BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tseng C, Yang R, Ju W, Fu L. Microfluidic paper-based platform for whole blood creatinine detection. Chemical Engineering Journal 2018;348:117-24. [DOI: 10.1016/j.cej.2018.04.191] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Sousa LR, Silva-neto HA, Moreira NS, Guinati BG, Coltro WK. Sensing Materials: Paper Substrates. Encyclopedia of Sensors and Biosensors 2023. [DOI: 10.1016/b978-0-12-822548-6.00055-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zade A, Sateesh J, Guha K, Srinivasa Rao K, Narayan K. Kidney Disease and Its Replacement Techniques Utilizing MEMS-Microfluidics Technology: A Systematic Review. Lecture Notes in Electrical Engineering 2023. [DOI: 10.1007/978-981-19-2308-1_49] [Reference Citation Analysis]
3 Al-jaf SH, Omer KM. Portable smartphone-based detection integrated with paper based device functionalised with green emissive carbon dots for selective determination of Fe 3+ ions. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2022.2130064] [Reference Citation Analysis]
4 Ram R, Kumar D, Sarkar A. A smartphone-integrated portable rotating platform for estimation of concentration level of plasma-creatinine using whole human blood. Talanta 2022;253:123960. [PMID: 36195027 DOI: 10.1016/j.talanta.2022.123960] [Reference Citation Analysis]
5 Chattopadhyay S, Ram R, Sarkar A, Chakraborty S. Smartphone-based automated estimation of plasma creatinine from finger-pricked blood on a paper strip via single-user step sample-to-result integration. Measurement 2022;199:111492. [DOI: 10.1016/j.measurement.2022.111492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Karakuzu B, Tarim EA, Oksuz C, Tekin HC. An Electromechanical Lab-on-a-Chip Platform for Colorimetric Detection of Serum Creatinine. ACS Omega. [DOI: 10.1021/acsomega.2c03354] [Reference Citation Analysis]
7 Chen S, Tseng C, Huang K, Chang Y, Fu L. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022;12:496. [DOI: 10.3390/bios12070496] [Reference Citation Analysis]
8 Wang G, Jiang G, Zhu Y, Cheng W, Cao K, Zhou J, Lei H, Xu G, Zhao D. Developing cellulosic functional materials from multi-scale strategy and applications in flexible bioelectronic devices. Carbohydrate Polymers 2022;283:119160. [DOI: 10.1016/j.carbpol.2022.119160] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Dudala S, Dubey SK, Javed A, Ganguly A, Kapur S, Goel S. Portable Chemiluminescence Detection Platform and Its Application in Creatinine Detection. IEEE Sensors J 2022;22:7177-84. [DOI: 10.1109/jsen.2022.3151694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Shariati S, Khayatian G. A new method for selective determination of creatinine using smartphone-based digital image. Microfluid Nanofluid 2022;26. [DOI: 10.1007/s10404-022-02538-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhang XL, Hu Y, Gao RX, Ge SX, Zhang DX. Numerical and Experimental Investigation of Liquid Residue in 90° Bend Microchannel Based on Gas–Liquid Two-Phase Flow. Fluid Dyn 2021;56:S34-52. [DOI: 10.1134/s0015462822020136] [Reference Citation Analysis]
13 Khan MS, Shadman SA, Khandaker MMR. Advances and current trend of bioactive papers and paper diagnostics for health and biotechnological applications. Current Opinion in Chemical Engineering 2022;35:100733. [DOI: 10.1016/j.coche.2021.100733] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Srivastava A, Agarwal G. Research Aspects and Strategies for the Development of Biosensors for Renal Disease Diagnosis. BioSensing, Theranostics, and Medical Devices 2022. [DOI: 10.1007/978-981-16-2782-8_7] [Reference Citation Analysis]
15 Chen K, Liu C, Lu S, Chen S, Sheu F, Fu L. Rapid microfluidic analysis detection system for sodium dehydroacetate in foods. Chemical Engineering Journal 2022;427:131530. [DOI: 10.1016/j.cej.2021.131530] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
16 Rukhiya S, Joseph X, Megha KB, Mohanan PV. Lab-on-a-Chip for Functional Testing for Precision Medicine. Microfluidics and Multi Organs on Chip 2022. [DOI: 10.1007/978-981-19-1379-2_27] [Reference Citation Analysis]
17 Gonzalez-gallardo CL, Arjona N, Álvarez-contreras L, Guerra-balcázar M. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review. RSC Adv 2022;12:30785-30802. [DOI: 10.1039/d2ra04479j] [Reference Citation Analysis]
18 Xia J, Yang Y, Jiang X, Shabbir M, Luo X. Cobalt Oxyhydroxide Nanoflakes/Cellulose Composite Membranes with Enhanced Detection of Ascorbic Acid. ACS Appl Polym Mater 2022;4:469-78. [DOI: 10.1021/acsapm.1c01370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Liu C, Ko C, Wang Y, Fu L, Lee S. Rapid detection of artificial sweeteners in food using microfluidic chromatography detection system. Chemical Engineering Journal 2021;425:131528. [DOI: 10.1016/j.cej.2021.131528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
20 Chen P, Chen K, Lin C, Yeh Y. Rapidly and simultaneously quantifying multiple biomarkers of L-tyrosine hydroxylase deficiency by using paper microfluidic devices and smartphone-based analysis system. Sensors and Actuators B: Chemical 2021;349:130722. [DOI: 10.1016/j.snb.2021.130722] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
21 Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, Fu S. Polymer‐based microfluidic devices: A comprehensive review on preparation and applications. Polymer Engineering & Sci 2022;62:3-24. [DOI: 10.1002/pen.25831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. Nano Select. [DOI: 10.1002/nano.202100255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
23 Tseng C, Kung C, Chen R, Tsai M, Chao H, Wang Y, Fu L. Recent advances in microfluidic paper-based assay devices for diagnosis of human diseases using saliva, tears and sweat samples. Sensors and Actuators B: Chemical 2021;342:130078. [DOI: 10.1016/j.snb.2021.130078] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 24.0] [Reference Citation Analysis]
24 Hidayah Azeman N, Asif Ahmad Khushaini M, Daik R, Ismail AG, Yeop Majlis B, Mat Salleh M, Aziz THTA, Bakar AAA, Md Zain AR, Teh C. Synthesis of a 1,4‐Bis[2‐(5‐thiophen‐2‐yl)‐1‐benzothiophene]‐2,5‐dioctyloxybenzene Pentamer for Creatinine Detection. Asian J Org Chem 2021;10:2406-17. [DOI: 10.1002/ajoc.202100374] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
25 Laurenciano CJD, Tseng CC, Chen SJ, Lu SY, Tayo LL, Fu LM. Microfluidic colorimetric detection platform with sliding hybrid PMMA/paper microchip for human urine and blood sample analysis. Talanta 2021;231:122362. [PMID: 33965028 DOI: 10.1016/j.talanta.2021.122362] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
26 Lewińska I, Speichert M, Granica M, Tymecki Ł. Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sensors and Actuators B: Chemical 2021;340:129915. [DOI: 10.1016/j.snb.2021.129915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 20.0] [Reference Citation Analysis]
27 Wen P, Yang F, Ge C, Li S, Xu Y, Chen L. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. Nanotechnology 2021;32. [PMID: 34161934 DOI: 10.1088/1361-6528/ac0ddd] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. Adv Mater 2021;33:e2000619. [PMID: 32310313 DOI: 10.1002/adma.202000619] [Cited by in Crossref: 180] [Cited by in F6Publishing: 197] [Article Influence: 180.0] [Reference Citation Analysis]
29 Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021;21:1433-53. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
30 Stojanović GM, Kojić T, Simić M, Radovanović M, Panić S, Srdić VV, Vukmirović S, Ellison G, Al-salami H. A Functionalized Paper Strip-Based Platform for Rapid Detection of Anticancer Drug Concentrations. Journal of Sensors 2021;2021:1-11. [DOI: 10.1155/2021/5558859] [Reference Citation Analysis]
31 Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A. Trend in creatinine determining methods: Conventional methods to molecular‐based methods. Analytical Science Advances 2021;2:308-325. [DOI: 10.1002/ansa.202000074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Yuan H, Tsai T, Wang H, Chien Y, Chen C, Chu C, Ho C, Chu P, Chen C. A manual and portable centrifuge combined with a paper-based immunoassay for myocardial infarction diagnosis. Chemical Engineering Journal 2021;409:128131. [DOI: 10.1016/j.cej.2020.128131] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
33 Tseng CC, Ko CH, Lu SY, Yang CE, Fu LM, Li CY. Rapid electrochemical-biosensor microchip platform for determination of microalbuminuria in CKD patients. Anal Chim Acta 2021;1146:70-6. [PMID: 33461721 DOI: 10.1016/j.aca.2020.12.029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Rahil Hasan M, Anzar N, Tyagi M, Yadav N, Narang J. Lab-on-a-chip devices—Advancement in the designing of biosensors. Functionalized Nanomaterials Based Devices for Environmental Applications 2021. [DOI: 10.1016/b978-0-12-822245-4.00005-2] [Reference Citation Analysis]
35 Ko CH, Liu CC, Chen KH, Sheu F, Fu LM, Chen SJ. Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chem 2021;345:128773. [PMID: 33302108 DOI: 10.1016/j.foodchem.2020.128773] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
36 Kung C, Gao H, Lee C, Wang Y, Dong W, Ko C, Wang G, Fu L. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis. Chemical Engineering Journal 2020;399:125748. [DOI: 10.1016/j.cej.2020.125748] [Cited by in Crossref: 43] [Cited by in F6Publishing: 30] [Article Influence: 21.5] [Reference Citation Analysis]
37 Sriramprabha R, Sekar M, Revathi R, Viswanathan C, Wilson J. Fe2O3/polyaniline supramolecular nanocomposite: A receptor free sensor platform for the quantitative determination of serum creatinine. Analytica Chimica Acta 2020;1137:103-14. [DOI: 10.1016/j.aca.2020.09.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
38 Narimani R, Azizi M, Esmaeili M, Rasta SH, Khosroshahi HT. An optimal method for measuring biomarkers: colorimetric optical image processing for determination of creatinine concentration using silver nanoparticles. 3 Biotech 2020;10:416. [PMID: 32944491 DOI: 10.1007/s13205-020-02405-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
39 Hou C, Fu L, Ju W, Wu P. Microfluidic colorimetric system for nitrite detection in foods. Chemical Engineering Journal 2020;398:125573. [DOI: 10.1016/j.cej.2020.125573] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 16.5] [Reference Citation Analysis]
40 Sadeghi S, Hosseinpour-zaryabi M. Sodium gluconate capped silver nanoparticles as a highly sensitive and selective colorimetric probe for the naked eye sensing of creatinine in human serum and urine. Microchemical Journal 2020;154:104601. [DOI: 10.1016/j.microc.2020.104601] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Zhao D, Wu Z, Yu J, Wang H, Li Y, Duan Y. Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating. Chemical Engineering Journal 2020;383:123230. [DOI: 10.1016/j.cej.2019.123230] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
42 Liu Y, Cánovas R, Crespo GA, Cuartero M. Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences. Anal Chem 2020;92:3315-23. [PMID: 31971373 DOI: 10.1021/acs.analchem.9b05231] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
43 Brunauer A, Ates HC, Dincer C, Früh SM. Integrated paper-based sensing devices for diagnostic applications. Paper Based Sensors. Elsevier; 2020. pp. 397-450. [DOI: 10.1016/bs.coac.2020.03.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
44 Mahato K, Purohit B, Kumar A, Chandra P. Paper-based biosensors for clinical and biomedical applications: Emerging engineering concepts and challenges. Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2020.02.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
45 Kung C, Hou C, Wang Y, Fu L. Microfluidic paper-based analytical devices for environmental analysis of soil, air, ecology and river water. Sensors and Actuators B: Chemical 2019;301:126855. [DOI: 10.1016/j.snb.2019.126855] [Cited by in Crossref: 75] [Cited by in F6Publishing: 80] [Article Influence: 25.0] [Reference Citation Analysis]
46 Luo X, Xia J, Jiang X, Yang M, Liu S. Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Anal Chem 2019;91:15461-8. [DOI: 10.1021/acs.analchem.9b03180] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 16.7] [Reference Citation Analysis]
47 Aguado R, Murtinho D, Valente AJ. A broad overview on innovative functionalized paper solutions. Nordic Pulp & Paper Research Journal 2019;34:395-416. [DOI: 10.1515/npprj-2019-0036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
48 Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. ELECTROPHORESIS 2020;41:287-305. [DOI: 10.1002/elps.201900258] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
49 Kumar P, Kamboj M, Jaiwal R, Pundir CS. Fabrication of an improved amperometric creatinine biosensor based on enzymes nanoparticles bound to Au electrode. Biomarkers 2019;24:739-49. [PMID: 31617777 DOI: 10.1080/1354750X.2019.1682045] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Shin S, Kim B, Kim Y, Choi S. Integrated microfluidic pneumatic circuit for point-of-care molecular diagnostics. Biosensors and Bioelectronics 2019;133:169-76. [DOI: 10.1016/j.bios.2019.03.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
51 de Castro LF, de Freitas SV, Duarte LC, de Souza JAC, Paixão TRLC, Coltro WKT. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. Anal Bioanal Chem 2019;411:4919-28. [DOI: 10.1007/s00216-019-01788-0] [Cited by in Crossref: 80] [Cited by in F6Publishing: 56] [Article Influence: 26.7] [Reference Citation Analysis]
52 Cánovas R, Cuartero M, Crespo GA. Modern creatinine (Bio)sensing: Challenges of point-of-care platforms. Biosens Bioelectron 2019;130:110-24. [PMID: 30731344 DOI: 10.1016/j.bios.2019.01.048] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]
53 He R, Tseng H, Lee H, Liu Y, Koshevoy IO, Pan S, Ho M. Paper-based microfluidic devices based on 3D network polymer hydrogel for the determination of glucose in human whole blood. RSC Adv 2019;9:32367-74. [DOI: 10.1039/c9ra04278d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
54 Pandey M, Shahare K, Srivastava M, Bhattacharya S. Paper-Based Devices for Wearable Diagnostic Applications. Advanced Functional Materials and Sensors 2019. [DOI: 10.1007/978-981-15-0489-1_12] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Xie L, Zi X, Zeng H, Sun J, Xu L, Chen S. Low-cost fabrication of a paper-based microfluidic using a folded pattern paper. Anal Chim Acta 2019;1053:131-8. [PMID: 30712558 DOI: 10.1016/j.aca.2018.12.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
56 Yang R, Tseng C, Ju W, Wang H, Fu L. A rapid paper-based detection system for determination of human serum albumin concentration. Chemical Engineering Journal 2018;352:241-6. [DOI: 10.1016/j.cej.2018.07.022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
57 Fu L, Wang Y. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends in Analytical Chemistry 2018;107:196-211. [DOI: 10.1016/j.trac.2018.08.018] [Cited by in Crossref: 144] [Cited by in F6Publishing: 154] [Article Influence: 36.0] [Reference Citation Analysis]
58 Chaiyo S, Kalcher K, Apilux A, Chailapakul O, Siangproh W. A novel paper-based colorimetry device for the determination of the albumin to creatinine ratio. Analyst 2018;143:5453-60. [DOI: 10.1039/c8an01122b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]