cited by in F6Publishing: 232] [Article Influence: 35.9] [Reference Citation Analysis]
455 Pinton P, Rizzuto R. p66Shc, oxidative stress and aging: importing a lifespan determinant into mitochondria. Cell Cycle 2008;7:304-8. [PMID: 18235239 DOI: 10.4161/cc.7.3.5360] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 4.3] [Reference Citation Analysis]
456 Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW 2nd, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016;118:1960-91. [PMID: 27126807 DOI: 10.1161/RES.0000000000000104] [Cited by in Crossref: 179] [Cited by in F6Publishing: 112] [Article Influence: 29.8] [Reference Citation Analysis]
457 Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 2014;21:2531-42. [PMID: 24766279 DOI: 10.1089/ars.2013.5604] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 9.8] [Reference Citation Analysis]
458 Haines E, Saucier C, Claing A. The adaptor proteins p66Shc and Grb2 regulate the activation of the GTPases ARF1 and ARF6 in invasive breast cancer cells. J Biol Chem 2014;289:5687-703. [PMID: 24407288 DOI: 10.1074/jbc.M113.516047] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
459 Huang TT, Sun WJ, Liu HY, Ma HL, Cui BX. p66Shc-mediated oxidative stress is involved in gestational diabetes mellitus. World J Diabetes 2021; 12(11): 1894-1907 [PMID: 34888014 DOI: 10.4239/wjd.v12.i11.1894] [Reference Citation Analysis]
460 Carlomosti F, D'agostino M, Beji S, Torcinaro A, Rizzi R, Zaccagnini G, Maimone B, Di Stefano V, De Santa F, Cordisco S, Antonini A, Ciarapica R, Dellambra E, Martelli F, Avitabile D, Capogrossi MC, Magenta A. Oxidative Stress-Induced miR-200c Disrupts the Regulatory Loop Among SIRT1, FOXO1, and eNOS. Antioxidants & Redox Signaling 2017;27:328-44. [DOI: 10.1089/ars.2016.6643] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 13.8] [Reference Citation Analysis]
461 Vurusaner B, Poli G, Basaga H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 2012;52:7-18. [PMID: 22019631 DOI: 10.1016/j.freeradbiomed.2011.09.035] [Cited by in Crossref: 188] [Cited by in F6Publishing: 174] [Article Influence: 17.1] [Reference Citation Analysis]
462 Kim YR, Kim CS, Naqvi A, Kumar A, Kumar S, Hoffman TA, Irani K. Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol 2012;303:H189-96. [PMID: 22661506 DOI: 10.1152/ajpheart.01218.2011] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
463 Jung S, Kwon J, Kim MK, Song M, Kim B, Lee ZH, Kim H. Mitofusin 2, a mitochondria-ER tethering protein, facilitates osteoclastogenesis by regulating the calcium-calcineurin-NFATc1 axis. Biochemical and Biophysical Research Communications 2019;516:202-8. [DOI: 10.1016/j.bbrc.2019.06.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
464 Morgan AH, Hammond VJ, Sakoh-Nakatogawa M, Ohsumi Y, Thomas CP, Blanchet F, Piguet V, Kiselyov K, O'Donnell VB. A novel role for 12/15-lipoxygenase in regulating autophagy. Redox Biol 2015;4:40-7. [PMID: 25498966 DOI: 10.1016/j.redox.2014.11.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
465 Fukai T, Ushio-Fukai M. Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells 2020;9:E1849. [PMID: 32781794 DOI: 10.3390/cells9081849] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
466 Liu ZR, Chen SQ, Zou YW, Wu XY, Li HY, Wang XQ, Shi Y, Niu HX. Hypochlorite modified albumins promote cell death in the tubule interstitium in rats via mitochondrial damage in obstructive nephropathy and the protective effects of antioxidant peptides. Free Radic Res 2018;52:616-28. [PMID: 29781318 DOI: 10.1080/10715762.2018.1457789] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
467 Paardekooper LM, van Vroonhoven E, Ter Beest M, van den Bogaart G. Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles. Int J Mol Sci 2019;20:E4147. [PMID: 31450682 DOI: 10.3390/ijms20174147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
468 Bouchmaa N, Ben Mrid R, Boukharsa Y, Nhiri M, Ait Mouse H, Taoufik J, Ansar M, Zyad A. Cytotoxicity of new pyridazin-3(2 H )-one derivatives orchestrating oxidative stress in human triple-negative breast cancer (MDA-MB-468). Arch Pharm Chem Life Sci 2018;351:1800128. [DOI: 10.1002/ardp.201800128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
469 Fang B. Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014;6:494-525. [PMID: 24662938 DOI: 10.3390/cancers6010494] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
470 Hüttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, Varughese A, Lu G, Liu J, Ramzan R, Vogt S, Grossman LI, Doan JW, Marcus K, Lee I. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta 2012;1817:598-609. [PMID: 21771582 DOI: 10.1016/j.bbabio.2011.07.001] [Cited by in Crossref: 154] [Cited by in F6Publishing: 143] [Article Influence: 14.0] [Reference Citation Analysis]
471 Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015;11:462-74. [PMID: 25900210 DOI: 10.1038/nrrheum.2015.48] [Cited by in Crossref: 113] [Cited by in F6Publishing: 102] [Article Influence: 16.1] [Reference Citation Analysis]
472 Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA. 2007;104:5217-5222. [PMID: 17360381 DOI: 10.1073/pnas.0609656104] [Cited by in Crossref: 184] [Cited by in F6Publishing: 178] [Article Influence: 12.3] [Reference Citation Analysis]
473 Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, Zhu HB. Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil Steril 2011;95:2786-8. [PMID: 21641592 DOI: 10.1016/j.fertnstert.2011.04.089] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
474 Furlan T, Khalid S, Nguyen AV, Günther J, Troppmair J. The oxidoreductase p66Shc acts as tumor suppressor in BRAFV600E-transformed cells. Mol Oncol 2018;12:869-82. [PMID: 29624862 DOI: 10.1002/1878-0261.12199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
475 Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133:230-255. [PMID: 22138603 DOI: 10.1016/j.pharmthera.2011.11.004] [Cited by in Crossref: 207] [Cited by in F6Publishing: 198] [Article Influence: 18.8] [Reference Citation Analysis]
476 Shi Y, Lüscher TF, Camici GG. Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS One 2014;9:e107787. [PMID: 25247687 DOI: 10.1371/journal.pone.0107787] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
477 Geisel J, Schorr H, Heine GH, Bodis M, Hübner U, Knapp JP, Herrmann W. Decreased p66Shc promoter methylation in patients with end-stage renal disease. Clin Chem Lab Med 2007;45:1764-70. [PMID: 18067454 DOI: 10.1515/CCLM.2007.357] [Cited by in Crossref: 31] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
478 Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, Calderone R, Sui B, Tian X, Meng X. Similarities and Differences: A Comparative Review of the Molecular Mechanisms and Effectors of NAFLD and AFLD. Front Physiol 2021;12:710285. [PMID: 34393826 DOI: 10.3389/fphys.2021.710285] [Reference Citation Analysis]
479 Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and Autophagy in the Heart. Circ Res 2016;118:1563-76. [PMID: 27174950 DOI: 10.1161/CIRCRESAHA.116.307474] [Cited by in Crossref: 193] [Cited by in F6Publishing: 120] [Article Influence: 38.6] [Reference Citation Analysis]
480 Simoes ICM, Janikiewicz J, Bauer J, Karkucinska-Wieckowska A, Kalinowski P, Dobrzyń A, Wolski A, Pronicki M, Zieniewicz K, Dobrzyń P, Krawczyk M, Zischka H, Wieckowski MR, Potes Y. Fat and Sugar-A Dangerous Duet. A Comparative Review on Metabolic Remodeling in Rodent Models of Nonalcoholic Fatty Liver Disease. Nutrients 2019;11:E2871. [PMID: 31771244 DOI: 10.3390/nu11122871] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
481 Yuan Y, Chen Y, Zhang P, Huang S, Zhu C, Ding G, Liu B, Yang T, Zhang A. Mitochondrial dysfunction accounts for aldosterone-induced epithelial-to-mesenchymal transition of renal proximal tubular epithelial cells. Free Radical Biology and Medicine 2012;53:30-43. [DOI: 10.1016/j.freeradbiomed.2012.03.015] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 8.2] [Reference Citation Analysis]
482 Bézaire V, Seifert EL, Harper ME. Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J. 2007;21:312-324. [PMID: 17202247 DOI: 10.1096/fj.06-6966rev] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 6.2] [Reference Citation Analysis]
483 Giallongo S, Rehakova D, Raffaele M, Lo Re O, Koutna I, Vinciguerra M. Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxidants & Redox Signaling 2021;34:335-49. [DOI: 10.1089/ars.2019.7983] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
484 Biasutto L, Szabo' I, Zoratti M. Mitochondrial effects of plant-made compounds. Antioxid Redox Signal 2011;15:3039-59. [PMID: 21554022 DOI: 10.1089/ars.2011.4021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
485 Sanz A, Stefanatos R, McIlroy G. Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. J Bioenerg Biomembr 2010;42:135-42. [PMID: 20300811 DOI: 10.1007/s10863-010-9281-z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
486 Koyappayil A, Berchmans S, Lee MH. Dual enzyme-like properties of silver nanoparticles decorated Ag2WO4 nanorods and its application for H2O2 and glucose sensing. Colloids Surf B Biointerfaces 2020;189:110840. [PMID: 32035289 DOI: 10.1016/j.colsurfb.2020.110840] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
487 Wang G, Jin W, Qasim AM, Gao A, Peng X, Li W, Feng H, Chu PK. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials 2017;124:25-34. [PMID: 28182874 DOI: 10.1016/j.biomaterials.2017.01.028] [Cited by in Crossref: 118] [Cited by in F6Publishing: 107] [Article Influence: 23.6] [Reference Citation Analysis]
488 Perrini S, Tortosa F, Natalicchio A, Pacelli C, Cignarelli A, Palmieri VO, Caccioppoli C, De Stefano F, Porro S, Leonardini A, Ficarella R, De Fazio M, Cocco T, Puglisi F, Laviola L, Palasciano G, Giorgino F. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells. Am J Physiol Gastrointest Liver Physiol 2015;309:G826-40. [PMID: 26336926 DOI: 10.1152/ajpgi.00041.2015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
489 Veeramani S, Yuan TC, Lin FF, Lin MF. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene 2008;27:5057-68. [PMID: 18504439 DOI: 10.1038/onc.2008.143] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 4.1] [Reference Citation Analysis]
490 Choi SJ, Piao S, Nagar H, Jung SB, Kim S, Lee I, Kim SM, Song HJ, Shin N, Kim DW, Irani K, Jeon BH, Park JW, Kim CS. Isocitrate dehydrogenase 2 deficiency induces endothelial inflammation via p66sh-mediated mitochondrial oxidative stress. Biochem Biophys Res Commun 2018;503:1805-11. [PMID: 30072100 DOI: 10.1016/j.bbrc.2018.07.117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
491 Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev. 2016;2016:1245049. [PMID: 27478531 DOI: 10.1155/2016/1245049] [Cited by in Crossref: 409] [Cited by in F6Publishing: 414] [Article Influence: 68.2] [Reference Citation Analysis]
492 Ma W, Zhang J, Wang Y, Li G, Wu X, Yao Y, Cheng Y, Huang B, Jin R. Extracellular polymeric substances excreted by anammox sludge act as a barrier for As(III) invasion: Binding property and interaction mechanism. Chemosphere 2021;278:130414. [DOI: 10.1016/j.chemosphere.2021.130414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
493 Paneni F, Costantino S, Cosentino F. Molecular pathways of arterial aging. Clin Sci (Lond) 2015;128:69-79. [PMID: 25236971 DOI: 10.1042/CS20140302] [Cited by in Crossref: 34] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
494 Graier WF, Malli R, Kostner GM. Mitochondrial protein phosphorylation: instigator or target of lipotoxicity? Trends Endocrinol Metab 2009;20:186-93. [PMID: 19356948 DOI: 10.1016/j.tem.2009.01.004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
495 Yi H, Xu D, Wu X, Xu F, Lin L, Zhou H. Isosteviol Protects Free Fatty Acid- and High Fat Diet-Induced Hepatic Injury via Modulating PKC-β/p66Shc/ROS and Endoplasmic Reticulum Stress Pathways. Antioxid Redox Signal 2019;30:1949-68. [PMID: 30484323 DOI: 10.1089/ars.2018.7521] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
496 Al Sabaani N. Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p66Shc. Cutan Ocul Toxicol 2021;40:175-86. [PMID: 34275397 DOI: 10.1080/15569527.2020.1844727] [Reference Citation Analysis]
497 Boengler K, Lochnit G, Schulz R. Mitochondria "THE" target of myocardial conditioning. Am J Physiol Heart Circ Physiol 2018;315:H1215-31. [PMID: 30004243 DOI: 10.1152/ajpheart.00124.2018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
498 Volpe M, Paneni F. Shooting vascular oxidative stress: new hopes for stroke patients? Eur Heart J 2015;36:1573-5. [PMID: 25948736 DOI: 10.1093/eurheartj/ehv175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
499 Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, Cosma C, Lapolla A, Pengo V, Stendardo M, Agostini C, Pelicci PG, Giorgio M, Avogaro A. The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 2010;59:2306-14. [PMID: 20566667 DOI: 10.2337/db09-1727] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 5.1] [Reference Citation Analysis]
500 Lizama-Manibusan B, McLaughlin B. Redox modification of proteins as essential mediators of CNS autophagy and mitophagy. FEBS Lett 2013;587:2291-8. [PMID: 23773928 DOI: 10.1016/j.febslet.2013.06.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
501 Owusu-Ansah E, Yavari A, Mandal S, Banerjee U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 2008;40:356-61. [PMID: 18246068 DOI: 10.1038/ng.2007.50] [Cited by in Crossref: 250] [Cited by in F6Publishing: 246] [Article Influence: 17.9] [Reference Citation Analysis]
502 Fuster JJ, Díez J, Andrés V. Telomere dysfunction in hypertension. J Hypertens 2007;25:2185-92. [PMID: 17921808 DOI: 10.1097/HJH.0b013e3282ef6196] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
503 Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2018;109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
504 Denning MF. Specifying protein kinase C functions in melanoma. Pigment Cell Melanoma Res 2012;25:466-76. [PMID: 22578192 DOI: 10.1111/j.1755-148X.2012.01015.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
505 Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12(7): 562-584 [PMID: 32843914 DOI: 10.4252/wjsc.v12.i7.562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
506 Martin-Padura I, de Nigris F, Migliaccio E, Mansueto G, Minardi S, Rienzo M, Lerman LO, Stendardo M, Giorgio M, De Rosa G, Pelicci PG, Napoli C. p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 2008;15:276-87. [PMID: 19065319 DOI: 10.1080/10623320802487791] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 3.1] [Reference Citation Analysis]
507 Varga ZV, Pacher P. Cardiotoxicity of Drugs. In: Will Y, Dykens JA, editors. Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants. Hoboken: John Wiley & Sons, Inc.; 2018. pp. 93-110. [DOI: 10.1002/9781119329725.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
508 Heusch G. Mitochondria at the heart of cardiovascular protection: p66shc—friend or foe? European Heart Journal 2015;36:469-71. [DOI: 10.1093/eurheartj/ehu409] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
509 Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 2018;592:728-42. [PMID: 29281123 DOI: 10.1002/1873-3468.12956] [Cited by in Crossref: 129] [Cited by in F6Publishing: 117] [Article Influence: 32.3] [Reference Citation Analysis]
510 Beltrami E, Ruggiero A, Busuttil R, Migliaccio E, Pelicci PG, Vijg J, Giorgio M. Deletion of p66Shc in mice increases the frequency of size-change mutations in the lacZ transgene. Aging Cell 2013;12:177-83. [PMID: 23237310 DOI: 10.1111/acel.12036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
511 Siauciunaite R, Foulkes NS, Calabrò V, Vallone D. Evolution Shapes the Gene Expression Response to Oxidative Stress. Int J Mol Sci 2019;20:E3040. [PMID: 31234431 DOI: 10.3390/ijms20123040] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
512 Zhang Y, Wang C, Lu J, Jin Y, Xu C, Meng Q, Liu Q, Dong D, Ma X, Liu K, Sun H. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging (Albany NY) 2020;12:2049-69. [PMID: 32023549 DOI: 10.18632/aging.102721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
513 Wills MK, Jones N. Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Biochem J 2012;447:1-16. [PMID: 22970934 DOI: 10.1042/BJ20120769] [Cited by in Crossref: 62] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
514 Di Stefano V, Cencioni C, Zaccagnini G, Magenta A, Capogrossi MC, Martelli F. p66ShcA modulates oxidative stress and survival of endothelial progenitor cells in response to high glucose. Cardiovasc Res. 2009;82:421-429. [PMID: 19261622 DOI: 10.1093/cvr/cvp082] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.9] [Reference Citation Analysis]
515 Gupta K, Madan E, Sayyid M, Arias-Pulido H, Moreno E, Kuppusamy P, Gogna R. Oxygen regulates molecular mechanisms of cancer progression and metastasis. Cancer Metastasis Rev 2014;33:183-215. [PMID: 24338006 DOI: 10.1007/s10555-013-9464-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
516 Hosseini M, Shaki F, Ghazi-khansari M, Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 2013;5:152. [DOI: 10.1039/c2mt20198d] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 8.0] [Reference Citation Analysis]
517 Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019;9:E735. [PMID: 31766246 DOI: 10.3390/biom9110735] [Cited by in Crossref: 193] [Cited by in F6Publishing: 181] [Article Influence: 64.3] [Reference Citation Analysis]
518 Caja S, Enríquez JA. Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox Biol 2017;12:821-7. [PMID: 28448943 DOI: 10.1016/j.redox.2017.04.021] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 10.6] [Reference Citation Analysis]
519 Liberale L, Kraler S, Camici GG, Lüscher TF. Ageing and longevity genes in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2020;127:120-31. [DOI: 10.1111/bcpt.13426] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
520 Santos-Alves E, Marques-Aleixo I, Coxito P, Balça MM, Rizo-Roca D, Rocha-Rodrigues S, Martins S, Torrella JR, Oliveira PJ, Moreno AJ, Magalhães J, Ascensão A. Exercise mitigates diclofenac-induced liver mitochondrial dysfunction. Eur J Clin Invest 2014;44:668-77. [PMID: 24889192 DOI: 10.1111/eci.12285] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
521 Almeida M, Han L, Ambrogini E, Weinstein RS, Manolagas SC. Glucocorticoids and tumor necrosis factor α increase oxidative stress and suppress Wnt protein signaling in osteoblasts. J Biol Chem. 2011;286:44326-44335. [PMID: 22030390 DOI: 10.1074/jbc.m111.283481] [Cited by in Crossref: 168] [Cited by in F6Publishing: 82] [Article Influence: 15.3] [Reference Citation Analysis]
522 Ladelfa MF, Toledo MF, Laiseca JE, Monte M. Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 2011;15:1749-61. [PMID: 20919943 DOI: 10.1089/ars.2010.3652] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
523 Scalcon V, Bindoli A, Rigobello MP. Significance of the mitochondrial thioredoxin reductase in cancer cells: An update on role, targets and inhibitors. Free Radical Biology and Medicine 2018;127:62-79. [DOI: 10.1016/j.freeradbiomed.2018.03.043] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 11.8] [Reference Citation Analysis]
524 Thoudam T, Jeon JH, Ha CM, Lee IK. Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases. Mediators Inflamm 2016;2016:1851420. [PMID: 28074080 DOI: 10.1155/2016/1851420] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 6.7] [Reference Citation Analysis]
525 Carraro F, Pucci A, Pellegrini M, Giuseppe Pelicci P, Baldari CT, Naldini A. p66Shc is involved in promoting HIF-1α accumulation and cell death in hypoxic T cells. J Cell Physiol 2007;211:439-47. [DOI: 10.1002/jcp.20951] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
526 Finkel T, Vijg J, Shay JW. Time, tumours and telomeres. Meeting on Cancer and Aging. EMBO Rep 2006;7:479-83. [PMID: 16641934 DOI: 10.1038/sj.embor.7400680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
527 Alonso-alconada D, Álvarez A, Álvarez FJ, Martínez-orgado JA, Hilario E. The Cannabinoid WIN 55212-2 Mitigates Apoptosis and Mitochondrial Dysfunction After Hypoxia Ischemia. Neurochem Res 2012;37:161-70. [DOI: 10.1007/s11064-011-0594-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
528 Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 2017;233:R15-42. [PMID: 28232636 DOI: 10.1530/JOE-16-0598] [Cited by in Crossref: 114] [Cited by in F6Publishing: 61] [Article Influence: 22.8] [Reference Citation Analysis]
529 Xiao D, Singh SV. p66Shc is indispensable for phenethyl isothiocyanate-induced apoptosis in human prostate cancer cells. Cancer Res 2010;70:3150-8. [PMID: 20354186 DOI: 10.1158/0008-5472.CAN-09-4451] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
530 Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 2007;20:1-22. [PMID: 17595511 DOI: 10.1159/000103747] [Cited by in Crossref: 201] [Cited by in F6Publishing: 186] [Article Influence: 13.4] [Reference Citation Analysis]
531 Miyazawa M, Tsuji Y. Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell 2014;25:2116-27. [PMID: 24807908 DOI: 10.1091/mbc.E13-11-0666] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
532 Yu G, Luo H, Zhang N, Wang Y, Li Y, Huang H, Liu Y, Hu Y, Liu H, Zhang J, Tang Y, Huang Y. Loss of p53 Sensitizes Cells to Palmitic Acid-Induced Apoptosis by Reactive Oxygen Species Accumulation. Int J Mol Sci 2019;20:E6268. [PMID: 31842349 DOI: 10.3390/ijms20246268] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
533 Ziolkowski W, Flis DJ, Halon M, Vadhana DMS, Olek RA, Carloni M, Antosiewicz J, Kaczor JJ, Gabbianelli R. Prolonged swimming promotes cellular oxidative stress and p66Shc phosphorylation, but does not induce oxidative stress in mitochondria in the rat heart. Free Radical Research 2014;49:7-16. [DOI: 10.3109/10715762.2014.968147] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
534 Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chemico-Biological Interactions 2006;163:4-14. [DOI: 10.1016/j.cbi.2006.04.010] [Cited by in Crossref: 80] [Cited by in F6Publishing: 81] [Article Influence: 5.0] [Reference Citation Analysis]
535 Piantadosi CA, Suliman HB. Redox regulation of mitochondrial biogenesis. Free Radic Biol Med 2012;53:2043-53. [PMID: 23000245 DOI: 10.1016/j.freeradbiomed.2012.09.014] [Cited by in Crossref: 114] [Cited by in F6Publishing: 114] [Article Influence: 11.4] [Reference Citation Analysis]
536 Borkowska A, Knap N, Antosiewicz J. Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: a possible role of p66Shc signaling axis. Nutr Cancer 2013;65:711-7. [PMID: 23859039 DOI: 10.1080/01635581.2013.789115] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
537 Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015;6:524-551. [PMID: 26484802 DOI: 10.1016/j.redox.2015.08.020] [Cited by in Crossref: 554] [Cited by in F6Publishing: 538] [Article Influence: 79.1] [Reference Citation Analysis]
538 Liu H, Zheng F, Li Z, Uribarri J, Ren B, Hutter R, Tunstead JR, Badimon J, Striker GE, Vlassara H. Reduced acute vascular injury and atherosclerosis in hyperlipidemic mice transgenic for lysozyme. Am J Pathol 2006;169:303-13. [PMID: 16816382 DOI: 10.2353/ajpath.2006.050885] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
539 Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuhr F, Levitan I, Fukai T, Ushio-Fukai M. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 2012;302:H724-32. [PMID: 22101521 DOI: 10.1152/ajpheart.00739.2011] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 5.2] [Reference Citation Analysis]
540 Xi G, Shen X, Clemmons DR. p66shc negatively regulates insulin-like growth factor I signal transduction via inhibition of p52shc binding to Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 leading to impaired growth factor receptor-bound protein-2 membrane recruitment. Mol Endocrinol 2008;22:2162-75. [PMID: 18606861 DOI: 10.1210/me.2008-0079] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 2.7] [Reference Citation Analysis]
541 Finetti F, Savino MT, Baldari CT. Positive and negative regulation of antigen receptor signaling by the Shc family of protein adapters. Immunol Rev 2009;232:115-34. [PMID: 19909360 DOI: 10.1111/j.1600-065X.2009.00826.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
542 Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021;81:3691-707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
543 Ciciliot S, Fadini GP. Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66Shc. Int J Mol Sci 2019;20:E985. [PMID: 30813483 DOI: 10.3390/ijms20040985] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
544 Brown JE, Zeiger SL, Hettinger JC, Brooks JD, Holt B, Morrow JD, Musiek ES, Milne G, McLaughlin B. Essential role of the redox-sensitive kinase p66shc in determining energetic and oxidative status and cell fate in neuronal preconditioning. J Neurosci 2010;30:5242-52. [PMID: 20392947 DOI: 10.1523/JNEUROSCI.6366-09.2010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
545 Lebiedzinska-Arciszewska M, Oparka M, Vega-Naredo I, Karkucinska-Wieckowska A, Pinton P, Duszynski J, Wieckowski MR. The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur J Clin Invest 2015;45 Suppl 1:25-31. [PMID: 25524583 DOI: 10.1111/eci.12364] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
546 Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 2009;425:313-25. [PMID: 20025614 DOI: 10.1042/BJ20091541] [Cited by in Crossref: 329] [Cited by in F6Publishing: 163] [Article Influence: 25.3] [Reference Citation Analysis]
547 Ahmed SB, Prigent SA. A nuclear export signal and oxidative stress regulate ShcD subcellular localisation: a potential role for ShcD in the nucleus. Cell Signal 2014;26:32-40. [PMID: 24036217 DOI: 10.1016/j.cellsig.2013.09.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
548 Wang Z, Zhao Y, Sun R, Sun Y, Liu D, Lin M, Chen Z, Zhou J, Lv L, Tian X, Yao J. circ-CBFB upregulates p66Shc to perturb mitochondrial dynamics in APAP-induced liver injury. Cell Death Dis 2020;11:953. [PMID: 33159035 DOI: 10.1038/s41419-020-03160-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
549 Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010;31:145-70. [PMID: 20206201 DOI: 10.1016/j.mam.2010.02.008] [Cited by in Crossref: 232] [Cited by in F6Publishing: 218] [Article Influence: 19.3] [Reference Citation Analysis]
550 Liu Y, Li Y, Ni J, Shu Y, Wang H, Hu T. MiR-124 attenuates doxorubicin-induced cardiac injury via inhibiting p66Shc-mediated oxidative stress. Biochemical and Biophysical Research Communications 2020;521:420-6. [DOI: 10.1016/j.bbrc.2019.10.157] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
551 Xu J, Kitada M, Koya D. The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2020;1866:165756. [PMID: 32147421 DOI: 10.1016/j.bbadis.2020.165756] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
552 Paneni F, Costantino S, Cosentino F. p66(Shc)-induced redox changes drive endothelial insulin resistance. Atherosclerosis. 2014;236:426-429. [PMID: 25150941 DOI: 10.1016/j.atherosclerosis.2014.07.027] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
553 Gogvadze V, Zhivotovsky B. Alteration of mitochondrial function and cell sensitization to death. J Bioenerg Biomembr 2007;39:23-30. [PMID: 17549639 DOI: 10.1007/s10863-006-9054-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
554 Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 2017;63:70-96. [PMID: 28143649 DOI: 10.1016/j.ceca.2017.01.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 18.6] [Reference Citation Analysis]
555 García-Ruiz C, Kaplowitz N, Fernandez-Checa JC. Role of Mitochondria in Alcoholic Liver Disease. Curr Pathobiol Rep 2013;1:159-68. [PMID: 25343061 DOI: 10.1007/s40139-013-0021-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
556 Mir HA, Ali R, Mushtaq U, Khanday FA. Structure-functional implications of longevity protein p66Shc in health and disease. Ageing Res Rev 2020;63:101139. [PMID: 32795504 DOI: 10.1016/j.arr.2020.101139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
557 Arany I, Faisal A, Clark JS, Vera T, Baliga R, Nagamine Y. p66SHC-mediated mitochondrial dysfunction in renal proximal tubule cells during oxidative injury. American Journal of Physiology-Renal Physiology 2010;298:F1214-21. [DOI: 10.1152/ajprenal.00639.2009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 2.9] [Reference Citation Analysis]
558 Jilka RL, Almeida M, Ambrogini E, Han L, Roberson PK, Weinstein RS, Manolagas SC. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell 2010;9:851-67. [PMID: 20698835 DOI: 10.1111/j.1474-9726.2010.00616.x] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 7.8] [Reference Citation Analysis]
559 Ambrogini E, Almeida M, Martin-Millan M, Paik JH, Depinho RA, Han L, Goellner J, Weinstein RS, Jilka RL, O'Brien CA, Manolagas SC. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 2010;11:136-46. [PMID: 20142101 DOI: 10.1016/j.cmet.2009.12.009] [Cited by in Crossref: 184] [Cited by in F6Publishing: 180] [Article Influence: 15.3] [Reference Citation Analysis]
560 Joo HK, Lee YR, Choi S, Park MS, Kang G, Kim CS, Jeon BH. Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells. Korean J Physiol Pharmacol 2017;21:377-84. [PMID: 28706451 DOI: 10.4196/kjpp.2017.21.4.377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
561 Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 2006;273:2077-2099. [PMID: 16649987 DOI: 10.1111/j.1742-4658.2006.05213.x] [Cited by in Crossref: 460] [Cited by in F6Publishing: 436] [Article Influence: 28.8] [Reference Citation Analysis]
562 Plecitá-Hlavatá L, Ježek P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 2016;80:31-50. [PMID: 27640755 DOI: 10.1016/j.biocel.2016.09.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
563 Ortega SP, Chouchani ET, Boudina S. Stress turns on the heat: Regulation of mitochondrial biogenesis and UCP1 by ROS in adipocytes. Adipocyte 2017;6:56-61. [PMID: 28452586 DOI: 10.1080/21623945.2016.1273298] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
564 Yamamori T, Mizobata A, Saito Y, Urano Y, Inanami O, Irani K, Noguchi N. Phosphorylation of p66shc mediates 6-hydroxydopamine cytotoxicity. Free Radical Research 2010;45:342-50. [DOI: 10.3109/10715762.2010.532496] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
565 Avogaro A, de Kreutzenberg SV, Fadini GP. Insulin signaling and life span. Pflugers Arch - Eur J Physiol 2010;459:301-14. [DOI: 10.1007/s00424-009-0721-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
566 Santiso R, Tamayo M, Gosálvez J, Johnston S, Mariño A, Fernández C, Losada C, Fernández JL. DNA fragmentation dynamics allows the assessment of cryptic sperm damage in human: Evaluation of exposure to ionizing radiation, hyperthermia, acidic pH and nitric oxide. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2012;734:41-9. [DOI: 10.1016/j.mrfmmm.2012.03.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
567 Borkowska A, Sielicka-dudzin A, Herman-antosiewicz A, Halon M, Wozniak M, Antosiewicz J. P66Shc mediated ferritin degradation—A novel mechanism of ROS formation. Free Radical Biology and Medicine 2011;51:658-63. [DOI: 10.1016/j.freeradbiomed.2011.04.045] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
568 Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. Scientifica (Cairo) 2013;2013:505714. [PMID: 24455431 DOI: 10.1155/2013/505714] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
569 Alhujaily M, Abbas H, Xue M, de la Fuente A, Rabbani N, Thornalley PJ. Studies of Glyoxalase 1-Linked Multidrug Resistance Reveal Glycolysis-Derived Reactive Metabolite, Methylglyoxal, Is a Common Contributor in Cancer Chemotherapy Targeting the Spliceosome. Front Oncol 2021;11:748698. [PMID: 34790575 DOI: 10.3389/fonc.2021.748698] [Reference Citation Analysis]
570 Yang J, Yu H, Zhou X, Huang H, Han Z, Kolosov V, Perelman J. Cigarette smoke induces mucin hypersecretion and inflammatory response through the p66shc adaptor protein-mediated mechanism in human bronchial epithelial cells. Molecular Immunology 2016;69:86-98. [DOI: 10.1016/j.molimm.2015.11.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
571 Bloomer SA, Brown KE. Tumour promotion versus tumour suppression in chronic hepatic iron overload: Tumour Suppression in Iron Overload. Cell Biochem Funct 2015;33:241-8. [DOI: 10.1002/cbf.3110] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
572 Sakao K, Singh SV. D,L-sulforaphane-induced apoptosis in human breast cancer cells is regulated by the adapter protein p66Shc. J Cell Biochem 2012;113:599-610. [PMID: 21956685 DOI: 10.1002/jcb.23386] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
573 Carpi A, Menabò R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M. The cardioprotective effects elicited by p66Shc ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2009;1787:774-80. [DOI: 10.1016/j.bbabio.2009.04.001] [Cited by in Crossref: 115] [Cited by in F6Publishing: 112] [Article Influence: 8.8] [Reference Citation Analysis]
574 Giovannini C, Varì R, Scazzocchio B, Sanchez M, Santangelo C, Filesi C, D'Archivio M, Masella R. OxLDL induced p53-dependent apoptosis by activating p38MAPK and PKCδ signaling pathways in J774A.1 macrophage cells. J Mol Cell Biol 2011;3:316-8. [PMID: 21920989 DOI: 10.1093/jmcb/mjr019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
575 Boengler K, Bencsik P, Palóczi J, Kiss K, Pipicz M, Pipis J, Ferdinandy P, Schlüter KD, Schulz R. Lack of Contribution of p66shc and Its Mitochondrial Translocation to Ischemia-Reperfusion Injury and Cardioprotection by Ischemic Preconditioning. Front Physiol 2017;8:733. [PMID: 29051737 DOI: 10.3389/fphys.2017.00733] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
576 Frisch SM, Schaller MD. The wind god promotes lung cancer. Cancer Cell 2014;25:551-2. [PMID: 24823631 DOI: 10.1016/j.ccr.2014.04.022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
577 Rimessi A, Giorgi C, Pinton P, Rizzuto R. The versatility of mitochondrial calcium signals: from stimulation of cell metabolism to induction of cell death. Biochim Biophys Acta. 2008;1777:808-816. [PMID: 18573473 DOI: 10.1016/j.bbabio.2008.05.449] [Cited by in Crossref: 86] [Cited by in F6Publishing: 83] [Article Influence: 6.1] [Reference Citation Analysis]
578 Li K, Li Y, Mi J, Mao L, Han X, Zhao J. Resveratrol protects against sodium nitroprusside induced nucleus pulposus cell apoptosis by scavenging ROS. Int J Mol Med 2018;41:2485-92. [PMID: 29436588 DOI: 10.3892/ijmm.2018.3461] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
579 Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16:1323-1367. [PMID: 22146081 DOI: 10.1089/ars.2011.4123] [Cited by in Crossref: 297] [Cited by in F6Publishing: 274] [Article Influence: 29.7] [Reference Citation Analysis]
580 Cong XD, Ding MJ, Dai DZ, Wu Y, Zhang Y, Dai Y. ER stress, p66shc, and p-Akt/Akt mediate adjuvant-induced inflammation, which is blunted by argirein, a supermolecule and rhein in rats. Inflammation. 2012;35:1031-1040. [PMID: 22095404 DOI: 10.1007/s10753-011-9407-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
581 Pani G, Galeotti T. Role of MnSOD and p66shc in mitochondrial response to p53. Antioxid Redox Signal 2011;15:1715-27. [PMID: 20712406 DOI: 10.1089/ars.2010.3499] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
582 Di Dalmazi G, Hirshberg J, Lyle D, Freij JB, Caturegli P. Reactive oxygen species in organ-specific autoimmunity. Auto Immun Highlights. 2016;7:11. [PMID: 27491295 DOI: 10.1007/s13317-016-0083-0] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 6.5] [Reference Citation Analysis]
583 Chen Q, Yin G, Stewart S, Hu Y, Lesnefsky EJ. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. Biochem Biophys Res Commun 2010;397:656-60. [PMID: 20529665 DOI: 10.1016/j.bbrc.2010.05.137] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
584 Ramsey JJ, Tran D, Giorgio M, Griffey SM, Koehne A, Laing ST, Taylor SL, Kim K, Cortopassi GA, Lloyd KC, Hagopian K, Tomilov AA, Migliaccio E, Pelicci PG, McDonald RB. The influence of Shc proteins on life span in mice. J Gerontol A Biol Sci Med Sci 2014;69:1177-85. [PMID: 24336818 DOI: 10.1093/gerona/glt198] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
585 Francia P, Cosentino F, Schiavoni M, Huang Y, Perna E, Camici GG, Lüscher TF, Volpe M. p66Shc protein, oxidative stress, and cardiovascular complications of diabetes: the missing link. J Mol Med 2009;87:885-91. [DOI: 10.1007/s00109-009-0499-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.2] [Reference Citation Analysis]
586 Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021;26:504-23. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Reference Citation Analysis]
587 Vostrikova SM, Grinev AB, Gogvadze VG. Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy. Biochemistry (Mosc) 2020;85:1254-66. [PMID: 33202210 DOI: 10.1134/S0006297920100132] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
588 Blajszczak C, Bonini MG. Mitochondria targeting by environmental stressors: Implications for redox cellular signaling. Toxicology 2017;391:84-9. [PMID: 28750850 DOI: 10.1016/j.tox.2017.07.013] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
589 Wang P, Li CG, Qi Z, Cui D, Ding S. Acute exercise induced mitochondrial H₂O₂ production in mouse skeletal muscle: association with p(66Shc) and FOXO3a signaling and antioxidant enzymes. Oxid Med Cell Longev 2015;2015:536456. [PMID: 25874020 DOI: 10.1155/2015/536456] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
590 Fu R, Zhou J, Wang R, Sun R, Feng D, Wang Z, Zhao Y, Lv L, Tian X, Yao J. Protocatechuic Acid-Mediated miR-219a-5p Activation Inhibits the p66shc Oxidant Pathway to Alleviate Alcoholic Liver Injury. Oxid Med Cell Longev 2019;2019:3527809. [PMID: 31428222 DOI: 10.1155/2019/3527809] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
591 Koentges C, König A, Pfeil K, Hölscher ME, Schnick T, Wende AR, Schrepper A, Cimolai MC, Kersting S, Hoffmann MM, Asal J, Osterholt M, Odening KE, Doenst T, Hein L, Abel ED, Bode C, Bugger H. Myocardial mitochondrial dysfunction in mice lacking adiponectin receptor 1. Basic Res Cardiol 2015;110. [DOI: 10.1007/s00395-015-0495-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
592 Patrussi L, Manganaro N, Capitani N, Ulivieri C, Tatangelo V, Libonati F, Finetti F, Frezzato F, Visentin A, D'Elios MM, Trentin L, Semenzato G, Baldari CT. Enhanced IL-9 secretion by p66Shc-deficient CLL cells modulates the chemokine landscape of the stromal microenvironment. Blood 2021;137:2182-95. [PMID: 33181836 DOI: 10.1182/blood.2020005785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
593 Orsini F, Moroni M, Contursi C, Yano M, Pelicci P, Giorgio M, Migliaccio E. Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc. Biological Chemistry 2006;387. [DOI: 10.1515/bc.2006.176] [Cited by in Crossref: 33] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
594 Kang HT, Park JT, Choi K, Choi HJC, Jung CW, Kim GR, Lee YS, Park SC. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome. Aging Cell 2017;16:541-50. [PMID: 28317242 DOI: 10.1111/acel.12584] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
595 Filipovic MR. Persulfidation (S-sulfhydration) and H2S. Handb Exp Pharmacol 2015;230:29-59. [PMID: 26162828 DOI: 10.1007/978-3-319-18144-8_2] [Cited by in Crossref: 99] [Cited by in F6Publishing: 90] [Article Influence: 14.1] [Reference Citation Analysis]
596 Piomboni P, Focarelli R, Stendardi A, Ferramosca A, Zara V. The role of mitochondria in energy production for human sperm motility: Mitochondria functionality in human spermatozoa. International Journal of Andrology 2012;35:109-24. [DOI: 10.1111/j.1365-2605.2011.01218.x] [Cited by in Crossref: 197] [Cited by in F6Publishing: 190] [Article Influence: 17.9] [Reference Citation Analysis]
597 Gambino V, De Michele G, Venezia O, Migliaccio P, Dall'Olio V, Bernard L, Minardi SP, Della Fazia MA, Bartoli D, Servillo G, Alcalay M, Luzi L, Giorgio M, Scrable H, Pelicci PG, Migliaccio E. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging. Aging Cell 2013;12:435-45. [PMID: 23448364 DOI: 10.1111/acel.12060] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 10.7] [Reference Citation Analysis]
598 Zanetti M, Barazzoni R, Gortan Cappellari G, Burekovic I, Bosutti A, Stocca A, Bianco F, Ianche M, Panzetta G, Guarnieri G. Hemodialysis induces p66(shc) gene expression in nondiabetic humans: correlations with oxidative stress and systemic inflammation. J Ren Nutr 2011;21:401-9. [PMID: 21439852 DOI: 10.1053/j.jrn.2010.12.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
599 Borutaite V. Mitochondria as decision-makers in cell death. Environ Mol Mutagen 2010;51:406-16. [PMID: 20209625 DOI: 10.1002/em.20564] [Cited by in Crossref: 10] [Cited by in F6Publishing: 36] [Article Influence: 0.8] [Reference Citation Analysis]
600 Giamogante F, Poggio E, Barazzuol L, Covallero A, Calì T. Apoptotic signals at the endoplasmic reticulum-mitochondria interface. Adv Protein Chem Struct Biol 2021;126:307-43. [PMID: 34090618 DOI: 10.1016/bs.apcsb.2021.02.007] [Reference Citation Analysis]
601 Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460-473. [PMID: 17332437 DOI: 10.1161/01.res.0000258450.44413.96] [Cited by in Crossref: 461] [Cited by in F6Publishing: 240] [Article Influence: 30.7] [Reference Citation Analysis]
602 Chen JR, Lazarenko OP, Haley RL, Blackburn ML, Badger TM, Ronis MJ. Ethanol impairs estrogen receptor signaling resulting in accelerated activation of senescence pathways, whereas estradiol attenuates the effects of ethanol in osteoblasts. J Bone Miner Res 2009;24:221-30. [PMID: 18847333 DOI: 10.1359/jbmr.081011] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 4.4] [Reference Citation Analysis]
603 Trinei M, Carpi A, Menabo' R, Storto M, Fornari M, Marinelli A, Minardi S, Riboni M, Casciaro F, DiLisa F, Petroni K, Tonelli C, Giorgio M. Dietary intake of cyanidin-3-glucoside induces a long-lasting cardioprotection from ischemia/reperfusion injury by altering the microbiota. J Nutr Biochem 2021;101:108921. [PMID: 34864150 DOI: 10.1016/j.jnutbio.2021.108921] [Reference Citation Analysis]
604 Thomas SR, Witting PK, Drummond GR. Redox Control of Endothelial Function and Dysfunction: Molecular Mechanisms and Therapeutic Opportunities. Antioxidants & Redox Signaling 2008;10:1713-66. [DOI: 10.1089/ars.2008.2027] [Cited by in Crossref: 261] [Cited by in F6Publishing: 249] [Article Influence: 18.6] [Reference Citation Analysis]
605 Xiong Y, Zhou L. The Signaling of Cellular Senescence in Diabetic Nephropathy. Oxid Med Cell Longev 2019;2019:7495629. [PMID: 31687085 DOI: 10.1155/2019/7495629] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
606 Arany I, Clark JS, Reed DK, Juncos LA, Dixit M. Role of p66shc in renal toxicity of oleic acid. Am J Nephrol 2013;38:226-32. [PMID: 23988748 DOI: 10.1159/000354357] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
607 Martínez-reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014;1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 7.6] [Reference Citation Analysis]
608 Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015;22:995-1019. [PMID: 25557408 DOI: 10.1089/ars.2014.6223] [Cited by in Crossref: 174] [Cited by in F6Publishing: 173] [Article Influence: 24.9] [Reference Citation Analysis]
609 Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med. 2021;169:317-342. [PMID: 33910093 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
610 Ciciliot S, Albiero M, Menegazzo L, Poncina N, Scattolini V, Danesi A, Pagnin E, Marabita M, Blaauw B, Giorgio M, Trinei M, Foletto M, Prevedello L, Nitti D, Avogaro A, Fadini GP. p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia 2015;58:2352-60. [PMID: 26122877 DOI: 10.1007/s00125-015-3667-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
611 Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2019;176:514-31. [PMID: 30129023 DOI: 10.1111/bph.14480] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
612 Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A. Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 2008;45:505-13. [PMID: 18598700 DOI: 10.1016/j.yjmcc.2008.05.025] [Cited by in Crossref: 79] [Cited by in F6Publishing: 60] [Article Influence: 5.6] [Reference Citation Analysis]
613 Sun L, Xiao L, Nie J, Liu FY, Ling GH, Zhu XJ, Tang WB, Chen WC, Xia YC, Zhan M. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Am J Physiol Renal Physiol. 2010;299:F1014-F1025. [PMID: 20739391 DOI: 10.1152/ajprenal.00414.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 5.9] [Reference Citation Analysis]
614 Chung YM, Lee SB, Kim HJ, Park SH, Kim JJ, Chung JS, Yoo YD. Replicative senescence induced by Romo1-derived reactive oxygen species. J Biol Chem 2008;283:33763-71. [PMID: 18836179 DOI: 10.1074/jbc.M805334200] [Cited by in Crossref: 50] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
615 Dakik P, Medkour Y, Mohammad K, Titorenko VI. Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla. Front Physiol 2019;10:461. [PMID: 31057428 DOI: 10.3389/fphys.2019.00461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
616 Onnis A, Cianfanelli V, Cassioli C, Samardzic D, Pelicci PG, Cecconi F, Baldari CT. The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy 2018;14:2117-38. [PMID: 30109811 DOI: 10.1080/15548627.2018.1505153] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
617 Malhotra A, Vashistha H, Yadav VS, Dube MG, Kalra SP, Abdellatif M, Meggs LG. Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol 2009;296:H380-8. [PMID: 19060130 DOI: 10.1152/ajpheart.00225.2008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
618 Yang S, Lian G. ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem 2020;467:1-12. [PMID: 31813106 DOI: 10.1007/s11010-019-03667-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
619 Lu F, Xing J, Zhang X, Dong S, Zhao Y, Wang L, Li H, Yang F, Xu C, Zhang W. Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem. 2013;381:41-50. [PMID: 23660955 DOI: 10.1007/s11010-013-1686-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
620 Zheng D, Tao M, Liang X, Li Y, Jin J, He Q. p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol 2020;35:405-15. [PMID: 31650524 DOI: 10.14670/HH-18-178] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
621 Marín-garcía J. The Role of Mitochondria in Atherosclerosis. Mitochondria and Their Role in Cardiovascular Disease. Boston: Springer US; 2013. pp. 295-303. [DOI: 10.1007/978-1-4614-4599-9_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
622 Jou MJ, Peng TI, Hsu LF, Jou SB, Reiter RJ, Yang CM, Chiao CC, Lin YF, Chen CC. Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res. 2010;48:20-38. [PMID: 19925580 DOI: 10.1111/j.1600-079x.2009.00721.x] [Cited by in Crossref: 129] [Cited by in F6Publishing: 28] [Article Influence: 9.9] [Reference Citation Analysis]
623 Giorgio M, Berry A, Berniakovich I, Poletaeva I, Trinei M, Stendardo M, Hagopian K, Ramsey JJ, Cortopassi G, Migliaccio E, Nötzli S, Amrein I, Lipp HP, Cirulli F, Pelicci PG. The p66 Shc knockout mice are short lived under natural condition: P66 Shc is detrimental in lab but required in wild. Aging Cell 2012;11:162-8. [DOI: 10.1111/j.1474-9726.2011.00770.x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 4.9] [Reference Citation Analysis]
624 Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci. 2012;125:801-806. [PMID: 22448036 DOI: 10.1242/jcs.098475] [Cited by in Crossref: 178] [Cited by in F6Publishing: 167] [Article Influence: 19.8] [Reference Citation Analysis]
625 Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158614. [PMID: 31927141 DOI: 10.1016/j.bbalip.2020.158614] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
626 Chen HZ, Wan YZ, Liu DP. Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends Cardiovasc Med 2013;23:237-41. [PMID: 23499302 DOI: 10.1016/j.tcm.2013.01.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.2] [Reference Citation Analysis]
627 Kim KM, Park SJ, Jung SH, Kim EJ, Jogeswar G, Ajita J, Rhee Y, Kim CH, Lim SK. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res 2012;27:1669-79. [PMID: 22431396 DOI: 10.1002/jbmr.1604] [Cited by in Crossref: 114] [Cited by in F6Publishing: 111] [Article Influence: 11.4] [Reference Citation Analysis]
628 Lemeshko VV, Haridas V, Quijano Pérez JC, Gutterman JU. Avicins, natural anticancer saponins, permeabilize mitochondrial membranes. Arch Biochem Biophys 2006;454:114-22. [PMID: 16962987 DOI: 10.1016/j.abb.2006.08.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 2.6] [Reference Citation Analysis]
629 Shagieva G, Domnina L, Makarevich O, Chernyak B, Skulachev V, Dugina V. Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells. Oncotarget 2017;8:4901-13. [PMID: 27902484 DOI: 10.18632/oncotarget.13612] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
630 Magenta A, Greco S, Capogrossi MC, Gaetano C, Martelli F. Nitric oxide, oxidative stress, and p66Shc interplay in diabetic endothelial dysfunction. Biomed Res Int 2014;2014:193095. [PMID: 24734227 DOI: 10.1155/2014/193095] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
631 Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, Finkel T. The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem 2006;281:10555-60. [PMID: 16481327 DOI: 10.1074/jbc.M511626200] [Cited by in Crossref: 111] [Cited by in F6Publishing: 58] [Article Influence: 6.9] [Reference Citation Analysis]
632 Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 2007;8:722-8. [DOI: 10.1038/nrm2240] [Cited by in Crossref: 941] [Cited by in F6Publishing: 857] [Article Influence: 62.7] [Reference Citation Analysis]
633 Wright KD, Staruschenko A, Sorokin A. Role of adaptor protein p66Shc in renal pathologies. Am J Physiol Renal Physiol 2018;314:F143-53. [PMID: 28978535 DOI: 10.1152/ajprenal.00414.2017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
634 Lunghi B, De Cunto G, Cavarra E, Fineschi S, Bartalesi B, Lungarella G, Lucattelli M. Smoking p66Shc knocked out mice develop respiratory bronchiolitis with fibrosis but not emphysema. PLoS One 2015;10:e0119797. [PMID: 25790295 DOI: 10.1371/journal.pone.0119797] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
635 Kurt AH, Çelik A, Kelleci BM. Oxidative/antioxidative enzyme-mediated antiproliferative and proapoptotic effects of the GPER1 agonist G-1 on lung cancer cells. Oncol Lett 2015;10:3177-82. [PMID: 26722308 DOI: 10.3892/ol.2015.3711] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
636 Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021;:1-18. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
637 Almeida M. Aging mechanisms in bone. Bonekey Rep 2012;1:102. [PMID: 23705067 DOI: 10.1038/bonekey.2012.102] [Cited by in Crossref: 60] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
638 Luo XY, Qu SL, Tang ZH, Zhang Y, Liu MH, Peng J, Tang H, Yu KL, Zhang C, Ren Z, Jiang ZS. SIRT1 in cardiovascular aging. Clin Chim Acta 2014;437:106-14. [PMID: 25063737 DOI: 10.1016/j.cca.2014.07.019] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
639 Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res 2013;112:1171-88. [PMID: 23580773 DOI: 10.1161/CIRCRESAHA.111.300233] [Cited by in Crossref: 234] [Cited by in F6Publishing: 145] [Article Influence: 26.0] [Reference Citation Analysis]
640 Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 2014;3:6. [PMID: 24860647 DOI: 10.1186/2046-2395-3-6] [Cited by in Crossref: 268] [Cited by in F6Publishing: 242] [Article Influence: 33.5] [Reference Citation Analysis]
641 de Brito OM, Scorrano L. Mitofusin 2: A Mitochondria-Shaping Protein with Signaling Roles Beyond Fusion. Antioxidants & Redox Signaling 2008;10:621-34. [DOI: 10.1089/ars.2007.1934] [Cited by in Crossref: 97] [Cited by in F6Publishing: 94] [Article Influence: 6.9] [Reference Citation Analysis]
642 Galaris D, Mantzaris M, Amorgianiotis C. Oxidative stress and aging: the potential role of iron. Hormones 2008;7:114-22. [DOI: 10.1007/bf03401502] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
643 Teng L, Fan L, Peng Y, He X, Chen H, Duan H, Yang F, Lin D, Lin Z, Li H, Shao B. Carnosic Acid Mitigates Early Brain Injury After Subarachnoid Hemorrhage: Possible Involvement of the SIRT1/p66shc Signaling Pathway. Front Neurosci 2019;13:26. [PMID: 30890904 DOI: 10.3389/fnins.2019.00026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
644 Lebiedzinska M, Karkucinska-Wieckowska A, Wojtala A, Suski JM, Szabadkai G, Wilczynski G, Wlodarczyk J, Diogo CV, Oliveira PJ, Tauber J, Ježek P, Pronicki M, Duszynski J, Pinton P, Wieckowski MR. Disrupted ATP synthase activity and mitochondrial hyperpolarisation-dependent oxidative stress is associated with p66Shc phosphorylation in fibroblasts of NARP patients. Int J Biochem Cell Biol 2013;45:141-50. [PMID: 22885148 DOI: 10.1016/j.biocel.2012.07.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
645 Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A. The emerging role of cardiovascular risk factor-induced mitochondrial dysfunction in atherogenesis. J Biomed Sci. 2009;16:112. [PMID: 20003216 DOI: 10.1186/1423-0127-16-112] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 3.5] [Reference Citation Analysis]
646 Ali H, Assiri MA, Shearn CT, Fritz KS. Lipid peroxidation derived reactive aldehydes in alcoholic liver disease. Curr Opin Toxicol 2019;13:110-7. [PMID: 31263795 DOI: 10.1016/j.cotox.2018.10.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
647 Sone K, Mori M, Mori N. Selective upregulation of p66-Shc gene expression in the liver and brain of aged rats. Archives of Gerontology and Geriatrics 2012;55:744-8. [DOI: 10.1016/j.archger.2011.11.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
648 Cao J, Qin G, Shi R, Bai F, Yang G, Zhang M, Lv J. Overproduction of reactive oxygen species and activation of MAPKs are involved in apoptosis induced by PM 2.5 in rat cardiac H9c2 cells: ROS and MAPKs are involved in apoptosis induced by PM 2.5. J Appl Toxicol 2016;36:609-17. [DOI: 10.1002/jat.3249] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
649 Shin HJ, Park H, Shin N, Shin J, Gwon DH, Kwon HH, Yin Y, Hwang JA, Hong J, Heo JY, Kim CS, Joo Y, Kim Y, Kim J, Beom J, Kim DW. p66shc siRNA Nanoparticles Ameliorate Chondrocytic Mitochondrial Dysfunction in Osteoarthritis. Int J Nanomedicine 2020;15:2379-90. [PMID: 32308389 DOI: 10.2147/IJN.S234198] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
650 Sánchez-Ajofrín I, Iniesta-Cuerda M, Peris-Frau P, Martín-Maestro A, Medina-Chávez DA, Maside C, Fernández-Santos MR, Ortiz JA, Montoro V, Garde JJ, Soler AJ. Beneficial Effects of Melatonin in the Ovarian Transport Medium on In Vitro Embryo Production of Iberian Red Deer (Cervus elaphus hispanicus). Animals (Basel) 2020;10:E763. [PMID: 32349425 DOI: 10.3390/ani10050763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
651 Bellido T. Antagonistic interplay between mechanical forces and glucocorticoids in bone: a tale of kinases. J Cell Biochem 2010;111:1-6. [PMID: 20506204 DOI: 10.1002/jcb.22660] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
652 Papaconstantinou J. The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019;8:E1383. [PMID: 31689891 DOI: 10.3390/cells8111383] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 15.3] [Reference Citation Analysis]
653 Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, Tyurin VA, Amoscato AA, Jiang J, Kochanek PM, DeKosky ST, Greenberger JS, Shvedova AA, Kagan VE. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 2006;1757:648-59. [PMID: 16740248 DOI: 10.1016/j.bbabio.2006.03.002] [Cited by in Crossref: 129] [Cited by in F6Publishing: 120] [Article Influence: 8.1] [Reference Citation Analysis]
654 Lautenschläger S, Striegler C, Dakischew O, Schütz I, Szalay G, Schnettler R, Heiß C, Appelhans D, Lips KS. Effects of dendritic core-shell glycoarchitectures on primary mesenchymal stem cells and osteoblasts obtained from different human donors. J Nanobiotechnology 2015;13:65. [PMID: 26449656 DOI: 10.1186/s12951-015-0128-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
655 Hammerling U. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hepatobiliary Surg Nutr 2016;5:15-28. [PMID: 26904553 DOI: 10.3978/j.issn.2304-3881.2016.01.02] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
656 Zaccagnini G, Maimone B, Di Stefano V, Fasanaro P, Greco S, Perfetti A, Capogrossi MC, Gaetano C, Martelli F. Hypoxia-induced miR-210 modulates tissue response to acute peripheral ischemia. Antioxid Redox Signal. 2014;21:1177-1188. [PMID: 23931770 DOI: 10.1089/ars.2013.5206] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
657 Ishii T, Warabi E, Yanagawa T. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J Clin Biochem Nutr 2012;50:91-105. [PMID: 22448089 DOI: 10.3164/jcbn.11-109] [Cited by in Crossref: 103] [Cited by in F6Publishing: 99] [Article Influence: 10.3] [Reference Citation Analysis]
658 Santiso R, Tamayo M, Gosálvez J, Meseguer M, Garrido N, Fernández JL. Simultaneous determination in situ of DNA fragmentation and 8-oxoguanine in human sperm. Fertil Steril 2010;93:314-8. [PMID: 19748084 DOI: 10.1016/j.fertnstert.2009.07.969] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
659 Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants (Basel) 2019;8:E454. [PMID: 31590423 DOI: 10.3390/antiox8100454] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 13.0] [Reference Citation Analysis]
660 Yao Y, Wang G, Li Z, Yan B, Guo Y, Jiang X, Xi Z. Mitochondrially localized EGFR is independent of its endocytosis and associates with cell viability. Acta Biochim Biophys Sin (Shanghai) 2010;42:763-70. [PMID: 20929928 DOI: 10.1093/abbs/gmq090] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
661 Floor E, Maples AM, Rankin CA, Yaganti VM, Shank SS, Nichols GS, O'laughlin M, Galeva NA, Williams TD. A one-carbon modification of protein lysine associated with elevated oxidative stress in human substantia nigra: One-carbon protein lysine modification. Journal of Neurochemistry 2006;97:504-14. [DOI: 10.1111/j.1471-4159.2006.03768.x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
662 Aroor AR, Mandavia C, Ren J, Sowers JR, Pulakat L. Mitochondria and Oxidative Stress in the Cardiorenal Metabolic Syndrome. Cardiorenal Med 2012;2:87-109. [PMID: 22619657 DOI: 10.1159/000335675] [Cited by in Crossref: 40] [Cited by in F6Publishing: 47] [Article Influence: 4.0] [Reference Citation Analysis]
663 Kumar A, Hoffman TA, Dericco J, Naqvi A, Jain MK, Irani K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. FASEB J 2009;23:4344-52. [PMID: 19696221 DOI: 10.1096/fj.09-138743] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
664 Arismendi-Morillo G, Hoa NT, Ge L, Jadus MR. Mitochondrial network in glioma's invadopodia displays an activated state both in situ and in vitro: potential functional implications. Ultrastruct Pathol 2012;36:409-14. [PMID: 23216239 DOI: 10.3109/01913123.2012.694582] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
665 Gao S, Li C, Chen L, Zhou X. Actions and mechanisms of reactive oxygen species and antioxidative system in semen. Mol Cell Toxicol 2017;13:143-54. [DOI: 10.1007/s13273-017-0015-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
666 Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266-300. [PMID: 20051526 DOI: 10.1210/er.2009-0024] [Cited by in Crossref: 628] [Cited by in F6Publishing: 566] [Article Influence: 52.3] [Reference Citation Analysis]
667 Vendelbo MH, Nair KS. Mitochondrial longevity pathways. Biochim Biophys Acta 2011;1813:634-44. [PMID: 21295080 DOI: 10.1016/j.bbamcr.2011.01.029] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 4.7] [Reference Citation Analysis]
668 Trepiana J, Meijide S, Navarro R, Hernández ML, Ruiz-Sanz JI, Ruiz-Larrea MB. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells. Redox Biol 2017;12:103-13. [PMID: 28214706 DOI: 10.1016/j.redox.2017.02.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
669 Trivedi P, Wang S, Friedman SL. The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells. Cell Metab 2021;33:242-57. [PMID: 33232666 DOI: 10.1016/j.cmet.2020.10.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
670 Briehl MM. Oxygen in human health from life to death--An approach to teaching redox biology and signaling to graduate and medical students. Redox Biol 2015;5:124-39. [PMID: 25912168 DOI: 10.1016/j.redox.2015.04.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
671 Feng D, Yao J, Wang G, Li Z, Zu G, Li Y, Luo F, Ning S, Qasim W, Chen Z, Tian X. Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats. Clinical Science 2017;131:759-73. [DOI: 10.1042/cs20160799] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 4.6] [Reference Citation Analysis]
672 Pesaresi MG, Amori I, Giorgi C, Ferri A, Fiorenzo P, Gabanella F, Salvatore AM, Giorgio M, Pelicci PG, Pinton P, Carrì MT, Cozzolino M. Mitochondrial redox signalling by p66Shc mediates ALS-like disease through Rac1 inactivation. Hum Mol Genet 2011;20:4196-208. [PMID: 21828072 DOI: 10.1093/hmg/ddr347] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
673 Priami C, De Michele G, Cotelli F, Cellerino A, Giorgio M, Pelicci PG, Migliaccio E. Modelling the p53/p66Shc Aging Pathway in the Shortest Living Vertebrate Nothobranchius Furzeri. Aging Dis 2015;6:95-108. [PMID: 25821638 DOI: 10.14336/AD.2014.0228] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
674 Ma Z, Myers DP, Wu RF, Nwariaku FE, Terada LS. p66Shc mediates anoikis through RhoA. J Cell Biol 2007;179:23-31. [PMID: 17908916 DOI: 10.1083/jcb.200706097] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 3.5] [Reference Citation Analysis]
675 Bachi A, Dalle-donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2013;113:596-698. [DOI: 10.1021/cr300073p] [Cited by in Crossref: 167] [Cited by in F6Publishing: 150] [Article Influence: 16.7] [Reference Citation Analysis]
676 Galimov ER, Chernyak BV, Sidorenko AS, Tereshkova AV, Chumakov PM. Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS One 2014;9:e86521. [PMID: 24618848 DOI: 10.1371/journal.pone.0086521] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
677 Sutton R, Petersen OH, Pandol SJ. Pancreatitis and calcium signalling: report of an international workshop. Pancreas 2008;36:e1-14. [PMID: 18437073 DOI: 10.1097/MPA.0b013e3181675010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
678 Tang X, Luo YX, Chen HZ, Liu DP. Mitochondria, endothelial cell function, and vascular diseases. Front Physiol. 2014;5:175. [PMID: 24834056 DOI: 10.3389/fphys.2014.00175] [Cited by in Crossref: 181] [Cited by in F6Publishing: 170] [Article Influence: 22.6] [Reference Citation Analysis]
679 Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol 2009;41:1805-16. [PMID: 19703651 DOI: 10.1016/j.biocel.2009.02.017] [Cited by in Crossref: 127] [Cited by in F6Publishing: 117] [Article Influence: 9.8] [Reference Citation Analysis]
680 Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res Lett 2020;15:115. [PMID: 32436107 DOI: 10.