BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nguyen H, Wey S, Juang J, Sonaje K, Ho Y, Chuang E, Hsu C, Yen T, Lin K, Sung H. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials 2011;32:2673-82. [DOI: 10.1016/j.biomaterials.2010.12.044] [Cited by in Crossref: 85] [Cited by in F6Publishing: 85] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. Food Science and Human Wellness 2023;12:337-350. [DOI: 10.1016/j.fshw.2022.07.036] [Reference Citation Analysis]
2 Ibnat N, Zaman R, Uddin MB, Chowdhury E, Lee CY. Improved systemic half-life of glucagon-like peptide-1-loaded carbonate apatite nanoparticles in rats. World J Diabetes 2022; 13(8): 613-621 [DOI: 10.4239/wjd.v13.i8.613] [Reference Citation Analysis]
3 Qiu A, Wang Y, Zhang G, Wang H. Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022;14:3217. [PMID: 35956731 DOI: 10.3390/polym14153217] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Zhang J, Liu X, Lin J, Bao X, Peng J, Gong Z, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121979] [Reference Citation Analysis]
5 Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022;15:392-408. [PMID: 35386357 DOI: 10.1016/j.bioactmat.2022.02.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Tran H, ElSayed MEH. Progress and limitations of oral peptide delivery as a potentially transformative therapy. Expert Opin Drug Deliv 2022. [PMID: 35255753 DOI: 10.1080/17425247.2022.2051476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhou Y, Chen Z, Zhao D, Li D, He C, Chen X. A pH-Triggered Self-Unpacking Capsule Containing Zwitterionic Hydrogel-Coated MOF Nanoparticles for Efficient Oral Exendin-4 Delivery. Adv Mater 2021;33:e2102044. [PMID: 34216408 DOI: 10.1002/adma.202102044] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
8 Sharma GN, Kumar CP, Shrivastava B, Kumar B. Advances in Oral Chitosan Based Nano Delivery System for colon Targeted Drug Delivery in Inflammatory Bowel Disease. RJPT. [DOI: 10.52711/0974-360x.2021.00652] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Han Y, Liu W, Chen L, Xin X, Wang Q, Zhang X, Jin M, Gao Z, Huang W. Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy. Biomaterials 2021;275:120944. [PMID: 34153783 DOI: 10.1016/j.biomaterials.2021.120944] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Ren T, Zheng X, Bai R, Yang Y, Jian L. Utilization of PLGA nanoparticles in yeast cell wall particle system for oral targeted delivery of exenatide to improve its hypoglycemic efficacy. Int J Pharm 2021;601:120583. [PMID: 33839225 DOI: 10.1016/j.ijpharm.2021.120583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021;13:670. [PMID: 33562376 DOI: 10.3390/cancers13040670] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
12 Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021;597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Yu F, Zhu Y, Liu Y, Qiu G, Shang X, Meng T, Yuan H, Hu F. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis. Biomater Sci 2020;8:5955-68. [PMID: 32966382 DOI: 10.1039/d0bm01254h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
14 Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, Joni IM, Muchtaridi M. Enteric-Coated Strategies in Colorectal Cancer Nanoparticle Drug Delivery System. Drug Des Devel Ther 2020;14:4387-405. [PMID: 33116423 DOI: 10.2147/DDDT.S273612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
15 Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv 2020;17:1345-59. [PMID: 32602795 DOI: 10.1080/17425247.2020.1789585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
16 Martins C, Chauhan VM, Araújo M, Abouselo A, Barrias CC, Aylott JW, Sarmento B. Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine (Lond) 2020;15:2287-309. [PMID: 32945230 DOI: 10.2217/nnm-2020-0145] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Phan TNQ, Ismail R, Le-vinh B, Zaichik S, Laffleur F, Bernkop-schnürch A. The Effect of Counterions in Hydrophobic Ion Pairs on Oral Bioavailability of Exenatide. ACS Biomater Sci Eng 2020;6:5032-9. [DOI: 10.1021/acsbiomaterials.0c00637] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
18 Ismail R, Phan TNQ, Laffleur F, Csóka I, Bernkop-schnürch A. Hydrophobic ion pairing of a GLP-1 analogue for incorporating into lipid nanocarriers designed for oral delivery. European Journal of Pharmaceutics and Biopharmaceutics 2020;152:10-7. [DOI: 10.1016/j.ejpb.2020.04.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
19 Bao X, Qian K, Yao P. Oral delivery of exenatide-loaded hybrid zein nanoparticles for stable blood glucose control and β-cell repair of type 2 diabetes mice. J Nanobiotechnology 2020;18:67. [PMID: 32345323 DOI: 10.1186/s12951-020-00619-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
20 Wang Y, Bai X, Hu B, Xing M, Cao Q, Ji A, Song S. Transport Mechanisms of Polymannuronic Acid and Polyguluronic Acid Across Caco-2 Cell Monolayers. Pharmaceutics 2020;12:E167. [PMID: 32079270 DOI: 10.3390/pharmaceutics12020167] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
21 Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019;9:902-22. [PMID: 31649842 DOI: 10.1016/j.apsb.2019.01.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
22 Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology 2019;49:66-81. [DOI: 10.1016/j.jddst.2018.10.022] [Cited by in Crossref: 101] [Cited by in F6Publishing: 104] [Article Influence: 25.3] [Reference Citation Analysis]
23 Hu C, Jia W. Therapeutic medications against diabetes: What we have and what we expect. Adv Drug Deliv Rev 2019;139:3-15. [PMID: 30529309 DOI: 10.1016/j.addr.2018.11.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
24 Suzuki K, Kim KS, Bae YH. Long-term oral administration of Exendin-4 to control type 2 diabetes in a rat model. J Control Release 2019;294:259-67. [PMID: 30572033 DOI: 10.1016/j.jconrel.2018.12.028] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 6.4] [Reference Citation Analysis]
25 Handali S, Moghimipour E, Rezaei M, Kouchak M, Ramezani Z, Dorkoosh FA. In vitro and in vivo evaluation of coated capsules for colonic delivery. Journal of Drug Delivery Science and Technology 2018;47:492-8. [DOI: 10.1016/j.jddst.2018.07.027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
26 Araújo F, Shrestha N, Gomes MJ, Herranz-Blanco B, Liu D, Hirvonen JJ, Granja PL, Santos HA, Sarmento B. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale 2016;8:10706-13. [PMID: 27150301 DOI: 10.1039/c6nr00294c] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 7.8] [Reference Citation Analysis]
27 Menzel C, Holzeisen T, Laffleur F, Zaichik S, Abdulkarim M, Gumbleton M, Bernkop-schnürch A. In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. Journal of Controlled Release 2018;277:165-72. [DOI: 10.1016/j.jconrel.2018.03.018] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 15.0] [Reference Citation Analysis]
28 Moonschi FH, Hughes CB, Mussman GM, Fowlkes JL, Richards CI, Popescu I. Advances in micro- and nanotechnologies for the GLP-1-based therapy and imaging of pancreatic beta-cells. Acta Diabetol 2018;55:405-18. [PMID: 29264724 DOI: 10.1007/s00592-017-1086-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
29 Quiñones JP, Peniche H, Peniche C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel) 2018;10:E235. [PMID: 30966270 DOI: 10.3390/polym10030235] [Cited by in Crossref: 144] [Cited by in F6Publishing: 146] [Article Influence: 28.8] [Reference Citation Analysis]
30 Fakhraei Lahiji S, Jang Y, Huh I, Yang H, Jang M, Jung H. Exendin-4-encapsulated dissolving microneedle arrays for efficient treatment of type 2 diabetes. Sci Rep 2018;8:1170. [PMID: 29348573 DOI: 10.1038/s41598-018-19789-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
31 Nurunnabi M, Lee S, Revuri V, Hwang YH, Kang SH, Lee M, Cho S, Cho KJ, Byun Y, Bae YH, Lee DY, Lee Y. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. Journal of Controlled Release 2017;268:305-13. [DOI: 10.1016/j.jconrel.2017.08.035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
32 Chen C, Zheng H, Xu J, Shi X, Li F, Wang X. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. Daru 2017;25:20. [PMID: 28870261 DOI: 10.1186/s40199-017-0186-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
33 Wang P, Zhuo X, Chu W, Tang X. Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. International Journal of Pharmaceutics 2017;528:62-75. [DOI: 10.1016/j.ijpharm.2017.05.069] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
34 Ma S, We L, Yang H, Deng S, M. Jevnikar A. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM). Can J Biotech 2017;1:1-10. [DOI: 10.24870/cjb.2017-000107] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
35 Ismail R, Csóka I. Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur J Pharm Biopharm 2017;115:257-67. [PMID: 28336368 DOI: 10.1016/j.ejpb.2017.03.015] [Cited by in Crossref: 65] [Cited by in F6Publishing: 69] [Article Influence: 10.8] [Reference Citation Analysis]
36 Aguirre TA, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev 2016;106:223-41. [PMID: 26921819 DOI: 10.1016/j.addr.2016.02.004] [Cited by in Crossref: 205] [Cited by in F6Publishing: 208] [Article Influence: 29.3] [Reference Citation Analysis]
37 Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev 2016;106:367-80. [PMID: 27320644 DOI: 10.1016/j.addr.2016.06.006] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 9.6] [Reference Citation Analysis]
38 Wang P, Wang Q, Ren T, Gong H, Gou J, Zhang Y, Cai C, Tang X. Effects of Pluronic F127-PEG multi-gel-core on the release profile and pharmacodynamics of Exenatide loaded in PLGA microspheres. Colloids and Surfaces B: Biointerfaces 2016;147:360-7. [DOI: 10.1016/j.colsurfb.2016.08.032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
39 Lin Y, Krogh-Andersen K, Pelletier J, Marcotte H, Östenson CG, Hammarström L. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. PLoS One 2016;11:e0162733. [PMID: 27610615 DOI: 10.1371/journal.pone.0162733] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
40 Saboo S, Tumban E, Peabody J, Wafula D, Peabody DS, Chackerian B, Muttil P. Optimized Formulation of a Thermostable Spray-Dried Virus-Like Particle Vaccine against Human Papillomavirus. Mol Pharm 2016;13:1646-55. [PMID: 27019231 DOI: 10.1021/acs.molpharmaceut.6b00072] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
41 Bruschi M, Villa Nova M, Outuki P. Relevant Aspects on Peptide Delivery from Nanostructured Therapeutic Systems. Nanoarchitectonics for Smart Delivery and Drug Targeting 2016. [DOI: 10.1016/b978-0-323-47347-7.00012-4] [Reference Citation Analysis]
42 Soudry-Kochavi L, Naraykin N, Nassar T, Benita S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release 2015;217:202-10. [PMID: 26381898 DOI: 10.1016/j.jconrel.2015.09.012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
43 Zhu X, Huang Y. Nanocarriers for delivery of biotherapeutics to intestinal mucosa. Nanoparticles for Biotherapeutic Delivery (Volume 2) 2015. [DOI: 10.4155/fseb2013.14.36] [Reference Citation Analysis]
44 Jun H, Bae G, Ko YT, Oh YS. Cytotoxicity and Biological Efficacy of Exendin-4-Encapsulated Solid Lipid Nanoparticles in INS-1 Cells. Journal of Nanomaterials 2015;2015:1-6. [DOI: 10.1155/2015/753569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
45 Moghassemi S, Parnian E, Hakamivala A, Darzianiazizi M, Vardanjani MM, Kashanian S, Larijani B, Omidfar K. Uptake and transport of insulin across intestinal membrane model using trimethyl chitosan coated insulin niosomes. Materials Science and Engineering: C 2015;46:333-40. [DOI: 10.1016/j.msec.2014.10.070] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 8.6] [Reference Citation Analysis]
46 Shi Y, Ma S, Tian R, Zhao Y, Jiao Q, Ma X, Shang Q. Synthesis, characterization and release profiles of nanoparticles self-assembled from poly (PEGMA-co-MMA-co-acryloyl- β -CD) copolymers: Nanoparticles of poly (PEGMA-co-MMA-co- acryloyl-β-CD). Surf Interface Anal 2015;47:270-7. [DOI: 10.1002/sia.5704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
47 Araújo F, Shrestha N, Shahbazi M, Fonte P, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Santos HA, Sarmento B. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 2014;35:9199-207. [DOI: 10.1016/j.biomaterials.2014.07.026] [Cited by in Crossref: 107] [Cited by in F6Publishing: 108] [Article Influence: 11.9] [Reference Citation Analysis]
48 Du X, Zhang J, Zhang Y, Li S, Lin X, Tang X, Zhang Y, Wang Y. Decanoic acid grafted oligochitosan nanoparticles as a carrier for insulin transport in the gastrointestinal tract. Carbohydrate Polymers 2014;111:433-41. [DOI: 10.1016/j.carbpol.2014.04.048] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
49 Li X, Wang C, Liang R, Sun F, Shi Y, Wang A, Liu W, Sun K, Li Y. The glucose-lowering potential of exenatide delivered orally via goblet cell-targeting nanoparticles. Pharm Res 2015;32:1017-27. [PMID: 25270570 DOI: 10.1007/s11095-014-1513-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.2] [Reference Citation Analysis]
50 Lopes MA, Abrahim BA, Cabral LM, Rodrigues CR, Seiça RMF, de Baptista Veiga FJ, Ribeiro AJ. Intestinal absorption of insulin nanoparticles: Contribution of M cells. Nanomedicine: Nanotechnology, Biology and Medicine 2014;10:1139-51. [DOI: 10.1016/j.nano.2014.02.014] [Cited by in Crossref: 63] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
51 Hwang SR, Byun Y. Advances in oral macromolecular drug delivery. Expert Opinion on Drug Delivery 2014;11:1955-67. [DOI: 10.1517/17425247.2014.945420] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 4.4] [Reference Citation Analysis]
52 Zhu Z, Luo H, Lu W, Luan H, Wu Y, Luo J, Wang Y, Pi J, Lim CY, Wang H. Rapidly Dissolvable Microneedle Patches for Transdermal Delivery of Exenatide. Pharm Res 2014;31:3348-60. [DOI: 10.1007/s11095-014-1424-1] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
53 Zhang J, Zhu X, Jin Y, Shan W, Huang Y. Mechanism Study of Cellular Uptake and Tight Junction Opening Mediated by Goblet Cell-Specific Trimethyl Chitosan Nanoparticles. Mol Pharmaceutics 2014;11:1520-32. [DOI: 10.1021/mp400685v] [Cited by in Crossref: 92] [Cited by in F6Publishing: 98] [Article Influence: 10.2] [Reference Citation Analysis]
54 Barua S, Mitragotri S. Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today 2014;9:223-43. [PMID: 25132862 DOI: 10.1016/j.nantod.2014.04.008] [Cited by in Crossref: 625] [Cited by in F6Publishing: 657] [Article Influence: 69.4] [Reference Citation Analysis]
55 Zhang B, He D, Fan Y, Liu N, Chen Y. Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One 2014;9:e86064. [PMID: 24465870 DOI: 10.1371/journal.pone.0086064] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
56 Gundogdu E, Yurdasiper A. Drug transport mechanism of oral antidiabetic nanomedicines. Int J Endocrinol Metab 2014;12:e8984. [PMID: 24696697 DOI: 10.5812/ijem.8984] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
57 Martirosyan A, Olesen MJ, Howard KA. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics. Nonviral Vectors for Gene Therapy - Lipid- and Polymer-based Gene Transfer 2014. [DOI: 10.1016/b978-0-12-800148-6.00011-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
58 Gao X, Cao Y, Song X, Zhang Z, Zhuang X, He C, Chen X. Biodegradable, pH-Responsive Carboxymethyl Cellulose/Poly(Acrylic Acid) Hydrogels for Oral Insulin Delivery: Biodegradable, pH-Responsive Carboxymethyl Cellulose/Poly(Acrylic Acid) …. Macromol Biosci 2014;14:565-75. [DOI: 10.1002/mabi.201300384] [Cited by in Crossref: 105] [Cited by in F6Publishing: 107] [Article Influence: 10.5] [Reference Citation Analysis]
59 Sharma S, Kaur J, Sharma G, Thakur KK, Chauhan GS, Chauhan K. Preparation and characterization of pH-responsive guar gum microspheres. International Journal of Biological Macromolecules 2013;62:636-41. [DOI: 10.1016/j.ijbiomac.2013.09.045] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
60 Avcıbaşı U, Avcıbaşı N, Akalın HA, Ediz M, Demiroğlu H, Gümüşer FG, Özçalışkan E, Türkcan C, Uygun DA, Akgöl S. Synthesis and biodistribution of novel magnetic-poly(HEMA–APH) nanopolymer radiolabeled with iodine-131 and investigation its fate in vivo for cancer therapy. J Nanopart Res 2013;15. [DOI: 10.1007/s11051-013-2021-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
61 Skorb EV, Möhwald H. 25th anniversary article: Dynamic interfaces for responsive encapsulation systems. Adv Mater 2013;25:5029-43. [PMID: 24000161 DOI: 10.1002/adma.201302142] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 7.7] [Reference Citation Analysis]
62 Gao X, Cao Y, Song X, Zhang Z, Xiao C, He C, Chen X. pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J Mater Chem B 2013;1:5578-87. [PMID: 32261182 DOI: 10.1039/c3tb20901f] [Cited by in Crossref: 103] [Cited by in F6Publishing: 104] [Article Influence: 10.3] [Reference Citation Analysis]
63 Chuang E, Lin K, Su F, Chen H, Maiti B, Ho Y, Yen T, Panda N, Sung H. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. Journal of Controlled Release 2013;169:296-305. [DOI: 10.1016/j.jconrel.2012.11.011] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
64 Kim JY, Lee H, Oh KS, Kweon S, Jeon OC, Byun Y, Kim K, Kwon IC, Kim SY, Yuk SH. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials 2013;34:8444-9. [PMID: 23895999 DOI: 10.1016/j.biomaterials.2013.07.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
65 Chuang EY, Nguyen GT, Su FY, Lin KJ, Chen CT, Mi FL, Yen TC, Juang JH, Sung HW. Combination therapy via oral co-administration of insulin- and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials 2013;34:7994-8001. [PMID: 23891516 DOI: 10.1016/j.biomaterials.2013.07.021] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 4.2] [Reference Citation Analysis]
66 Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 2013;65:865-79. [PMID: 23159541 DOI: 10.1016/j.addr.2012.10.010] [Cited by in Crossref: 310] [Cited by in F6Publishing: 265] [Article Influence: 31.0] [Reference Citation Analysis]
67 Al-Hilal TA, Alam F, Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv Drug Deliv Rev 2013;65:845-64. [PMID: 23220326 DOI: 10.1016/j.addr.2012.11.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 6.8] [Reference Citation Analysis]
68 Wang L, Shi J, Jia X, Liu R, Wang H, Wang Z, Li L, Zhang J, Zhang C, Zhang Z. NIR-/pH-Responsive Drug Delivery of Functionalized Single-Walled Carbon Nanotubes for Potential Application in Cancer Chemo-Photothermal Therapy. Pharm Res 2013;30:2757-71. [DOI: 10.1007/s11095-013-1095-3] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 5.2] [Reference Citation Analysis]
69 Ahn S, Lee IH, Lee E, Kim H, Kim YC, Jon S. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J Control Release 2013;170:226-32. [PMID: 23747732 DOI: 10.1016/j.jconrel.2013.05.031] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
70 Wang M, Zhang Y, Feng J, Gu T, Dong Q, Yang X, Sun Y, Wu Y, Chen Y, Kong W. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Int J Nanomedicine 2013;8:1141-54. [PMID: 23658482 DOI: 10.2147/IJN.S41457] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
71 Gao X, He C, Xiao C, Zhuang X, Chen X. Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 2013;54:1786-93. [DOI: 10.1016/j.polymer.2013.01.050] [Cited by in Crossref: 108] [Cited by in F6Publishing: 111] [Article Influence: 10.8] [Reference Citation Analysis]
72 Shang Q, Zhang Y, Chen T, Liang Y, Shi Y. Preliminary studies on pH-sensitive hydrogels and in vitro release profiles of two model drugs. Journal of Biomaterials Science, Polymer Edition 2013;24:1459-71. [DOI: 10.1080/09205063.2013.768943] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
73 Leinung MC, Grasso P. [d-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide and pramlintide acetate on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice. Regulatory Peptides 2012;179:33-8. [DOI: 10.1016/j.regpep.2012.08.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
74 Araújo F, Fonte P, Santos HA, Sarmento B. Oral delivery of glucagon-like peptide-1 and analogs: alternatives for diabetes control? J Diabetes Sci Technol 2012;6:1486-97. [PMID: 23294796 DOI: 10.1177/193229681200600630] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
75 Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012;64:979-92. [PMID: 21996056 DOI: 10.1016/j.addr.2011.09.006] [Cited by in Crossref: 350] [Cited by in F6Publishing: 364] [Article Influence: 31.8] [Reference Citation Analysis]
76 Wu X, Ma L, Gao C. : . Acta Polymerica Sinica 2012;012:418-26. [DOI: 10.3724/sp.j.1105.2012.11230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
77 Gao X, He C, Xiao C, Zhuang X, Chen X. Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(L-glutamic acid). Materials Letters 2012;77:74-7. [DOI: 10.1016/j.matlet.2012.02.102] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
78 Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 2012;45:619-29. [PMID: 22236133 DOI: 10.1021/ar200234q] [Cited by in Crossref: 183] [Cited by in F6Publishing: 185] [Article Influence: 16.6] [Reference Citation Analysis]
79 Rekha MR, Sharma CP. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int J Pharm 2013;440:48-62. [PMID: 22503954 DOI: 10.1016/j.ijpharm.2012.03.056] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 10.1] [Reference Citation Analysis]
80 Su F, Lin K, Sonaje K, Wey S, Yen T, Ho Y, Panda N, Chuang E, Maiti B, Sung H. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials 2012;33:2801-11. [DOI: 10.1016/j.biomaterials.2011.12.038] [Cited by in Crossref: 152] [Cited by in F6Publishing: 152] [Article Influence: 13.8] [Reference Citation Analysis]
81 Wu ZM, Zhou L, Guo XD, Jiang W, Ling L, Qian Y, Luo KQ, Zhang LJ. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm 2012;425:1-8. [PMID: 22248666 DOI: 10.1016/j.ijpharm.2011.12.055] [Cited by in Crossref: 72] [Cited by in F6Publishing: 79] [Article Influence: 6.5] [Reference Citation Analysis]
82 Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011;32:6164-73. [PMID: 21641031 DOI: 10.1016/j.biomaterials.2011.03.056] [Cited by in Crossref: 244] [Cited by in F6Publishing: 250] [Article Influence: 20.3] [Reference Citation Analysis]
83 Chen KJ, Tang L, Garcia MA, Wang H, Lu H, Lin WY, Hou S, Yin Q, Shen CK, Cheng J, Tseng HR. The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles. Biomaterials 2012;33:1162-9. [PMID: 22074663 DOI: 10.1016/j.biomaterials.2011.10.044] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 5.9] [Reference Citation Analysis]