BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020;1866:165878. [PMID: 32544429 DOI: 10.1016/j.bbadis.2020.165878] [Cited by in Crossref: 492] [Cited by in F6Publishing: 533] [Article Influence: 164.0] [Reference Citation Analysis]
Number Citing Articles
1 Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023;1869:166634. [PMID: 36577469 DOI: 10.1016/j.bbadis.2022.166634] [Reference Citation Analysis]
2 Capistrano KJ, Richner J, Schwartz J, Mukherjee SK, Shukla D, Naqvi AR. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern. Biochim Biophys Acta Mol Basis Dis 2023;1869:166612. [PMID: 36481486 DOI: 10.1016/j.bbadis.2022.166612] [Reference Citation Analysis]
3 Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023;226:1116-40. [PMID: 36435470 DOI: 10.1016/j.ijbiomac.2022.11.227] [Reference Citation Analysis]
4 Vashishtha K, Xi F, Dharmalingam P, Douplik A. Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1. Applied Sciences 2023;13:1426. [DOI: 10.3390/app13031426] [Reference Citation Analysis]
5 Li Q, Zhou X, Wang Q, Liu W, Chen C. Microfluidics for COVID-19: From Current Work to Future Perspective. Biosensors 2023;13:163. [DOI: 10.3390/bios13020163] [Reference Citation Analysis]
6 Jin X, Liu X, Shen C. A systemic review of T-cell epitopes defined from the proteome of SARS-CoV-2. Virus Res 2023;324:199024. [PMID: 36526016 DOI: 10.1016/j.virusres.2022.199024] [Reference Citation Analysis]
7 Velagacherla V, Suresh A, Mehta CH, Nayak UY, Nayak Y. Multi-Targeting Approach in Selection of Potential Molecule for COVID-19 Treatment. Viruses 2023;15. [PMID: 36680253 DOI: 10.3390/v15010213] [Reference Citation Analysis]
8 Muralikrishnan A, Kubavat J, Vasava M, Jupudi S, Biju N. INVESTIGATION OF ANTI-SARS COV-2 ACTIVITY OF SOME TETRAHYDRO CURCUMIN DERIVATIVES: AN IN SILICO STUDY. Int J App Pharm 2023. [DOI: 10.22159/ijap.2023v15i1.46288] [Reference Citation Analysis]
9 Dini Fatini Mohammad Faizal N, Cairul Iqbal Mohd Amin M. Recent updates on liposomal formulations for detection, prevention and treatment of coronavirus disease (COVID-19). Int J Pharm 2023;630:122421. [PMID: 36410670 DOI: 10.1016/j.ijpharm.2022.122421] [Reference Citation Analysis]
10 Ghaleh SS, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Sisakht MM, Farhadi A, Bakhtiari MM, Kuehu DL, Deng Y. SARS-CoV-2 Non-structural protein 1(NSP1) mutation virulence and natural selection: Evolutionary trends in the six continents. Virus Res 2022;323:199016. [PMID: 36473671 DOI: 10.1016/j.virusres.2022.199016] [Reference Citation Analysis]
11 Yao Y, Sun H, Chen Y, Tian L, Huang D, Liu C, Zhou Y, Wang Y, Wen Z, Yang B, Chen X, Pei R. RBM24 inhibits the translation of SARS-CoV-2 polyproteins by targeting the 5'-untranslated region. Antiviral Res 2023;209:105478. [PMID: 36464077 DOI: 10.1016/j.antiviral.2022.105478] [Reference Citation Analysis]
12 Shafie MH, Antony Dass M, Ahmad Shaberi HS, Zafarina Z. Screening and confirmation tests for SARS-CoV-2: benefits and drawbacks. Beni Suef Univ J Basic Appl Sci 2023;12:6. [PMID: 36647397 DOI: 10.1186/s43088-023-00342-3] [Reference Citation Analysis]
13 Dallner M, Nasheri N. Foodborne Viral Pathogen Big Data: Genomic Analysis. Food Microbiology and Food Safety 2023. [DOI: 10.1007/978-3-031-07179-9_3] [Reference Citation Analysis]
14 Nabil SA, Abumsimir B, Laraqui A, Ennaji MM. Covid-19 and cancer: impact on diagnosis, care and therapy. Oncogenic Viruses 2023. [DOI: 10.1016/b978-0-12-824152-3.00023-8] [Reference Citation Analysis]
15 Okamoto KW, Ong V, Wallace R, Wallace R, Chaves LF. When might host heterogeneity drive the evolution of asymptomatic, pandemic coronaviruses? Nonlinear Dyn 2023;111:927-49. [PMID: 35757097 DOI: 10.1007/s11071-022-07548-7] [Reference Citation Analysis]
16 Fitriana F, Herawati MH, Nugroho FS, Syachroni S. Variation of Covid-19 examination results between PCR reagent kits. THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2021: Science and Mathematics Education Research: Current Challenges and Opportunities 2023. [DOI: 10.1063/5.0113006] [Reference Citation Analysis]
17 Adegbola PI, Fadahunsi OS, Ogunjinmi OE, Adegbola AE, Ojeniyi FD, Adesanya A, Olagoke E, Adisa AD, Ehigie AF, Adetutu A, Semire B. Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies. Inform Med Unlocked 2023;37:101167. [PMID: 36686560 DOI: 10.1016/j.imu.2023.101167] [Reference Citation Analysis]
18 Suarez-Cabello C, Valdivia E, Vergara-Buenaventura A. Clinical-Epidemiological Profile of Dental Professionals Associated with COVID-19 Infection in Southern Peru: A Cross-Sectional Study. Int J Environ Res Public Health 2022;20. [PMID: 36612988 DOI: 10.3390/ijerph20010672] [Reference Citation Analysis]
19 Wulandari S, Hartono, Wibawa T. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets: A review. Immunology 2022. [PMID: 36571562 DOI: 10.1111/imm.13623] [Reference Citation Analysis]
20 Raj Kumar Chinnadurai, Saravanaraman Ponne, Loganathan Chitra, Rajender Kumar, Palvannan Thayumanavan, Balanehru Subramanian. Pharmacoinformatic approach to identify potential phytochemicals against SARS-CoV-2 spike receptor-binding domain in native and variants of concern. Mol Divers 2022. [PMID: 36547813 DOI: 10.1007/s11030-022-10580-9] [Reference Citation Analysis]
21 Nagahawatta DP, Liyanage NM, Je JG, Jayawardhana HHACK, Jayawardena TU, Jeong SH, Kwon HJ, Choi CS, Jeon YJ. Polyphenolic Compounds Isolated from Marine Algae Attenuate the Replication of SARS-CoV-2 in the Host Cell through a Multi-Target Approach of 3CL(pro) and PL(pro). Mar Drugs 2022;20. [PMID: 36547933 DOI: 10.3390/md20120786] [Reference Citation Analysis]
22 Pelliccia S, Cerchia C, Esposito F, Cannalire R, Corona A, Costanzi E, Kuzikov M, Gribbon P, Zaliani A, Brindisi M, Storici P, Tramontano E, Summa V. Easy access to α-ketoamides as SARS-CoV-2 and MERS Mpro inhibitors via the PADAM oxidation route. European Journal of Medicinal Chemistry 2022;244:114853. [DOI: 10.1016/j.ejmech.2022.114853] [Reference Citation Analysis]
23 Standley DM, Nakanishi T, Xu Z, Haruna S, Li S, Nazlica SA, Katoh K. The evolution of structural genomics. Biophys Rev 2022;14:1247-53. [PMID: 36536641 DOI: 10.1007/s12551-022-01031-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Azubuike CC, Couceiro F, Robson SC, Piccinni MZ, Watts JEM, Williams JB, Callaghan AJ, Howard TP. Developing Biosensors for SARS-CoV-2 Wastewater-Based Epidemiology: A Systematic Review of Trends, Limitations and Future Perspectives. Sustainability 2022;14:16761. [DOI: 10.3390/su142416761] [Reference Citation Analysis]
25 Hamdy ME, El-Deeb AH, Hagag NM, Shahein MA, Liyanage NPM, Shalaan M, Hussein HA. SARS-CoV-2 infection of companion animals in Egypt and its risk of spillover. Vet Med Sci 2023;9:13-24. [PMID: 36516308 DOI: 10.1002/vms3.1029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Brindha S, Yoshizue T, Wongnak R, Takemae H, Oba M, Mizutani T, Kuroda Y. An Escherichia coli Expressed Multi-Disulfide Bonded SARS-CoV-2 RBD Shows Native-like Biophysical Properties and Elicits Neutralizing Antisera in a Mouse Model. Int J Mol Sci 2022;23. [PMID: 36555383 DOI: 10.3390/ijms232415744] [Reference Citation Analysis]
27 Lee MJ, Leong MW, Rustagi A, Beck A, Zeng L, Holmes S, Qi LS, Blish CA. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D. Cell Rep 2022;41:111892. [PMID: 36543165 DOI: 10.1016/j.celrep.2022.111892] [Reference Citation Analysis]
28 Schwarze M, Luo J, Brakel A, Krizsan A, Lakowa N, Grünewald T, Lehmann C, Wolf J, Borte S, Milkovska-Stamenova S, Gabert J, Scholz M, Hoffmann R. Evaluation of S- and M-Proteins Expressed in Escherichia coli and HEK Cells for Serological Detection of Antibodies in Response to SARS-CoV-2 Infections and mRNA-Based Vaccinations. Pathogens 2022;11. [PMID: 36558849 DOI: 10.3390/pathogens11121515] [Reference Citation Analysis]
29 Bisht D, Rath SL, Roy S, Jaiswal A. MoS(2) nanosheets effectively bind to the receptor binding domain of the SARS-CoV-2 spike protein and destabilize the spike-human ACE2 receptor interactions. Soft Matter 2022;18:8961-73. [PMID: 36382499 DOI: 10.1039/d2sm01181f] [Reference Citation Analysis]
30 Zare Z, Assarroudi A, Armat MR, Laal Ahangar M, Estaji M, MoghaddamHosseini V, Dianatinasab M. Signs, Symptoms, and Side-Effects Presented by Different Types of COVID-19 Vaccines: A Prospective Cohort Study. Life (Basel) 2022;12. [PMID: 36556411 DOI: 10.3390/life12122046] [Reference Citation Analysis]
31 Cui H, Tu F, Zhang C, Zhang C, Zhao K, Liu J, Dong S, Chen L, Liu J, Guo Z. Real-Time Reverse Transcription Recombinase-Aided Amplification Assay for Rapid Amplification of the N Gene of SARS-CoV-2. Int J Mol Sci 2022;23. [PMID: 36499594 DOI: 10.3390/ijms232315269] [Reference Citation Analysis]
32 Hassam M, Bashir MA, Shafi S, Zahra NU, Khan K, Jalal K, Siddiqui H, Uddin R. Identification of potent compounds against SARs-CoV-2: An in-silico based drug searching against Mpro. Comput Biol Med 2022;151:106284. [PMID: 36370580 DOI: 10.1016/j.compbiomed.2022.106284] [Reference Citation Analysis]
33 Yepes M. Neurological Complications of SARS-CoV-2 Infection and COVID-19 Vaccines: From Molecular Mechanisms to Clinical Manifestations. Curr Drug Targets 2022;23:1620-38. [PMID: 36121081 DOI: 10.2174/1389450123666220919123029] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zheng Q, Lin R, Chen Y, Lv Q, Zhang J, Zhai J, Xu W, Wang W. SARS-CoV-2 induces "cytokine storm" hyperinflammatory responses in RA patients through pyroptosis. Front Immunol 2022;13:1058884. [PMID: 36532040 DOI: 10.3389/fimmu.2022.1058884] [Reference Citation Analysis]
35 Gandhi Y, Mishra SK, Rawat H, Grewal J, Kumar R, Shakya SK, Jain VK, Babu G, Singh A, Singh R, Acharya R, Kumar V. Phytomedicines explored under in vitro and in silico studies against coronavirus: An opportunity to develop traditional medicines. S Afr J Bot 2022;151:451-83. [PMID: 35530267 DOI: 10.1016/j.sajb.2022.04.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Khan MZI, Nazli A, Al-Furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022;13:1034444. [PMID: 36518757 DOI: 10.3389/fimmu.2022.1034444] [Reference Citation Analysis]
37 Sanusi ZK, Lobb KA. Insights into the Dynamics and Binding of Two Polyprotein Substrate Cleavage Points in the Context of the SARS-CoV-2 Main and Papain-like Proteases. Molecules 2022;27. [PMID: 36500348 DOI: 10.3390/molecules27238251] [Reference Citation Analysis]
38 Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022;13:1041185. [PMID: 36505475 DOI: 10.3389/fimmu.2022.1041185] [Reference Citation Analysis]
39 Suprewicz Ł, Tran KA, Piktel E, Fiedoruk K, Janmey PA, Galie PA, Bucki R. Recombinant human plasma gelsolin reverses increased permeability of the blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus. J Neuroinflammation 2022;19:282. [PMID: 36434734 DOI: 10.1186/s12974-022-02642-4] [Reference Citation Analysis]
40 Mihajlovski K, Buttner MP, Cruz P, Labus B, St Pierre Schneider B, Detrick E. SARS-CoV-2 surveillance with environmental surface sampling in public areas. PLoS One 2022;17:e0278061. [PMID: 36417446 DOI: 10.1371/journal.pone.0278061] [Reference Citation Analysis]
41 Sano M, Morishita K, Onizawa Y, Takagi T, Sumaru K. Rapid and Highly Sensitive Method for Evaluating Surface Coatings against an Enveloped RNA Virus. ACS Appl Bio Mater 2022;5:5174-80. [PMID: 36240051 DOI: 10.1021/acsabm.2c00613] [Reference Citation Analysis]
42 Perlinska AP, Stasiulewicz A, Nguyen ML, Swiderska K, Zmudzinski M, Maksymiuk AW, Drag M, Sulkowska JI. Amino acid variants of SARS-CoV-2 papain-like protease have impact on drug binding. PLoS Comput Biol 2022;18:e1010667. [DOI: 10.1371/journal.pcbi.1010667] [Reference Citation Analysis]
43 Ivanisenko VA, Gaisler EV, Basov NV, Rogachev AD, Cheresiz SV, Ivanisenko TV, Demenkov PS, Mishchenko EL, Khripko OP, Khripko YI, Voevoda SM, Karpenko TN, Velichko AJ, Voevoda MI, Kolchanov NA, Pokrovsky AG. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci Rep 2022;12:19977. [PMID: 36404352 DOI: 10.1038/s41598-022-24170-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Ansari WA, Khan MA, Rizvi F, Ali K, Hussain MK, Saquib M, Khan MF. Computational Screening of Plant-Derived Natural Products against SARS-CoV-2 Variants. Future Pharmacology 2022;2:558-578. [DOI: 10.3390/futurepharmacol2040034] [Reference Citation Analysis]
45 Rashid S, Ng TA, Kwoh CK. Jupytope: computational extraction of structural properties of viral epitopes. Brief Bioinform 2022;23:bbac362. [PMID: 36094101 DOI: 10.1093/bib/bbac362] [Reference Citation Analysis]
46 Duma Z, Ramsuran V, Chuturgoon AA, Edward VA, Naidoo P, Mkhize-Kwitshana ZL. Evaluation of Various Alternative Economical and High Throughput SARS-CoV-2 Testing Methods within Resource-Limited Settings. Int J Mol Sci 2022;23. [PMID: 36430827 DOI: 10.3390/ijms232214350] [Reference Citation Analysis]
47 Prasad R, Ajith H, Kumar Chandrakumaran N, Dnyaneshwar Khangar P, Mohan A, Nelson-sathi S. In silico study identifies peptide inhibitors that negate the effect of non-synonymous mutations in major drug targets of SARS-CoV-2 variants. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2143426] [Reference Citation Analysis]
48 Petrillo F, Petrillo A, Sasso FP, Schettino A, Maione A, Galdiero M. Viral Infection and Antiviral Treatments in Ocular Pathologies. Microorganisms 2022;10:2224. [DOI: 10.3390/microorganisms10112224] [Reference Citation Analysis]
49 Li J, Zhong F, Li M, Liu Y, Wang L, Liu M, Li F, Zhang J, Wu J, Shi Y, Zhang Z, Tu X, Ruan K, Gao J. Two Binding Sites of SARS-CoV-2 Macrodomain 3 Probed by Oxaprozin and Meclomen. J Med Chem 2022. [DOI: 10.1021/acs.jmedchem.2c01168] [Reference Citation Analysis]
50 Kumar D, Antiya SP, Patel SS, Pandit R, Joshi M, Mishra AK, Joshi CG, Patel AC. Surveillance and Molecular Characterization of SARS-CoV-2 Infection in Non-Human Hosts in Gujarat, India. Int J Environ Res Public Health 2022;19. [PMID: 36361271 DOI: 10.3390/ijerph192114391] [Reference Citation Analysis]
51 Goswami GG, Labib T. Modeling COVID-19 Transmission Dynamics: A Bibliometric Review. Int J Environ Res Public Health 2022;19. [PMID: 36361019 DOI: 10.3390/ijerph192114143] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Al-wahaibi LH, Rehman MT, Al-saleem MSM, Basudan OA, El-gamal AA, Abdelkader MSA, Alajmi MF, Abdel-mageed WM. Virtual screening and molecular dynamics simulation study of abyssomicins as potential inhibitors of COVID‐19 virus main protease and spike protein. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2139295] [Reference Citation Analysis]
53 Venkataraman S. Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines 2022;10:1805. [DOI: 10.3390/vaccines10111805] [Reference Citation Analysis]
54 Samuel JG, Malgija B, Ebenezer C, Solomon RV. Insight into designing of 2-pyridone derivatives for COVID-19 drug discovery - A computational study. Struct Chem 2022. [DOI: 10.1007/s11224-022-02076-x] [Reference Citation Analysis]
55 Gürer Giray B, Güven Açik G, Baş SM, Bulut YE, Kotanoğlu MS. Post-COVID-19 vaccine SARS-CoV-2 antibody investigation in healthcare professionals. Eur Res J 2022. [DOI: 10.18621/eurj.1132682] [Reference Citation Analysis]
56 Salinas M, Aguirre D, Baldeón L, Pérez-Galarza J. Diagnostic evaluation of nCoV-QS, nCoV-QM-N, and nCoV-OM detection kits based on rRT-PCR for detection of SARS-CoV-2 in Ecuador. Heliyon 2022;8:e11137. [PMID: 36278117 DOI: 10.1016/j.heliyon.2022.e11137] [Reference Citation Analysis]
57 Zhu AK, Li SS, Yu SP, Zhang ZY, Li H, Li JF, Gao SS, Chen H, Zhao J, Shi R, Lu M, Li C. A pair of SARS-CoV-2 nucleocapsid protein monoclonal antibodies shows high specificity and sensitivity for diagnosis. Virol Sin 2022;37:942-5. [PMID: 36272711 DOI: 10.1016/j.virs.2022.10.003] [Reference Citation Analysis]
58 Pandey AK, Verma S. In-silico structural inhibition of ACE-2 binding site of SARS-CoV-2 and SARS-CoV-2 Omicron spike protein by lectin antiviral dyad system to treat COVID-19. Drug Dev Ind Pharm 2022;:1-19. [PMID: 36250723 DOI: 10.1080/03639045.2022.2137196] [Reference Citation Analysis]
59 Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. Front Mol Med 2022;2. [DOI: 10.3389/fmmed.2022.917201] [Reference Citation Analysis]
60 Al-hindawi A, Aldallal U, Waly YM, Hussain MH, Shelig M, Saleh Elmitwalli OSMM, Deen GR, Henari FZ. An Exploration of Nanoparticle-Based Diagnostic Approaches for Coronaviruses: SARS-CoV-2, SARS-CoV and MERS-CoV. Nanomaterials 2022;12:3550. [DOI: 10.3390/nano12203550] [Reference Citation Analysis]
61 Aramini B, Masciale V, Samarelli AV, Tonelli R, Cerri S, Clini E, Stella F, Dominici M. Biological effects of COVID-19 on lung cancer: Can we drive our decisions. Front Oncol 2022;12:1029830. [DOI: 10.3389/fonc.2022.1029830] [Reference Citation Analysis]
62 Salem HF, Moubarak GA, Ali AA, Salama AAA, Salama AH. Budesonide-Loaded Bilosomes as a Targeted Delivery Therapeutic Approach Against Acute Lung Injury in Rats. J Pharm Sci 2022:S0022-3549(22)00453-1. [PMID: 36228754 DOI: 10.1016/j.xphs.2022.10.001] [Reference Citation Analysis]
63 Mart Komurcu SZ, Artik Y, Uyar Y, Hizel N, Sur H, Kocadag ZA, Dogan S, Cesur NP, Kazezoglu C. The effect of q-RT-PCR analysis method on saline gargle samples in SARS-CoV-2 clinical diagnostic methods. ELECTRON J GEN MED 2022;19:em418. [DOI: 10.29333/ejgm/12511] [Reference Citation Analysis]
64 Subagdja MFM, Sugianli AK, Prodjosoewojo S, Hartantri Y, Parwati I. Antibiotic Resistance in COVID-19 with Bacterial Infection: Laboratory-Based Surveillance Study at Single Tertiary Hospital in Indonesia. Infect Drug Resist 2022;15:5849-56. [PMID: 36217341 DOI: 10.2147/IDR.S379324] [Reference Citation Analysis]
65 Al Dossary R. Antibody Dependent Enhancement of SARS-CoV-2 Infection in the Era of Rapid Vaccine Development. Med Arch 2022;76:383-6. [PMID: 36545460 DOI: 10.5455/medarh.2022.76.383-386] [Reference Citation Analysis]
66 Prosperi S, Chiarelli F. COVID-19 and diabetes in children. Ann Pediatr Endocrinol Metab 2022;27:157-68. [DOI: 10.6065/apem.2244150.075] [Reference Citation Analysis]
67 Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev 2022;:e21813. [PMID: 36177493 DOI: 10.1002/mas.21813] [Reference Citation Analysis]
68 Liya DH, Anand NM, Jainarayanan AK, Elanchezhian M, Seetharaman M, Balakannan D, Pradhan AK. Drug repurposing and sequence analysis in S-glycoprotein variants reveals critical signature patterns and destabilization of receptor-binding domain in omicron variant. J Biomol Struct Dyn 2022;:1-18. [PMID: 36173706 DOI: 10.1080/07391102.2022.2127902] [Reference Citation Analysis]
69 Hampton JT, Lalonde TJ, Tharp JM, Kurra Y, Alugubelli YR, Roundy CM, Hamer GL, Xu S, Liu WR. Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chem Biol 2022;17:2911-22. [PMID: 36174018 DOI: 10.1021/acschembio.2c00565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022. [PMID: 36169610 DOI: 10.1021/acs.jmedchem.2c01005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
71 Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M(pro) protease activity sensor. Commun Chem 2022;5:117. [PMID: 36697750 DOI: 10.1038/s42004-022-00731-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Chen D, Zhang H. Autophagy in SARS-CoV-2 infection. Curr Opin Physiol 2022;:100596. [PMID: 36187896 DOI: 10.1016/j.cophys.2022.100596] [Reference Citation Analysis]
73 Shishir TA, Jannat T, Naser IB. Genomic surveillance unfolds the SARS-CoV-2 transmission and divergence dynamics in Bangladesh. Front Genet 2022;13:966939. [DOI: 10.3389/fgene.2022.966939] [Reference Citation Analysis]
74 Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022;18:5827-48. [PMID: 36263178 DOI: 10.7150/ijbs.77561] [Reference Citation Analysis]
75 Parmar M, Thumar R, Sheth J, Patel D. Designing multi-epitope based peptide vaccine targeting spike protein SARS-CoV-2 B1.1.529 (Omicron) variant using computational approaches. Struct Chem. [DOI: 10.1007/s11224-022-02027-6] [Reference Citation Analysis]
76 Li TW, Kenney AD, Park JG, Fiches GN, Liu H, Zhou D, Biswas A, Zhao W, Que J, Santoso N, Martinez-Sobrido L, Yount JS, Zhu J. SARS-CoV-2 Nsp14 protein associates with IMPDH2 and activates NF-κB signaling. Front Immunol 2022;13:1007089. [PMID: 36177032 DOI: 10.3389/fimmu.2022.1007089] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Cristina Diaconu C, Madalina Pitica I, Chivu-economescu M, Georgiana Necula L, Botezatu A, Virginia Iancu I, Iulia Neagu A, L. Radu E, Matei L, Maria Ruta S, Bleotu C. SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infectious Diseases 2022. [DOI: 10.5772/intechopen.107137] [Reference Citation Analysis]
78 Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, Islam A, Hassan MI. Pharmacological features, health benefits and clinical implications of honokiol. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2120541] [Reference Citation Analysis]
79 Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer’s disease: mutual risks and mechanisms. Transl Neurodegener 2022;11. [DOI: 10.1186/s40035-022-00316-y] [Reference Citation Analysis]
80 Lachén-montes M, Mendizuri N, Ausín K, Echaide M, Blanco E, Chocarro L, de Toro M, Escors D, Fernández-irigoyen J, Kochan G, Santamaría E. Metabolic dyshomeostasis induced by SARS-CoV-2 structural proteins reveals immunological insights into viral olfactory interactions. Front Immunol 2022;13:866564. [DOI: 10.3389/fimmu.2022.866564] [Reference Citation Analysis]
81 Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022;14:1991. [DOI: 10.3390/v14091991] [Reference Citation Analysis]
82 Dutta R, Makhaik S, Zhao P, Cruz KG, Park KW, Liu H, Andrew TL, Hardy JA, Thayumanavan S. Colorimetric Cotton Swab for Viral Protease Detection. Anal Chem 2022. [PMID: 36054755 DOI: 10.1021/acs.analchem.2c02033] [Reference Citation Analysis]
83 Eilts F, Bauer S, Fraser K, Dordick JS, Wolff MW, Linhardt RJ, Zhang F. The diverse role of heparan sulfate and other GAGs in SARS-CoV-2 infections and therapeutics. Carbohydrate Polymers 2023;299:120167. [DOI: 10.1016/j.carbpol.2022.120167] [Reference Citation Analysis]
84 Preda EC, Moldovan V, Oprea OR. Clear or White? A RT-PCR plate comparison for SARS-CoV-2 diagnosis. Acta Marisiensis - Seria Medica 2022;68:120-124. [DOI: 10.2478/amma-2022-0024] [Reference Citation Analysis]
85 Khatri R, Parray HA, Siddiqui G, Chiranjivi AK, Raj S, Kaul R, Maithil V, Samal S, Ahmed S. Biophysical and Biochemical Characterization of the Receptor Binding Domain of SARS-CoV-2 Variants. Protein J 2022. [PMID: 36048314 DOI: 10.1007/s10930-022-10073-6] [Reference Citation Analysis]
86 Wang T, Wang Y, Chen P, Yin B, Ye B. An Ultrasensitive, One-Pot RNA Detection Method Based on Rationally Engineered Cas9 Nickase-Assisted Isothermal Amplification Reaction. Anal Chem . [DOI: 10.1021/acs.analchem.2c02617] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Almagro JC, Mellado-sánchez G, Pedraza-escalona M, Pérez-tapia SM. Evolution of Anti-SARS-CoV-2 Therapeutic Antibodies. IJMS 2022;23:9763. [DOI: 10.3390/ijms23179763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Kapoor N, Ghorai SM, Khuswaha PK, Bandichhor R, Brogi S. Butein as a potential binder of human ACE2 receptor for interfering with SARS-CoV-2 entry: a computer-aided analysis. J Mol Model 2022;28:270. [PMID: 36001177 DOI: 10.1007/s00894-022-05270-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
89 Chakraborty S, Saha A, Saha C, Ghosh S, Mondal T. Decoding the effects of spike receptor binding domain mutations on antibody escape abilities of omicron variants. Biochem Biophys Res Commun 2022;627:168-75. [PMID: 36041326 DOI: 10.1016/j.bbrc.2022.08.050] [Reference Citation Analysis]
90 Hajissa K, Mussa A, Karobari MI, Abbas MA, Ibrahim IK, Assiry AA, Iqbal A, Alhumaid S, Mutair AA, Rabaan AA, Messina P, Scardina GA. The SARS-CoV-2 Antibodies, Their Diagnostic Utility, and Their Potential for Vaccine Development. Vaccines 2022;10:1346. [DOI: 10.3390/vaccines10081346] [Reference Citation Analysis]
91 Kumar A, O Pai M, Badoni G, Singh A, Agrawal A, Ji Omar B. Perspective Chapter: Tracking Trails of SARS CoV-2 - Variants to Therapy. Infectious Diseases 2022. [DOI: 10.5772/intechopen.106472] [Reference Citation Analysis]
92 Bignon E, Monari A. Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. J Chem Inf Model 2022. [PMID: 35982544 DOI: 10.1021/acs.jcim.2c00802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Patel RS, Agrawal B. Heterologous immunity induced by 1st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front Immunol 2022;13:952229. [DOI: 10.3389/fimmu.2022.952229] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Thapa S, Singh KR, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. Biosensors 2022;12:637. [DOI: 10.3390/bios12080637] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
95 León-Gutiérrez G, Elste JE, Cabello-Gutiérrez C, Millán-Pacheco C, Martínez-Gómez MH, Mejía-Alvarez R, Tiwari V, Mejía A. A potent virucidal activity of functionalized TiO2 nanoparticles adsorbed with flavonoids against SARS-CoV-2. Appl Microbiol Biotechnol 2022. [PMID: 35951081 DOI: 10.1007/s00253-022-12112-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Falcinelli E, Petito E, Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection. Expert Rev Hematol 2022. [PMID: 35930267 DOI: 10.1080/17474086.2022.2110061] [Reference Citation Analysis]
97 Wang H, Pei R, Li X, Deng W, Xing S, Zhang Y, Zhang C, He S, Sun H, Xiao S, Xiong J, Zhang Y, Chen X, Wang Y, Guo Y, Zhang B, Shang L. The structure-based design of peptidomimetic inhibitors against SARS-CoV-2 3C like protease as Potent anti-viral drug candidate. Eur J Med Chem 2022;238:114458. [PMID: 35635946 DOI: 10.1016/j.ejmech.2022.114458] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Muhammad S, Amin S, Iqbal J, Al-sehemi AG, Alarfaji SS, Ilyas M, Atif M, Ullah S. Insighting the Therapeutic Potential of Fifty (50) Shogaol Derivatives Against M pro of SARS-CoV-2. J Comput Biophys Chem 2022;21:555-68. [DOI: 10.1142/s273741652250020x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Uppal T, Tuffo K, Khaiboullina S, Reganti S, Pandori M, Verma SC. Screening of SARS-CoV-2 antivirals through a cell-based RNA-dependent RNA polymerase (RdRp) reporter assay. Cell Insight 2022;1:100046. [DOI: 10.1016/j.cellin.2022.100046] [Reference Citation Analysis]
100 Chauhan M, Bhardwaj VK, Kumar A, Kumar V, Kumar P, Enayathullah MG, Thomas J, George J, Kumar BK, Purohit R, Kumar A, Kumar S. Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro. Sci Rep 2022;12:13146. [PMID: 35908093 DOI: 10.1038/s41598-022-17558-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Salami Ghaleh S, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Mollapour Sisakht M, Farhadi A, Mousakhan Bakhtiari M, Lee Kuehu D, Deng Y. SARS-CoV-2 Non-Structural Protein 1(NSP1) Mutation Virulence and Natural Selection: Evolutionary Trends in the Six Continents.. [DOI: 10.1101/2022.07.22.501212] [Reference Citation Analysis]
102 Chakraborty S, Saha A, Saha C, Ghosh S, Mondal T. Decoding the Effects of Spike Receptor Binding Domain Mutations on Antibody Escape Abilities of Omicron Variants.. [DOI: 10.1101/2022.07.21.500931] [Reference Citation Analysis]
103 Hadizadeh N, Naderi M, Khezri J, Yazdani M, Shamsara M, Hashemi E. Appraisal of SARS-CoV-2 mutations and their impact on vaccination efficacy: an overview. J Diabetes Metab Disord. [DOI: 10.1007/s40200-022-01002-6] [Reference Citation Analysis]
104 Ziqi W, Kai C, Costabel U, Xiaoju Z. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration. [DOI: 10.1002/exp.20210082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Mccollum CR, Courtney CM, O’connor NJ, Aunins TR, Jordan TX, Rogers K, Brindley S, Brown JM, Nagpal P, Chatterjee A. Safety and biodistribution of Nanoligomers targeting SARS-CoV-2 genome for treatment of COVID-19.. [DOI: 10.1101/2022.07.19.500688] [Reference Citation Analysis]
106 Urbán P, Italiani P, Boraschi D, Gioria S. The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes. Front Immunol 2022;13:963627. [DOI: 10.3389/fimmu.2022.963627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Oladele JO, Adewole TS, Ogundepo GE, Oyeleke OM, Kuku A. Efficacy of selected Nigerian tropical plants in the treatment of COVID-19: in silico and in vitro investigations. Environ Sci Pollut Res Int 2022. [PMID: 35849237 DOI: 10.1007/s11356-022-22025-9] [Reference Citation Analysis]
108 Kharlamovа OS, Nikolaev KY, Ragino YI. The role of surfactant proteins SP-A and SP-D in viral infection: a focus on COVID-19. Bûll sib med 2022;21:195-206. [DOI: 10.20538/1682-0363-2022-2-195-206] [Reference Citation Analysis]
109 Mustafa S, Alomair LA, Hussein M. In Silico Analysis Using SARS-CoV-2 Main Protease and a Set of Phytocompounds to Accelerate the Development of Therapeutic Components against COVID-19. Processes 2022;10:1397. [DOI: 10.3390/pr10071397] [Reference Citation Analysis]
110 Korishettar G, Chikkahonnaiah P, Tulimilli SV, Dallavalasa S, Byrappa SH, Madhunapantula SV, Veeranna RP. Assessment of Clinical Profile and Treatment Outcome in Vaccinated and Unvaccinated SARS-CoV-2 Infected Patients. Vaccines 2022;10:1125. [DOI: 10.3390/vaccines10071125] [Reference Citation Analysis]
111 Huang XY, Yang LJ, Hu X, Zhang XX, Gu X, Du LJ, He ZY, Gu XJ. Elevated levels of fructosamine are independently associated with SARS-CoV-2 reinfection: A 12-mo follow-up study. World J Diabetes 2022; 13(7): 543-552 [DOI: 10.4239/wjd.v13.i7.543] [Reference Citation Analysis]
112 Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022;122:11287-368. [PMID: 35594413 DOI: 10.1021/acs.chemrev.1c00965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
113 Adam S, Pheiffer C, Dias S, Hlongwane T, Vannevel V, Soma-pillay P, Abdullah F. Coronavirus and Pregnancy: The Challenges of the 21st Century: A Review. Front Microbiol 2022;13:923546. [DOI: 10.3389/fmicb.2022.923546] [Reference Citation Analysis]
114 Huang X, Liang X, Zhang J, Su H, Chen Y. Pemphigus during the COVID-19 Epidemic: Infection Risk, Vaccine Responses and Management Strategies. JCM 2022;11:3968. [DOI: 10.3390/jcm11143968] [Reference Citation Analysis]
115 Schindell BG, Allardice M, Mcbride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. Front Virol 2022;2. [DOI: 10.3389/fviro.2022.875213] [Reference Citation Analysis]
116 Hampton JT, Lalonde TJ, Tharp JM, Kurra Y, Alugubelli YR, Roundy CM, Hamer GL, Xu S, Liu WR. A Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2.. [DOI: 10.1101/2022.07.06.498864] [Reference Citation Analysis]
117 Saha S, Halder AK, Bandyopadhyay SS, Chatterjee P, Nasipuri M, Basu S. Computational modeling of human-nCoV protein-protein interaction network. Methods 2022;203:488-97. [PMID: 34902553 DOI: 10.1016/j.ymeth.2021.12.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Elfadel O, Zannane F, Abdallaoui M. Rapid antigenic test (TRA) versus RT-PCR: Experience of CHU IBN ROCHD Casablanca. Annals of Medicine and Surgery 2022;79:103908. [DOI: 10.1016/j.amsu.2022.103908] [Reference Citation Analysis]
119 Yadav A, Ojha MD, Hariprasad P. Computational studies evidenced the potential of steroidal lactone to disrupt surface interaction of SARS-CoV-2 spike protein and hACE2. Comput Biol Med 2022;146:105598. [PMID: 35596971 DOI: 10.1016/j.compbiomed.2022.105598] [Reference Citation Analysis]
120 Muslim Dawood S, Khudhur Al Joofy I. Evaluation of IgM and IgG in COVID-19 Recovered Patients in Iraq. Arch Razi Inst 2022;77:1191-7. [PMID: 36618307 DOI: 10.22092/ARI.2022.357515.2054] [Reference Citation Analysis]
121 Scarabotto A, Balestro S, Gagliardi S, Trotti R. Comparison of Two RNA Extraction Methods for the Molecular Detection of SARS-CoV-2 from Nasopharyngeal Swab Samples. Diagnostics 2022;12:1561. [DOI: 10.3390/diagnostics12071561] [Reference Citation Analysis]
122 Chugh D, Bishnoi M. SARS-CoV-2 and Therapeutic Approaches. TOCOVIDJ 2022;2. [DOI: 10.2174/26669587-v2-e2204260] [Reference Citation Analysis]
123 Gallardo-Zapata J, Maldonado-Bernal C. Natural killer cell exhaustion in SARS-CoV-2 infection. Innate Immun 2022;:17534259221077750. [PMID: 35733383 DOI: 10.1177/17534259221077750] [Reference Citation Analysis]
124 Lee MJ, Leong MW, Rustagi A, Beck A, Zeng L, Holmes S, Qi LS, Blish CA. SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D.. [DOI: 10.1101/2022.06.20.496341] [Reference Citation Analysis]
125 McCollum CR, Courtney CM, O'Connor NJ, Aunins TR, Ding Y, Jordan TX, Rogers KL, Brindley S, Brown JM, Nagpal P, Chatterjee A. Nanoligomers Targeting Human miRNA for the Treatment of Severe COVID-19 Are Safe and Nontoxic in Mice. ACS Biomater Sci Eng 2022. [PMID: 35729709 DOI: 10.1021/acsbiomaterials.2c00510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
126 Rabaan AA, Bakhrebah MA, Mutair AA, Alhumaid S, Al-jishi JM, Alsihati J, Albayat H, Alsheheri A, Aljeldah M, Garout M, Alfouzan WA, Alhashem YN, Albahrani S, Alshamrani SA, Alotaibi S, Alramadhan AA, Albasha HN, Hajissa K, Temsah M. Systematic Review on Pathophysiological Complications in Severe COVID-19 among the Non-Vaccinated and Vaccinated Population. Vaccines 2022;10:985. [DOI: 10.3390/vaccines10070985] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
127 Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH, Singh N, Arora G, Mansuri MS. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics 2022;12:1503. [DOI: 10.3390/diagnostics12061503] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Muhar BK, Nehira J, Malhotra A, Kotchoni SO. The Race for COVID-19 Vaccines: The Various Types and Their Strengths and Weaknesses. J Pharm Pract 2022;:8971900221097248. [PMID: 35723017 DOI: 10.1177/08971900221097248] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Barati N, Motavallihaghi S, Nikfar B, Chaichian S, Momtazi-Borojeni AA. Potential therapeutic effects of Ivermectin in COVID-19. Exp Biol Med (Maywood) 2022;:15353702221099579. [PMID: 35686662 DOI: 10.1177/15353702221099579] [Reference Citation Analysis]
130 Ghimire D, Han Y, Lu M. Structural Plasticity and Immune Evasion of SARS-CoV-2 Spike Variants. Viruses 2022;14:1255. [PMID: 35746726 DOI: 10.3390/v14061255] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
131 Singh H, Dahiya N, Yadav M, Sehrawat N. Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. Can J Infect Dis Med Microbiol 2022;2022:7336309. [PMID: 35669528 DOI: 10.1155/2022/7336309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 in Spain during the First Two Years of the Pandemic: Circulating Variants, Amino Acid Conservation, and Genetic Variability in Structural, Non-Structural, and Accessory Proteins. Int J Mol Sci 2022;23:6394. [PMID: 35742840 DOI: 10.3390/ijms23126394] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
133 Li X, Xiong M, Deng Q, Guo X, Li Y. The utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis. J Clin Lab Anal 2022;:e24534. [PMID: 35657146 DOI: 10.1002/jcla.24534] [Reference Citation Analysis]
134 Torres F, Kiwi M, Schuller IK. The impact of the suppression of highly connected protein interactions on the corona virus infection. Sci Rep 2022;12:9188. [PMID: 35654986 DOI: 10.1038/s41598-022-13373-0] [Reference Citation Analysis]
135 Bignon E, Marazzi M, Monari A. Hijacking of Cellular Functions by Severe Acute Respiratory Syndrome Coronavirus-2. Permeabilization and Polarization of the Host Lipid Membrane by Viroporins. J Phys Chem Lett 2022;13:4642-9. [PMID: 35593652 DOI: 10.1021/acs.jpclett.2c01102] [Reference Citation Analysis]
136 Zhang X, Wu F, Yang N, Zhan X, Liao J, Mai S, Huang Z. In silico Methods for Identification of Potential Therapeutic Targets. Interdiscip Sci Comput Life Sci 2022;14:285-310. [DOI: 10.1007/s12539-021-00491-y] [Reference Citation Analysis]
137 Hamdy ME, El-deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Mutations of the SARS-CoV-2 Spike Glycoprotein Detected in Cats and Their Effect on Its Structure and Function. Front Cell Infect Microbiol 2022;12:875123. [DOI: 10.3389/fcimb.2022.875123] [Reference Citation Analysis]
138 Khater I, Nassar A. Seeking antiviral drugs to inhibit SARS-CoV-2 RNA dependent RNA polymerase: A molecular docking analysis. PLoS ONE 2022;17:e0268909. [DOI: 10.1371/journal.pone.0268909] [Reference Citation Analysis]
139 Lan Y, He W, Wang G, Wang Z, Chen Y, Gao F, Song D. Potential Antiviral Strategy Exploiting Dependence of SARS-CoV-2 Replication on Lysosome-Based Pathway. IJMS 2022;23:6188. [DOI: 10.3390/ijms23116188] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Manhas RS, Tiwari H, Noor M, Ahmed A, Vishwakarma J, Tripathi RBM, Ramachandran R, Madishetti S, Mukherjee D, Chaubey A, Nargotra A. Setomimycin as a potential molecule for COVID‑19 target: in silico approach and in vitro validation. Mol Divers 2022. [PMID: 35622309 DOI: 10.1007/s11030-022-10441-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Oliver JL, Bernaola-galván P, Perfectti F, Martín CG, Castiglione S, Raia P, Verdú M, Moya A. The emergence of variants with increased fitness accelerates the slowdown of genome sequence heterogeneity in the SARS-CoV-2 coronavirus.. [DOI: 10.1101/2022.05.26.493529] [Reference Citation Analysis]
142 Bignon E, Marazzi M, Grandemange S, Monari A. Autophagy and evasion of the immune system by SARS-CoV-2. Structural features of the non-structural protein 6 from wild type and Omicron viral strains interacting with a model lipid bilayer. Chem Sci 2022;13:6098-105. [PMID: 35685814 DOI: 10.1039/d2sc00108j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
143 Mills R, Vogler RJ, Bernard M, Concolino J, Hersh LB, Wei Y, Hastings JT, Dziubla T, Baldridge KC, Bhattacharyya D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. Commun Mater 2022;3. [DOI: 10.1038/s43246-022-00256-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Teixeira LMC, Coimbra JTS, Ramos MJ, Fernandes PA. Transmembrane Protease Serine 2 Proteolytic Cleavage of the SARS-CoV-2 Spike Protein: A Mechanistic Quantum Mechanics/Molecular Mechanics Study to Inspire the Design of New Drugs To Fight the COVID-19 Pandemic. J Chem Inf Model 2022;62:2510-21. [PMID: 35549216 DOI: 10.1021/acs.jcim.1c01561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
145 Silva J, Patricio F, Patricio-Martínez A, Santos-López G, Cedillo L, Tizabi Y, Limón ID. Neuropathological Aspects of SARS-CoV-2 Infection: Significance for Both Alzheimer's and Parkinson's Disease. Front Neurosci 2022;16:867825. [PMID: 35592266 DOI: 10.3389/fnins.2022.867825] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Liang Y, Zou L, Lin H, Li B, Zhao J, Wang H, Sun J, Chen J, Mo Y, Yang X, Deng X, Tang S. Detection of Major SARS-CoV-2 Variants of Concern in Clinical Samples via CRISPR-Cas12a-Mediated Mutation-Specific Assay. ACS Synth Biol 2022;11:1811-23. [PMID: 35481381 DOI: 10.1021/acssynbio.1c00643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Agius JE, Johnson-mackinnon JC, Fong W, Gall M, Lam C, Basile K, Kok J, Arnott A, Sintchenko V, Rockett RJ. SARS-CoV-2 Within-Host and in vitro Genomic Variability and Sub-Genomic RNA Levels Indicate Differences in Viral Expression Between Clinical Cohorts and in vitro Culture. Front Microbiol 2022;13:824217. [DOI: 10.3389/fmicb.2022.824217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Chou J, Tsai J, Hung J, Chen I, Chen S, Tsai M. The ORF8 Protein of SARS-CoV-2 Modulates the Spike Protein and Its Implications in Viral Transmission. Front Microbiol 2022;13:883597. [DOI: 10.3389/fmicb.2022.883597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
149 Baazaoui N, Iqbal K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. JAD 2022. [DOI: 10.3233/jad-220105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
150 Ortiz-pineda PA, Sierra-torres CH. Evolutionary Traits and Genomic Surveillance of SARS-CoV-2 in South America. Global Health 2022;2022:1-9. [DOI: 10.1155/2022/8551576] [Reference Citation Analysis]
151 Zhang Z, Jiang S, Wang X, Dong T, Wang Y, Li D, Gao X, Qu Z, Li Y. A novel enhanced substrate for label-free detection of SARS-CoV-2 based on surface-enhanced Raman scattering. Sens Actuators B Chem 2022;359:131568. [PMID: 35185297 DOI: 10.1016/j.snb.2022.131568] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
152 Liu LT, Tsai JJ, Chang K, Chen CH, Lin PC, Tsai CY, Tsai YY, Hsu MC, Chuang WL, Chang JM, Hwang SJ, Chong IW. Identification and Analysis of SARS-CoV-2 Alpha Variants in the Largest Taiwan COVID-19 Outbreak in 2021. Front Med (Lausanne) 2022;9:869818. [PMID: 35547225 DOI: 10.3389/fmed.2022.869818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
153 Sagulkoo P, Suratanee A, Plaimas K. Immune-Related Protein Interaction Network in Severe COVID-19 Patients toward the Identification of Key Proteins and Drug Repurposing. Biomolecules 2022;12:690. [DOI: 10.3390/biom12050690] [Reference Citation Analysis]
154 Sharifzadeh M, Mottaghi-dastjerdi N, Soltany Rezae Raad M. A Review of Virus-Like Particle-Based SARS-CoV-2 Vaccines in Clinical Trial Phases. Iran J Pharm Res 2022;21. [DOI: 10.5812/ijpr-127042] [Reference Citation Analysis]
155 Ng TI, Correia I, Seagal J, Degoey DA, Schrimpf MR, Hardee DJ, Noey EL, Kati WM. Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses 2022;14:961. [DOI: 10.3390/v14050961] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
156 Benlier N, Gundogdu N, Ozkur M. Human Genetic Polymorphisms Associated with Susceptibility to COVID-19 Infection and Response to Treatment. Genetic Polymorphisms - New Insights 2022. [DOI: 10.5772/intechopen.99877] [Reference Citation Analysis]
157 Gu M, Pan H, Yuan Y, Zhou X, Chen L, Wang X, Fang F, Hu L, Xie Y, Shen C. Sera Metabolomics Characterization of Patients at Different Stages in Wuhan Identifies Critical Biomarkers of COVID-19. Front Cell Infect Microbiol 2022;12:882661. [DOI: 10.3389/fcimb.2022.882661] [Reference Citation Analysis]
158 Pidiyar V, Kumraj G, Ahmed K, Ahmed S, Shah S, Piyali, Majumder, Verma B, Pathak S, Mukherjee S. COVID-19 management landscape- A need for an affordable to manufacture safe and efficacious bio-therapeutic and prophylactic for developing countries. Vaccine 2022. [DOI: 10.1016/j.vaccine.2022.05.065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Delen LA, Örtekus M. Sinovac vaccination and the course of COVID-19 disease in hospitalized patients in Turkey. Ann Saudi Med 2022;42:147-54. [DOI: 10.5144/0256-4947.2022.147] [Reference Citation Analysis]
160 Chin CV, Saeed M. Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022;11:522. [DOI: 10.3390/pathogens11050522] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
161 Heilmann E, Costacurta F, Geley S, Mogadashi SA, Volland A, Rupp B, Harris RS, von Laer D. A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Commun Biol 2022;5:391. [PMID: 35478219 DOI: 10.1038/s42003-022-03277-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
162 Colosimo M, Minchella P, Tallerico R, Talotta I, Peronace C, Gallelli L, Di Mizio G, Cione E. Comparison of Allplex™ 2019-nCoV and TaqPath™ COVID-19 Assays. Reports 2022;5:14. [DOI: 10.3390/reports5020014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
163 Dumache R, Enache A, Macasoi I, Dehelean CA, Dumitrascu V, Mihailescu A, Popescu R, Vlad D, Vlad CS, Muresan C. SARS-CoV-2: An Overview of the Genetic Profile and Vaccine Effectiveness of the Five Variants of Concern. Pathogens 2022;11:516. [DOI: 10.3390/pathogens11050516] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
164 Mohamed FF, Anhlan D, Schöfbänker M, Schreiber A, Classen N, Hensel A, Hempel G, Scholz W, Kühn J, Hrincius ER, Ludwig S. Hypericum perforatum and Its Ingredients Hypericin and Pseudohypericin Demonstrate an Antiviral Activity against SARS-CoV-2. Pharmaceuticals 2022;15:530. [DOI: 10.3390/ph15050530] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
165 Cenci A, Macchia I, La Sorsa V, Sbarigia C, Di Donna V, Pietraforte D. Mechanisms of Action of Ozone Therapy in Emerging Viral Diseases: Immunomodulatory Effects and Therapeutic Advantages With Reference to SARS-CoV-2. Front Microbiol 2022;13:871645. [DOI: 10.3389/fmicb.2022.871645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Bignon E, Marazzi M, Monari A. Hijacking of Cellular Functions by Severe Acute Respiratory Syndrome Coronavirus-2. Permeabilization and Polarization of the Host Lipid Membrane by Viroporins.. [DOI: 10.1101/2022.04.14.488372] [Reference Citation Analysis]
167 Shishir TA, Jannat T, Naser IB. Genomic surveillance unfolds the dynamics of SARS-CoV-2 transmission and divergence in Bangladesh over the past two years.. [DOI: 10.1101/2022.04.13.488264] [Reference Citation Analysis]
168 Abas AH, Tallei TE, Fatimawali F, Celik I, Alhumaydhi FA, Emran TB, Dhama K, Rabaan AA, Garout MA, Halwani MA, Al Mutair A, Alhumaid S, Harapan H. 4’-fluorouridine and its derivatives as potential COVID-19 oral drugs: a review. F1000Res 2022;11:410. [DOI: 10.12688/f1000research.109701.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Arora S, Nag A, Kalra A, Sinha V, Meena E, Saxena S, Sutaria D, Kaur M, Pamnani T, Sharma K, Saxena S, Shrivastava SK, Gupta AB, Li X, Jiang G. Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems-a case study of Jaipur (India). Environ Monit Assess 2022;194:342. [PMID: 35389102 DOI: 10.1007/s10661-022-09942-5] [Reference Citation Analysis]
170 Uppal T, Tuffo K, Khaiboullina S, Reganti S, Pandori M, Verma SC. Screening of SARS-CoV-2 Antivirals Through a Cell-Based RNA-Dependent RNA Polymerase (RdRp) Reporter Assay.. [DOI: 10.1101/2022.04.04.486994] [Reference Citation Analysis]
171 Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. Phytochemistry 2022. [DOI: 10.1016/j.phytochem.2022.113213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
172 Lee SH, Lee YK, Lee S, Kwak J, Song HS, Seo M. Detection and discrimination of SARS-CoV-2 spike protein-derived peptides using THz metamaterials. Biosensors and Bioelectronics 2022;202:113981. [DOI: 10.1016/j.bios.2022.113981] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
173 Uma Reddy B, Routhu NK, Kumar A. Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2. Microbial Pathogenesis 2022. [DOI: 10.1016/j.micpath.2022.105512] [Reference Citation Analysis]
174 Kheshtchin N, Bakhshi P, Arab S, Nourizadeh M. Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology 2022;105:108531. [DOI: 10.1016/j.intimp.2022.108531] [Reference Citation Analysis]
175 Prakash S. Development of COVID 19 vaccine: A summarized review on global trials, efficacy, and effectiveness on variants. Diabetes Metab Syndr 2022;16:102482. [PMID: 35427915 DOI: 10.1016/j.dsx.2022.102482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
176 Ferreira LLC, Abreu MP, Costa CB, Leda PO, Behrens MD, Dos Santos EP. Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. Food Environ Virol 2022. [PMID: 35352306 DOI: 10.1007/s12560-022-09514-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
177 Mallis P, Chatzistamatiou T, Dimou Z, Sarri EF, Georgiou E, Salagianni M, Triantafyllia V, Andreakos E, Stavropoulos-Giokas C, Michalopoulos E. Mesenchymal stromal cell delivery as a potential therapeutic strategy against COVID-19: Promising evidence from in vitro results. World J Biol Chem 2022; 13(2): 47-65 [DOI: 10.4331/wjbc.v13.i2.47] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
178 Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life 2022;12:478. [DOI: 10.3390/life12040478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
179 Vallée A. Cannabidiol and SARS-CoV-2 Infection. Front Immunol 2022;13:870787. [DOI: 10.3389/fimmu.2022.870787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Rashid S, Ann NT, Keong KC. Jupytope: Computational extraction of structural properties of viral epitopes.. [DOI: 10.1101/2022.03.22.484725] [Reference Citation Analysis]
181 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
182 Flores-Vega VR, Monroy-Molina JV, Jiménez-Hernández LE, Torres AG, Santos-Preciado JI, Rosales-Reyes R. SARS-CoV-2: Evolution and Emergence of New Viral Variants. Viruses 2022;14:653. [PMID: 35458383 DOI: 10.3390/v14040653] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
183 Luo J, Brakel A, Krizsan A, Ludwig T, Mötzing M, Volke D, Lakowa N, Grünewald T, Lehmann C, Wolf J, Borte S, Milkovska-stamenova S, Gabert J, Fingas F, Scholz M, Hoffmann R. Sensitive and specific serological ELISA for the detection of SARS-CoV-2 infections. Virol J 2022;19. [DOI: 10.1186/s12985-022-01768-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
184 Chen J, Deng Y, Huang B, Han D, Wang W, Huang M, Zhai C, Zhao Z, Yang R, Zhao Y, Wang W, Zhai D, Tan W. DNA Vaccines Expressing the Envelope and Membrane Proteins Provide Partial Protection Against SARS-CoV-2 in Mice. Front Immunol 2022;13:827605. [PMID: 35281016 DOI: 10.3389/fimmu.2022.827605] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
185 B. V. A REVIEW ON THE DEVELOPMENT OF FAVIPRAVIR AGAINST SARS COV 2 INFECTION. Int J Curr Pharm Sci 2022. [DOI: 10.22159/ijcpr.2022v14i2.1957] [Reference Citation Analysis]
186 Dhaka P, Singh A, Choudhary S, Kumar P, Sharma GK, Tomar S. Discovery of anti-SARS-CoV-2 molecules using structure-assisted repurposing approach targeting N-protein.. [DOI: 10.1101/2022.03.12.484092] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
187 Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. The spike glycoproteins of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol 2022:S0141-8130(22)00528-1. [PMID: 35300999 DOI: 10.1016/j.ijbiomac.2022.03.058] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
188 Papanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, Papouliakos S, Roukas D, Mastronikolis S, Peschos D, Batistatou A, Kyrodimos E, Mastronikolis N. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene 2022;814:146134. [PMID: 34990799 DOI: 10.1016/j.gene.2021.146134] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 35.0] [Reference Citation Analysis]
189 Vo GV, Bagyinszky E, An SSA. COVID-19 Genetic Variants and Their Potential Impact in Vaccine Development. Microorganisms 2022;10:598. [DOI: 10.3390/microorganisms10030598] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
190 Zothantluanga JH, Abdalla M, Rudrapal M, Tian Q, Chetia D, Li J. Computational Investigations for Identification of Bioactive Molecules from Baccaurea ramiflora and Bergenia ciliata as Inhibitors of SARS-CoV-2 M pro. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2022.2046613] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
191 Pavan Kumar N, Moideen K, Nancy A, Selvaraj N, Renji RM, Munisankar S, Thangaraj JWV, Muthusamy SK, Kumar CPG, Bhatnagar T, Ponnaiah M, Ramasamy S, Velusamy S, Murhekar MV, Babu S. Enhanced SARS-CoV-2-Specific CD4+ T Cell Activation and Multifunctionality in Late Convalescent COVID-19 Individuals. Viruses 2022;14:511. [DOI: 10.3390/v14030511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
192 Sun L, Xiu L, Zhang C, Xiao Y, Li Y, Zhang L, Ren L, Peng J. Detection and classification of SARS-CoV-2 using high-resolution melting analysis. Microb Biotechnol 2022. [PMID: 35233932 DOI: 10.1111/1751-7915.14027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
193 Babu singh M, Jain P, Tomar J, Kumar V, Bahadur I, Arya DK, Singh P. In Silico study for acyclovir, ganciclovir and its derivatives to fight the COVID-19: Molecular docking, DFT calculations, ADME and td-Molecular dynamics simulations. Journal of the Indian Chemical Society 2022. [DOI: 10.1016/j.jics.2022.100433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
194 Negru PA, Radu AF, Vesa CM, Behl T, Abdel-Daim MM, Nechifor AC, Endres L, Stoicescu M, Pasca B, Tit DM, Bungau SG. Therapeutic dilemmas in addressing SARS-CoV-2 infection: Favipiravir versus Remdesivir. Biomed Pharmacother 2022;147:112700. [PMID: 35131656 DOI: 10.1016/j.biopha.2022.112700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
195 Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomedicine & Pharmacotherapy 2022;147:112658. [DOI: 10.1016/j.biopha.2022.112658] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
196 K. Singh A, Singh A, Kumar Dubey A. Repurposed Therapeutic Strategies towards COVID-19 Potential Targets Based on Genomics and Protein Structure Remodeling. Biotechnology to Combat COVID-19 2022. [DOI: 10.5772/intechopen.96728] [Reference Citation Analysis]
197 Costanzo M, Caterino M, Fedele R, Cevenini A, Pontillo M, Barra L, Ruoppolo M. COVIDomics: The Proteomic and Metabolomic Signatures of COVID-19. Int J Mol Sci 2022;23:2414. [PMID: 35269564 DOI: 10.3390/ijms23052414] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
198 Zoaka JD, Ekwueme DC, Güngör H, Alola AA. Will financial development and clean energy utilization rejuvenate the environment in BRICS economies? Bus Strat Env. [DOI: 10.1002/bse.3013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
199 Kaya D, Niemeier D, Ahmed W, Kjellerup BV. Evaluation of multiple analytical methods for SARS-CoV-2 surveillance in wastewater samples. Sci Total Environ 2022;808:152033. [PMID: 34883175 DOI: 10.1016/j.scitotenv.2021.152033] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
200 Tombuloglu H, Sabit H, Al-Khallaf H, Kabanja JH, Alsaeed M, Al-Saleh N, Al-Suhaimi E. Multiplex real-time RT-PCR method for the diagnosis of SARS-CoV-2 by targeting viral N, RdRP and human RP genes. Sci Rep 2022;12:2853. [PMID: 35181721 DOI: 10.1038/s41598-022-06977-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
201 Marcotte H, Piralla A, Zuo F, Du L, Cassaniti I, Wan H, Kumagai-Braesh M, Andréll J, Percivalle E, Sammartino JC, Wang Y, Vlachiotis S, Attevall J, Bergami F, Ferrari A, Colaneri M, Vecchia M, Sambo M, Zuccaro V, Asperges E, Bruno R, Oggionni T, Meloni F, Abolhassani H, Bertoglio F, Schubert M, Calzolai L, Varani L, Hust M, Xue Y, Hammarström L, Baldanti F, Pan-Hammarström Q. Immunity to SARS-CoV-2 up to 15 months after infection. iScience 2022;:103743. [PMID: 35018336 DOI: 10.1016/j.isci.2022.103743] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 27.0] [Reference Citation Analysis]
202 Kalpana Singh. Comparative Study of SARS-CoV-1, SARS-CoV-2 and MERS-CoV Protein Structure. IJSRSET 2022. [DOI: 10.32628/ijsrset229145] [Reference Citation Analysis]
203 Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-Wide Characterization of SARS-CoV-2 Cytopathogenic Proteins in the Search of Antiviral Targets. mBio 2022;:e0016922. [PMID: 35164548 DOI: 10.1128/mbio.00169-22] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
204 Gabanella F, Barbato C, Corbi N, Fiore M, Petrella C, de Vincentiis M, Greco A, Ferraguti G, Corsi A, Ralli M, Pecorella I, Di Gioia C, Pecorini F, Brunelli R, Passananti C, Minni A, Di Certo MG. Exploring Mitochondrial Localization of SARS-CoV-2 RNA by Padlock Assay: A Pilot Study in Human Placenta. Int J Mol Sci 2022;23:2100. [PMID: 35216211 DOI: 10.3390/ijms23042100] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
205 Kucher AN, Koroleva IA, Zarubin AA, Nazarenko MS. MicroRNAs as the Potential Regulators of SARS-CoV-2 Infection and Modifiers of the COVID-19 Clinical Features. Mol Biol 2022;56:29-45. [DOI: 10.1134/s0026893322010034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
206 Rustagi V, Bajaj M, Tanvi, Singh P, Aggarwal R, Alajmi MF, Hussain A, Hassan MI, Singh A, Singh IK. Analyzing the Effect of Vaccination Over COVID Cases and Deaths in Asian Countries Using Machine Learning Models. Front Cell Infect Microbiol 2022;11:806265. [DOI: 10.3389/fcimb.2021.806265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
207 Anjum F, Joshia N, Mohammad T, Shafie A, Alhumaydhi FA, Aljasir MA, Shahwan MJS, Abdullaev B, Adnan M, Elasbali AM, Pasupuleti VR, Hassan MI. Impact of Single Amino Acid Substitutions in Parkinsonism-Associated Deglycase-PARK7 and Their Association with Parkinson’s Disease. JPM 2022;12:220. [DOI: 10.3390/jpm12020220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Int J Mol Sci 2022;23:1771. [PMID: 35163692 DOI: 10.3390/ijms23031771] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
209 Ajmeriya S, Kumar A, Karmakar S, Rana S, Singh H. Neutralizing Antibodies and Antibody-Dependent Enhancement in COVID-19: A Perspective. J Indian Inst Sci. [DOI: 10.1007/s41745-021-00268-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
210 Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR. Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. Int J Mol Sci 2022;23:1781. [PMID: 35163703 DOI: 10.3390/ijms23031781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
211 Bignon E, Monari A. Unraveling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent-RNA-Polymerase. An Unusual Active Site Leading to High Replication Rates.. [DOI: 10.1101/2022.02.02.478873] [Reference Citation Analysis]
212 Salleh MZ, Deris ZZ. In Silico Molecular Characterization of Human TMPRSS2 Protease Polymorphic Variants and Associated SARS-CoV-2 Susceptibility. Life 2022;12:231. [DOI: 10.3390/life12020231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Lachén-montes M, Mendizuri N, Ausín K, Echaide M, Blanco E, Chocarro L, de Toro M, Escors D, Fernández-irigoyen J, Kochan G, Santamaría E. Metabolic dyshomeostasis induced by SARS-CoV-2 structural proteins reveals immunological insights into viral olfactory interactions.. [DOI: 10.1101/2022.02.01.478724] [Reference Citation Analysis]
214 Alotaibi B, El-masry TA, Seadawy MG, Farghali MH, El-harty BE, Saleh A, Mahran YF, Fahim JS, Desoky MS, Abd El-monsef MM, El-bouseary MM. SARS-CoV-2 in Egypt: epidemiology, clinical characterization and bioinformatics analysis. Heliyon 2022;8:e08864. [DOI: 10.1016/j.heliyon.2022.e08864] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
215 Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Uddin SN, Aouida M, Biswas KH. A Genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor.. [DOI: 10.1101/2022.01.31.478460] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Chen Y, Yang WH, Chen HF, Huang LM, Gao JY, Lin CW, Wang YC, Yang CS, Liu YL, Hou MH, Tsai CL, Chou YZ, Huang BY, Hung CF, Hung YL, Wang WJ, Su WC, Kumar V, Wu YC, Chao SW, Chang CS, Chen JS, Chiang YP, Cho DY, Jeng LB, Tsai CH, Hung MC. Tafenoquine and its derivatives as inhibitors for the Severe Acute Respiratory Syndrome Coronavirus 2. J Biol Chem 2022;:101658. [PMID: 35101449 DOI: 10.1016/j.jbc.2022.101658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
217 Asrani P, Tiwari K, Eapen MS, Hassan MI, Sohal SS. Containment strategies for COVID-19 in India: lessons from the second wave. Expert Review of Anti-infective Therapy. [DOI: 10.1080/14787210.2022.2036605] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
218 Ho K, Liao H, Liu HM, Lu Y, Yeh P, Chang JY, Fan S. Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. Micromachines 2022;13:196. [DOI: 10.3390/mi13020196] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
219 Liu LT, Tsai JJ, Chen CH, Lin PC, Tsai CY, Tsai YY, Hsu MC, Chuang WL, Chang JM, Hwang SJ, Chong IW. Isolation and Identification of a Rare Spike Gene Double-Deletion SARS-CoV-2 Variant From the Patient With High Cycle Threshold Value. Front Med (Lausanne) 2021;8:822633. [PMID: 35071285 DOI: 10.3389/fmed.2021.822633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
220 Yu W, Zhong N, Li X, Ren J, Wang Y, Li C, Yao G, Zhu R, Wang X, Jia Z, Wu C, Chen R, Zheng W, Liao H, Wu X, Yuan X. Structure Based Affinity Maturation and Characterizing of SARS-CoV Antibody CR3022 against SARS-CoV-2 by Computational and Experimental Approaches. Viruses 2022;14:186. [DOI: 10.3390/v14020186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
221 Durmuş E, Guner NG, Güneysu F, Aslan N, Yurumez Y. Review of COVID-19 vaccinated patients' emergency room admissions. Journal of Health Sciences and Medicine 2022;5:18-21. [DOI: 10.32322/jhsm.969409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
222 Paul S, Bravo Vázquez LA, Reyes-Pérez PR, Estrada-Meza C, Aponte Alburquerque RA, Pathak S, Banerjee A, Bandyopadhyay A, Chakraborty S, Srivastava A. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2022;308:198631. [PMID: 34788642 DOI: 10.1016/j.virusres.2021.198631] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 29.0] [Reference Citation Analysis]
223 Jukič M, Kores K, Janežič D, Bren U. Repurposing of Drugs for SARS-CoV-2 Using Inverse Docking Fingerprints. Front Chem 2021;9:757826. [PMID: 35028304 DOI: 10.3389/fchem.2021.757826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
224 Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022;:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
225 Oujja A, Abid MR, Boumhidi J, Bourhnane S, Mourhir A, Merchant F, Benhaddou D. High-performance computing for SARS-CoV-2 RNAs clustering: a data science‒based genomics approach. Genomics Inform 2021;19:e49. [PMID: 35012291 DOI: 10.5808/gi.21056] [Reference Citation Analysis]
226 Novak J, Potemkin VA. A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study. Mol Divers 2022. [PMID: 35001230 DOI: 10.1007/s11030-021-10355-8] [Reference Citation Analysis]
227 Bignon E, Marazzi M, Grandemange S, Monari A. Autophagy and evasion of immune system by SARS-CoV-2. Structural features of the Non-structural protein 6 from Wild Type and Omicron viral strains interacting with a model lipid bilayer. .. [DOI: 10.1101/2022.01.05.475107] [Reference Citation Analysis]
228 Horrell S, Santoni G, Thorn A. Structural biology of SARS-CoV-2 endoribonuclease NendoU (nsp15). Crystallography Reviews 2022;28:4-20. [DOI: 10.1080/0889311x.2022.2065270] [Reference Citation Analysis]
229 Seadawy MG, Gad AF, Abo-Elmaaty SA, Hassan MG. Genome sequencing of SARS-CoV-2 reveals the prevalence of variant B 1.1.7 in Egypt. Infect Genet Evol 2022;97:105191. [PMID: 34923158 DOI: 10.1016/j.meegid.2021.105191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
230 Sadak O, Sadak F, Yildirim O, Iverson NM, Qureshi R, Talo M, Ooi CP, Acharya UR, Gunasekaran S, Alam T. Electrochemical Biosensing and Deep Learning-Based Approaches in the Diagnosis of COVID-19: A Review. IEEE Access 2022;10:98633-48. [DOI: 10.1109/access.2022.3207207] [Reference Citation Analysis]
231 Norouzi M, Miles MA, Norouzi S. Genetics and Biological Characteristics of SARS-CoV-2. Frontiers of COVID-19 2022. [DOI: 10.1007/978-3-031-08045-6_4] [Reference Citation Analysis]
232 Suvarnapathaki S, Chauhan D, Nguyen A, Ramalingam M, Camci-Unal G. Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022;50:1734-49. [PMID: 36261668 DOI: 10.1007/s10439-022-03094-w] [Reference Citation Analysis]
233 Kunal S, Ish P, Aditi, Gupta K. Emergence of COVID-19 Variants and Its Global Impact. Frontiers of COVID-19 2022. [DOI: 10.1007/978-3-031-08045-6_9] [Reference Citation Analysis]
234 Noor R. How do the severe acute respiratory coronavirus 2 (SARS-CoV-2) and its variants escape the host protective immunity and mediate pathogenesis? Bull Natl Res Cent 2022;46:255. [PMID: 36254244 DOI: 10.1186/s42269-022-00945-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
235 Ali S, Nedvědová Š, Badshah G, Afridi MS, Abdullah, Dutra LM, Ali U, Faria SG, Soares FL, Rahman RU, Cançado FA, Aoyanagi MM, Freire LG, Santos AD, Barison A, Oliveira CA. NMR spectroscopy spotlighting immunogenicity induced by COVID-19 vaccination to mitigate future health concerns. Current Research in Immunology 2022;3:199-214. [DOI: 10.1016/j.crimmu.2022.08.006] [Reference Citation Analysis]
236 Bui N, Lin Y, Huang S, Lin C. Haplotype distribution of SARS-CoV-2 variants in low and high vaccination rate countries during ongoing global COVID-19 pandemic in early 2021. Infection, Genetics and Evolution 2022;97:105164. [DOI: 10.1016/j.meegid.2021.105164] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
237 Errico JM, Adams LJ, Fremont DH. Antibody-mediated immunity to SARS-CoV-2 spike. Adv Immunol 2022;154:1-69. [PMID: 36038194 DOI: 10.1016/bs.ai.2022.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
238 Gupta A, Garg M, Singh S, Deep A, Sharma AL. Microfluidic devices with integrated biosensors for coronavirus infection diagnostics. Advanced Biosensors for Virus Detection 2022. [DOI: 10.1016/b978-0-12-824494-4.00009-6] [Reference Citation Analysis]
239 Gupta J. Safety and sagacious use of remdesivir: Paramount focus on contemporary perspectives. Biomed Biotechnol Res J 2022;6:1. [DOI: 10.4103/bbrj.bbrj_161_21] [Reference Citation Analysis]
240 Senchyna F, Singh R. Analysis of SARS-CoV-2 Temporal Molecular Networks Using Global and Local Topological Characteristics. Computational Advances in Bio and Medical Sciences 2022. [DOI: 10.1007/978-3-031-17531-2_12] [Reference Citation Analysis]
241 董 艳. Recent New Progress in Research on the Correlation between Pentraxin 3 and Pulmonary Infection. ACM 2022;12:7479-7484. [DOI: 10.12677/acm.2022.1281079] [Reference Citation Analysis]
242 Harshitha B, Jayashankar J, Anand A, Sandeep S, Jayanth H, Karthik C, Mallu P, Haraprasad N, Krishnamurthy N. Structural and Functional Insights of Thiazole Derivatives as Potential Anti-inflammatory Candidate: A New Contender on Chronic and Acute SARS-CoV-2 Inflammation and Inhibition of SARS-CoV-2 Proteins. Asian J Chem 2022;34:1893-1920. [DOI: 10.14233/ajchem.2022.23673] [Reference Citation Analysis]
243 Patil SM, Srinivasa C, Ramu R, Kollur SP, Ramesh S, Shivamallu C. SARS-CoV-2 genome sequencing and promising druggable targets. Coronavirus Drug Discovery 2022. [DOI: 10.1016/b978-0-323-95578-2.00004-2] [Reference Citation Analysis]
244 Patel DC, Hausman KR, Arba M, Tran A, Lakernick PM, Wu C. Novel inhibitors to ADP ribose phosphatase of SARS-CoV-2 identified by structure-based high throughput virtual screening and molecular dynamics simulations. Comput Biol Med 2021;140:105084. [PMID: 34891093 DOI: 10.1016/j.compbiomed.2021.105084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
245 Crain NA, Ramezani AD, Dhoon T. COVID-19 Pathophysiology and COVID-19-Induced Respiratory Failure. Mechanical Ventilation Amid the COVID-19 Pandemic 2022. [DOI: 10.1007/978-3-030-87978-5_8] [Reference Citation Analysis]
246 Hernández-morales R, Becerra A, Campillo-balderas J, Cottom-salas W, Cruz-gonzález A, Jácome R, Lazcano A, Muñoz-velasco I, Vázquez-salazar A. Structural biology of the SARS-CoV-2 replisome: evolutionary and therapeutic implications. Biomedical Innovations to Combat COVID-19 2022. [DOI: 10.1016/b978-0-323-90248-9.00007-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
247 Vasileva AA, Kazakova PG, Mitrofanov SI, Akhmerova YN, Golubnikova LA, Grammatikati KS, Zemsky PU, Pilipenko MN, Sergeev AP, Smirnova NV, Frolova LV, Frolovskaya AA, Shpakova TA, Makarov VV, Keskinov AA, Yudin VS, Yudin SM, Skvortsova VI. Analysis of SARS-CoV-2 Mutations in the Context of Epitope Affinity for HLA Class I and Class II Most Frequent in Russia Alleles. Re:GEN Open 2022;2:75-84. [DOI: 10.1089/regen.2022.0021] [Reference Citation Analysis]
248 Mathew BJ, Gupta S, Nema RK, Vyas AK, Khare P, Biswas D, Singh AK. Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection 2022. [DOI: 10.1016/b978-0-323-91172-6.00019-4] [Reference Citation Analysis]
249 Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inhibition. Molecules 2021;27:223. [PMID: 35011458 DOI: 10.3390/molecules27010223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
250 Hancková M, Betáková T. Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses 2021;14:25. [PMID: 35062229 DOI: 10.3390/v14010025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
251 Kumar A, Asghar A, Singh HN, Faiq MA, Kumar S, Narayan RK, Kumar G, Dwivedi P, Sahni C, Jha RK, Kulandhasamy M, Prasoon P, Sesham K, Kant K, Pandey SN. An in silico analysis of early SARS-CoV-2 variant B.1.1.529 (Omicron) genomic sequences and their epidemiological correlates.. [DOI: 10.1101/2021.12.18.21267908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
252 Tarig M S Alnour, Ullah MF, Elssaig EH, Ahmed-Abakur EH. Unique SARS-CoV-2 Variant Exhibiting Plenteous Missense Mutations in Structural and Nonstructural Genes. Cytol Genet 2021;55:606-12. [PMID: 34924640 DOI: 10.3103/S0095452721060153] [Reference Citation Analysis]
253 Riccio AA, Sullivan ED, Copeland WC. Activation of the SARS-CoV-2 NSP14 3'-5' exoribonuclease by NSP10 and response to antiviral inhibitors. J Biol Chem 2021;:101518. [PMID: 34942146 DOI: 10.1016/j.jbc.2021.101518] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
254 Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021;14:5271-85. [PMID: 34916811 DOI: 10.2147/IDR.S341694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
255 Naqvi AAT, Anjum F, Shafie A, Badar S, Elasbali AM, Yadav DK, Hassan MI. Investigating host-virus interaction mechanism and phylogenetic analysis of viral proteins involved in the pathogenesis. PLoS One 2021;16:e0261497. [PMID: 34914801 DOI: 10.1371/journal.pone.0261497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
256 Thakur V, Bhola S, Thakur P, Patel SKS, Kulshrestha S, Ratho RK, Kumar P. Waves and variants of SARS-CoV-2: understanding the causes and effect of the COVID-19 catastrophe. Infection 2021. [PMID: 34914036 DOI: 10.1007/s15010-021-01734-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 11.5] [Reference Citation Analysis]
257 Mahmud S, Biswas S, Kumar Paul G, Mita MA, Afrose S, Robiul Hasan M, Sharmin Sultana Shimu M, Uddin MAR, Salah Uddin M, Zaman S, Kaderi Kibria KM, Arif Khan M, Bin Emran T, Abu Saleh M. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arab J Chem 2021;14:103315. [PMID: 34909064 DOI: 10.1016/j.arabjc.2021.103315] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
258 Jamiu AT, Pohl CH, Bello S, Adedoja T, Sabiu S. A review on molecular docking analysis of phytocompounds against SARS-CoV-2 druggable targets. All Life 2021;14:1100-28. [DOI: 10.1080/26895293.2021.2013327] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
259 Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021;8:745789. [PMID: 34901061 DOI: 10.3389/fmed.2021.745789] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
260 Darooneh AH, Przedborski M, Kohandel M. A novel statistical method predicts mutability of the genomic segments of the SARS-CoV-2 virus. QRB Discovery 2022;3. [DOI: 10.1017/qrd.2021.13] [Reference Citation Analysis]
261 Zheng G, Lu X, Shi Y, Chen J, Gao Y, Guo H. Protein Sequence Similarities between the Homo Sapiens and Mammal Specie. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021. [DOI: 10.1109/bibm52615.2021.9669399] [Reference Citation Analysis]
262 Deravi N, Ahsan E, Fathi M, Hosseini P, Yaghoobpoor S, Lotfi R, Pourbagheri-Sigaroodi A, Bashash D. Complement inhibition: A possible therapeutic approach in the fight against Covid-19. Rev Med Virol 2021;:e2316. [PMID: 34873779 DOI: 10.1002/rmv.2316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
263 Liu CH, Lu CH, Lin LT. Pandemic Strategies with Computational and Structural Biology against COVID-19: A Retrospective. Comput Struct Biotechnol J 2021. [PMID: 34900126 DOI: 10.1016/j.csbj.2021.11.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
264 Yu W, Wu X, Zhao Y, Chen C, Yang Z, Zhang X, Ren J, Wang Y, Wu C, Li C, Chen R, Wang X, Zheng W, Liao H, Yuan X. Computational Simulation of HIV Protease Inhibitors to the Main Protease (Mpro) of SARS-CoV-2: Implications for COVID-19 Drugs Design. Molecules 2021;26:7385. [PMID: 34885967 DOI: 10.3390/molecules26237385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
265 Kangarshahi ZT, Lak S, Ghadam M, Motamed N, Sardari S, Rahimi S. THE PROTEINS OF SARS- CoV-2 AND THEIR FUNCTIONS. Mil Med Sci Lett 2021;90:172-190. [DOI: 10.31482/mmsl.2021.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
266 Hassanin AA, Haidar Abbas Raza S, Ahmed Ujjan J, Aysh Alrashidi A, Sitohy BM, Al-surhanee AA, Saad AM, Mohamed Al -Hazani T, Osman Atallah O, Al Syaad KM, Ezzat Ahmed A, Swelum AA, El-saadony MT, Sitohy MZ. Emergence, evolution, and vaccine production approaches of SARS-CoV-2 virus: Benefits of getting vaccinated and common questions. Saudi Journal of Biological Sciences 2021. [DOI: 10.1016/j.sjbs.2021.12.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
267 Zandi M, Soltani S. Relation between ORF8a and the mitochondrial protein TOM70 in SARS-CoV-2 infection. Acta Physiol (Oxf) 2021;233:e13712. [PMID: 34228876 DOI: 10.1111/apha.13712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
268 Ghosh S, Das S, Ahmad I, Patel H. In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro. Journal of the Indian Chemical Society 2021;98:100272. [DOI: 10.1016/j.jics.2021.100272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
269 Kröker A, Tirzīte M. Repurposed pharmacological agents for the potential treatment of COVID-19: a literature review. Respir Res 2021;22:304. [PMID: 34838020 DOI: 10.1186/s12931-021-01885-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
270 Agius JE, Johnson-mackinnon JC, Fong W, Gall M, Lam C, Basile KM, Kok J, Arnott A, Sintchenko V, Rockett RJ. SARS-CoV-2 within-host and in-vitro genomic variability and sub-genomic RNA levels indicate differences in viral expression between clinical and in-vitro cohorts.. [DOI: 10.1101/2021.11.23.21266789] [Reference Citation Analysis]
271 Tolah AM, Altayeb LM, Alandijany TA, Dwivedi VD, El-Kafrawy SA, Azhar EI. Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals (Basel) 2021;14:1216. [PMID: 34959616 DOI: 10.3390/ph14121216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
272 Zhang J, Li Q, Cruz Cosme RS, Gerzanich V, Tang Q, Simard JM, Zhao RY. Genome-wide characterization of SARS-CoV-2 cytopathogenic proteins in the search of antiviral targets.. [DOI: 10.1101/2021.11.23.469747] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
273 Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021;18:925-38. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
274 Bose P, Roy S, Ghosh P. A Comparative NLP-Based Study on the Current Trends and Future Directions in COVID-19 Research. IEEE Access 2021;9:78341-55. [PMID: 34786315 DOI: 10.1109/ACCESS.2021.3082108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
275 Thapa K, Verma N, Singh TG, Kaur Grewal A, Kanojia N, Rani L. COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. Int Immunopharmacol 2021;101:108328. [PMID: 34768236 DOI: 10.1016/j.intimp.2021.108328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
276 Natarelli L, Virgili F, Weber C. SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. Int J Mol Sci 2021;22:12243. [PMID: 34830125 DOI: 10.3390/ijms222212243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
277 Rosales JD, Quintero W, Cruz J, Perdomo B, Quintero M, Bastidas M, Lugo JD, Rodriguez KR, Freites-perez JC, Castillo A. Expression and novel alternative purification of the recombinant nucleocapsid (N) protein of SARS-CoV-2 in Escherichia coli for the serodiagnosis of COVID-19.. [DOI: 10.1101/2021.11.10.467990] [Reference Citation Analysis]
278 Dong H, Wang S, Zhang J, Zhang K, Zhang F, Wang H, Xie S, Hu W, Gu L. Structure-Based Primer Design Minimizes the Risk of PCR Failure Caused by SARS-CoV-2 Mutations. Front Cell Infect Microbiol 2021;11:741147. [PMID: 34760717 DOI: 10.3389/fcimb.2021.741147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
279 Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform 2021:bbab456. [PMID: 34788381 DOI: 10.1093/bib/bbab456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
280 Omoru OB, Pereira F, Janga SC, Manzourolajdad A. Evidence for a long-range RNA-RNA interaction between ORF8 and Spike of SARS-CoV-2.. [DOI: 10.1101/2021.11.09.467911] [Reference Citation Analysis]
281 Oliver JL, Bernaola-galván P, Perfectti F, Gómez-martín C, Castiglione S, Raia P, Verdú M, Moya A. The sequence compositional complexity of the coronavirus decays over pandemic time.. [DOI: 10.1101/2021.11.06.467547] [Reference Citation Analysis]
282 Nabi-Afjadi M, Karami H, Goudarzi K, Alipourfard I, Bahreini E. The effect of vitamin D, magnesium and zinc supplements on interferon signaling pathways and their relationship to control SARS-CoV-2 infection. Clin Mol Allergy 2021;19:21. [PMID: 34749737 DOI: 10.1186/s12948-021-00161-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
283 Uddin MB, Sajib EH, Hoque SF, Bappy MNI, Elahi F, Ghosh A, Muhit S, Hassan MM, Hasan M, Chelliah R, Park SJ, Mony TJ, Oh DH, Ahmed SSU. Genomic diversity and molecular dynamics interaction on mutational variances among RB domains of SARS-CoV-2 interplay drug inactivation. Infect Genet Evol 2021;:105128. [PMID: 34752930 DOI: 10.1016/j.meegid.2021.105128] [Reference Citation Analysis]
284 Tayara H, Abdelbaky I, To Chong K. Recent omics-based computational methods for COVID-19 drug discovery and repurposing. Brief Bioinform 2021;22:bbab339. [PMID: 34423353 DOI: 10.1093/bib/bbab339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
285 Zahran EM, Sayed AM, Abdelwahab MF, Albohy A, Abdulrazik BS, Ibrahim AM, Bringmann G, Abdelmohsen UR. Identifying the specific-targeted marine cerebrosides against SARS-CoV-2: an integrated computational approach. RSC Adv 2021;11:36042-59. [PMID: 35492761 DOI: 10.1039/d1ra07103c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
286 De Santis R, Luca V, Näslund J, Ehmann RK, De Angelis M, Lundmark E, Nencioni L, Faggioni G, Fillo S, Amatore D, Regalbuto E, Molinari F, Petralito G, Wölfel R, Stefanelli P, Rezza G, Palamara AT, Antwerpen M, Forsman M, Lista F. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. J Photochem Photobiol 2021;8:100082. [PMID: 34729540 DOI: 10.1016/j.jpap.2021.100082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
287 Jearanaiwitayakul T, Apichirapokey S, Chawengkirttikul R, Limthongkul J, Seesen M, Jakaew P, Trisiriwanich S, Sapsutthipas S, Sunintaboon P, Ubol S. Peritoneal Administration of a Subunit Vaccine Encapsulated in a Nanodelivery System Not Only Augments Systemic Responses against SARS-CoV-2 but Also Stimulates Responses in the Respiratory Tract. Viruses 2021;13:2202. [PMID: 34835008 DOI: 10.3390/v13112202] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
288 Mohammad T, Choudhury A, Habib I, Asrani P, Mathur Y, Umair M, Anjum F, Shafie A, Yadav DK, Hassan MI. Genomic Variations in the Structural Proteins of SARS-CoV-2 and Their Deleterious Impact on Pathogenesis: A Comparative Genomics Approach. Front Cell Infect Microbiol 2021;11:765039. [PMID: 34722346 DOI: 10.3389/fcimb.2021.765039] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
289 Kobalo NS, Kulikov AA, Titov II. Mutation hotspots of SARS-CoV-2 RNA motifs conserved in betacoronaviruses. J Phys : Conf Ser 2021;2099:012037. [DOI: 10.1088/1742-6596/2099/1/012037] [Reference Citation Analysis]
290 Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021;284:119201. [PMID: 33607159 DOI: 10.1016/j.lfs.2021.119201] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
291 Rusu LC, Ardelean LC, Tigmeanu CV, Matichescu A, Sauciur I, Bratu EA. COVID-19 and Its Repercussions on Oral Health: A Review. Medicina (Kaunas) 2021;57:1189. [PMID: 34833407 DOI: 10.3390/medicina57111189] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
292 Al Nahid A, Ghosh A. Investigating the possible origin and transmission routes of SARS-CoV-2 genomes and variants of concern in Bangladesh. Infect Genet Evol 2021;95:105057. [PMID: 34481060 DOI: 10.1016/j.meegid.2021.105057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
293 Pattnaik B, Institute of Veterinary Sciences and Animal Husbandry, SoA University, Odisha, India & Former Director, ICAR-DFMD, Mukteswar, Nainital, India and FAO Ref Centre for FMD in South Asia, Bhubaneswar, Odisha, India, Suresh KP, Sridevi R, Yadav MP, Shivamallu C, Kollur SP, Dharmashekar C, Patil SS, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India, Former Vice Chancellor, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh, India, Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka-570015, India, Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India, Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka-570015, India, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India. QUASISPECIES FEATURE IN SARS-CoV-2. JEBAS 2021;9:591-597. [DOI: 10.18006/2021.9(5).591.597] [Reference Citation Analysis]
294 Costanzi E, Kuzikov M, Esposito F, Albani S, Demitri N, Giabbai B, Camasta M, Tramontano E, Rossetti G, Zaliani A, Storici P. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. Int J Mol Sci 2021;22:11779. [PMID: 34769210 DOI: 10.3390/ijms222111779] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
295 Nassar A, Ibrahim IM, Amin FG, Magdy M, Elgharib AM, Azzam EB, Nasser F, Yousry K, Shamkh IM, Mahdy SM, Elfiky AA. A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules 2021;26:6455. [PMID: 34770863 DOI: 10.3390/molecules26216455] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
296 Björkander S, Du L, Zuo F, Ekström S, Wang Y, Wan H, Sherina N, Schoutens L, Andréll J, Andersson N, Georgelis A, Bergström A, Marcotte H, Kull I, Hammarström L, Melén E, Pan-Hammarström Q; BAMSE COVID-19 study group. SARS-CoV-2-specific B- and T-cell immunity in a population-based study of young Swedish adults. J Allergy Clin Immunol 2021:S0091-6749(21)01626-2. [PMID: 34695490 DOI: 10.1016/j.jaci.2021.10.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
297 Saied EM, El-Maradny YA, Osman AA, Darwish AMG, Abo Nahas HH, Niedbała G, Piekutowska M, Abdel-Rahman MA, Balbool BA, Abdel-Azeem AM. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021;13:1759. [PMID: 34834174 DOI: 10.3390/pharmaceutics13111759] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
298 Low ZY, Yip AJW, Lal SK. Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim Biophys Acta Mol Basis Dis 2021;1868:166294. [PMID: 34687900 DOI: 10.1016/j.bbadis.2021.166294] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
299 Roy RK, Sharma U, Wasson MK, Jain A, Hassan MI, Prakash H. Macrophage Activation Syndrome and COVID 19: Impact of MAPK Driven Immune-Epigenetic Programming by SARS-Cov-2. Front Immunol 2021;12:763313. [PMID: 34659270 DOI: 10.3389/fimmu.2021.763313] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
300 Moghaddar M, Radman R, Macreadie I. Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19. Microorganisms 2021;9:2167. [PMID: 34683488 DOI: 10.3390/microorganisms9102167] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
301 Al-Jighefee HT, Najjar H, Ahmed MN, Qush A, Awwad S, Kamareddine L. COVID-19 Vaccine Platforms: Challenges and Safety Contemplations. Vaccines (Basel) 2021;9:1196. [PMID: 34696306 DOI: 10.3390/vaccines9101196] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
302 Kumar A, Kumar P, Saumya KU, Giri R. Investigating the conformational dynamics of SARS-CoV-2 NSP6 protein with emphasis on non-transmembrane 91-112 & 231-290 regions. Microb Pathog 2021;161:105236. [PMID: 34648928 DOI: 10.1016/j.micpath.2021.105236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
303 Fauzi A, Saefi M, Kristiana E, Adi WC, Lestariani N. Factor and Rasch Analysis on COVID-19 Genetics Literacy Assessment Instrument. EURASIA J Math Sci Tech Ed 2021;17:em2032. [DOI: 10.29333/ejmste/11264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
304 Laddada W, Soualmia LF, Zanni-Merk C, Ayadi A, Frydman C, L'Hote I, Imbert I. OntoRepliCov: an Ontology-Based Approach for Modeling the SARS-CoV-2 Replication Process. Procedia Comput Sci 2021;192:487-96. [PMID: 34630741 DOI: 10.1016/j.procs.2021.08.050] [Reference Citation Analysis]
305 Marcotte H, Piralla A, Zuo F, Du L, Cassaniti I, Wan H, Kumagai-braesh M, Andréll J, Percivalle E, Sammartino JC, Wang Y, Vlachiotis S, Attevall J, Bergami F, Ferrari A, Colaneri M, Vecchia M, Sambo M, Zuccaro V, Asperges E, Bruno R, Oggionni T, Meloni F, Abolhassanni H, Bertoglio F, Schubert M, Calzolai L, Varani L, Hust M, Xue Y, Hammarström L, Baldanti F, Pan-hammarström Q. Immunity to SARS-CoV-2 up to 15 months after infection.. [DOI: 10.1101/2021.10.08.463699] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
306 Toscano S, Chisari CG, Patti F. Multiple Sclerosis, COVID-19 and Vaccines: Making the Point. Neurol Ther 2021;10:627-49. [PMID: 34625925 DOI: 10.1007/s40120-021-00288-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
307 Mravinacova S, Jönsson M, Christ W, Klingström J, Yousef J, Hellström C, Hedhammar M, Havervall S, Thålin C, Pin E, Tegel H, Nilsson P, Månberg A, Hober S. A cell-free high throughput assay for assessment of SARS-CoV-2 neutralizing antibodies. N Biotechnol 2021;66:46-52. [PMID: 34628049 DOI: 10.1016/j.nbt.2021.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
308 Mahmud S, Hasan MR, Biswas S, Paul GK, Afrose S, Mita MA, Sultana Shimu MS, Promi MM, Hani U, Rahamathulla M, Khan MA, Zaman S, Uddin MS, Rahmatullah M, Jahan R, Alqahtani AM, Saleh MA, Emran TB. Screening of Potent Phytochemical Inhibitors Against SARS-CoV-2 Main Protease: An Integrative Computational Approach. Front Bioinform 2021;1:717141. [DOI: 10.3389/fbinf.2021.717141] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
309 Rana R, Tripathi A, Kumar N, Ganguly NK. A Comprehensive Overview on COVID-19: Future Perspectives. Front Cell Infect Microbiol 2021;11:744903. [PMID: 34595136 DOI: 10.3389/fcimb.2021.744903] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
310 Fathizadeh H, Afshar S, Masoudi MR, Gholizadeh P, Asgharzadeh M, Ganbarov K, Köse Ş, Yousefi M, Kafil HS. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int J Biol Macromol 2021;188:740-50. [PMID: 34403674 DOI: 10.1016/j.ijbiomac.2021.08.076] [Cited by in Crossref: 30] [Cited by in F6Publishing: 40] [Article Influence: 15.0] [Reference Citation Analysis]
311 Ahammad I, Hossain MU, Rahman A, Chowdhury ZM, Bhattacharjee A, Das KC, Keya CA, Salimullah M. Wave-wise comparative genomic study for revealing the complete scenario and dynamic nature of COVID-19 pandemic in Bangladesh. PLoS One 2021;16:e0258019. [PMID: 34587212 DOI: 10.1371/journal.pone.0258019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
312 Bakry NS, Abdelgawad M, Abdel-Latif A, Lotfy A. Mesenchymal stromal cells coated with anti-ACE2 antibodies might improve efficacy against COVID-19. Hum Cell 2021. [PMID: 34591281 DOI: 10.1007/s13577-021-00620-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
313 Kakavas S, Karayiannis D, Mastora Z. The Complex Interplay between Immunonutrition, Mast Cells, and Histamine Signaling in COVID-19. Nutrients 2021;13:3458. [PMID: 34684460 DOI: 10.3390/nu13103458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
314 Akter S, Zakia MA, Mofijur M, Ahmed SF, Vo DN, Khandaker G, Mahlia TMI. SARS-CoV-2 variants and environmental effects of lockdowns, masks and vaccination: a review. Environ Chem Lett 2021;:1-12. [PMID: 34602923 DOI: 10.1007/s10311-021-01323-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
315 Abdrabbo M, Birch CM, Brandt M, Cicigoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrke AC, Gerzema AEL, Hansen A, Henseler EJ, Huelsbeck AC, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, Reynolds JH, Severson NJ, Sherman BA, Sillman HW, Smith MA, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Wackett MJ, Wozney AJ, Bhattacharyya S, Hati S. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Sci 2021;30:2206-20. [PMID: 34558135 DOI: 10.1002/pro.4190] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
316 Iype E, Pillai U J, Kumar I, Gaastra-Nedea SV, Subramanian R, Saha RN, Dutta M. In silico and in vitro assays reveal potential inhibitors against 3CL(pro) main protease of SARS-CoV-2. J Biomol Struct Dyn 2022;40:12800-11. [PMID: 34550861 DOI: 10.1080/07391102.2021.1977181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
317 Pires C. A Systematic Review on the Contribution of Artificial Intelligence in the Development of Medicines for COVID-2019. J Pers Med 2021;11:926. [PMID: 34575703 DOI: 10.3390/jpm11090926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
318 Naqvi AR, Schwartz J, Brandini DA, Schaller S, Hussein H, Valverde A, Naqvi RA, Shukla D. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. Int Rev Immunol 2021;:1-15. [PMID: 34525891 DOI: 10.1080/08830185.2021.1967949] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
319 Vassileva S, Mateeva V, Drenovska K. Drug repurposing of dermatologic medications to treat coronavirus disease 2019: Science or fiction? Clin Dermatol 2021;39:430-45. [PMID: 34518001 DOI: 10.1016/j.clindermatol.2021.01.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
320 Cardoso-Lima R, Souza PFN, Guedes MIF, Santos-Oliveira R, Rebelo Alencar LM. SARS-CoV-2 Unrevealed: Ultrastructural and Nanomechanical Analysis. Langmuir 2021;37:10762-9. [PMID: 34351770 DOI: 10.1021/acs.langmuir.1c01488] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
321 Arora S, Nag A, Kalra A, Sinha V, Meena E, Saxena S, Sutaria D, Kaur M, Pamnani T, Sharma K, Saxena S, Shrivastava SK, Gupta AB, Li X, Jiang G. Successful Application of Wastewater-Based Epidemiology in Prediction and Monitoring of the Second Wave of COVID-19 in India with Fragmented Sewerage Systems- A Case Study of Jaipur (India).. [DOI: 10.1101/2021.09.11.21263417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
322 Zhang W, Ma Z, Wu Y, Shi X, Zhang Y, Zhang M, Zhang M, Wang L, Liu W. SARS-CoV-2 3C-like protease antagonizes interferon-beta production by facilitating the degradation of IRF3. Cytokine 2021;148:155697. [PMID: 34509038 DOI: 10.1016/j.cyto.2021.155697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
323 Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol 2021;18:2293-306. [PMID: 34497376 DOI: 10.1038/s41423-021-00752-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 19.5] [Reference Citation Analysis]
324 Zheng X, Sun Z, Yu L, Shi D, Zhu M, Yao H, Li L. Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus. Pathogens 2021;10:1155. [PMID: 34578187 DOI: 10.3390/pathogens10091155] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
325 Celik I, Yadav R, Duzgun Z, Albogami S, El-Shehawi AM, Fatimawali, Idroes R, Tallei TE, Emran TB. Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. Biology (Basel) 2021;10:880. [PMID: 34571756 DOI: 10.3390/biology10090880] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
326 Papadopoulou A, Musa H, Sivaganesan M, McCoy D, Deloukas P, Marouli E. COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and circulatory diseases. PLoS One 2021;16:e0256988. [PMID: 34478452 DOI: 10.1371/journal.pone.0256988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
327 Fiorino S, Tateo F, Biase D, Gallo CG, Orlandi PE, Corazza I, Budriesi R, Micucci M, Visani M, Loggi E, Hong W, Pica R, Lari F, Zippi M. SARS-CoV-2: lessons from both the history of medicine and from the biological behavior of other well-known viruses. Future Microbiol 2021;16:1105-33. [PMID: 34468163 DOI: 10.2217/fmb-2021-0064] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
328 Maharjan PM, Cheon J, Jung J, Kim H, Lee J, Song M, Jeong GU, Kwon Y, Shim B, Choe S. Plant-Expressed Receptor Binding Domain of the SARS-CoV-2 Spike Protein Elicits Humoral Immunity in Mice. Vaccines (Basel) 2021;9:978. [PMID: 34579215 DOI: 10.3390/vaccines9090978] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
329 Riester E, Findeisen P, Hegel JK, Kabesch M, Ambrosch A, Rank CM, Pessl F, Laengin T, Niederhauser C. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S immunoassay. J Virol Methods 2021;297:114271. [PMID: 34461153 DOI: 10.1016/j.jviromet.2021.114271] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
330 Jamwal VL, Kumar N, Bhat R, Jamwal PS, Singh K, Dogra S, Kulkarni A, Bhadra B, Shukla MR, Saran S, Dasgupta S, Vishwakarma RA, Gandhi SG. Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virol J 2021;18:178. [PMID: 34461941 DOI: 10.1186/s12985-021-01642-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
331 Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021;87:110121. [PMID: 34438017 DOI: 10.1016/j.cellsig.2021.110121] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
332 Srivastava M, Hall D, Omoru OB, Gill HM, Smith S, Janga SC. Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components. Microorganisms 2021;9:1794. [PMID: 34576690 DOI: 10.3390/microorganisms9091794] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
333 Kumar V, Singh J, Hasnain SE, Sundar D. Possible Link between Higher Transmissibility of Alpha, Kappa and Delta Variants of SARS-CoV-2 and Increased Structural Stability of Its Spike Protein and hACE2 Affinity. Int J Mol Sci 2021;22:9131. [PMID: 34502041 DOI: 10.3390/ijms22179131] [Cited by in Crossref: 29] [Cited by in F6Publishing: 38] [Article Influence: 14.5] [Reference Citation Analysis]
334 Cho CC, Li SG, Lalonde TJ, Yang KS, Yu G, Qiao Y, Xu S, Ray Liu W. Drug Repurposing for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 2021. [PMID: 34423563 DOI: 10.1002/cmdc.202100455] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
335 Biji A, Khatun O, Swaraj S, Narayan R, Rajmani RS, Sardar R, Satish D, Mehta S, Bindhu H, Jeevan M, Saini DK, Singh A, Gupta D, Tripathi S. Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine 2021;70:103525. [PMID: 34392148 DOI: 10.1016/j.ebiom.2021.103525] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
336 Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021;22:8663. [PMID: 34445368 DOI: 10.3390/ijms22168663] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
337 Sarkar N, Thakur A, Ghadge J, Rath SL. Computational studies reveal Fluorine based quinolines to be potent inhibitors for proteins involved in SARS-CoV-2 assembly. J Fluor Chem 2021;250:109865. [PMID: 34393265 DOI: 10.1016/j.jfluchem.2021.109865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
338 Mohanty SS, Sahoo CR, Padhy RN. Targeting Some Enzymes with Repurposing Approved Pharmaceutical Drugs for Expeditious Antiviral Approaches Against Newer Strains of COVID-19. AAPS PharmSciTech 2021;22:214. [PMID: 34378108 DOI: 10.1208/s12249-021-02089-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
339 Mujwar S. Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Comput Biol Med 2021;136:104748. [PMID: 34388463 DOI: 10.1016/j.compbiomed.2021.104748] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
340 Nijenhuis W, Damstra HG, van Grinsven EJ, Iwanski MK, Praest P, Soltani ZE, van Grinsven MM, Brunsveld JE, de Kort T, Rodenburg LW, de Jong DC, Raeven HH, Spelier S, Amatngalim GD, Akhmanova A, Nijhuis M, Lebbink RJ, Beekman JM, Kapitein LC. Optical nanoscopy reveals SARS-CoV-2-induced remodeling of human airway cells.. [DOI: 10.1101/2021.08.05.455126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
341 Soni B, Kabra R, Singh S. Quantitative Insight into Immunopathology of SARS-CoV-2 Infection. J Interferon Cytokine Res 2021;41:244-57. [PMID: 34280026 DOI: 10.1089/jir.2020.0156] [Reference Citation Analysis]
342 Almehdi AM, Khoder G, Alchakee AS, Alsayyid AT, Sarg NH, Soliman SSM. SARS-CoV-2 spike protein: pathogenesis, vaccines, and potential therapies. Infection 2021. [PMID: 34339040 DOI: 10.1007/s15010-021-01677-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
343 Sealy RE, Hurwitz JL. Cross-Reactive Immune Responses toward the Common Cold Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Murine Study. Microorganisms 2021;9:1643. [PMID: 34442723 DOI: 10.3390/microorganisms9081643] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
344 Kiseleva I, Ksenafontov A. COVID-19 Shuts Doors to Flu but Keeps Them Open to Rhinoviruses. Biology (Basel) 2021;10:733. [PMID: 34439965 DOI: 10.3390/biology10080733] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
345 Lara-Ureña N, García-Domínguez M. Relevance of BET Family Proteins in SARS-CoV-2 Infection. Biomolecules 2021;11:1126. [PMID: 34439792 DOI: 10.3390/biom11081126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
346 Witt S, Rogien A, Werner D, Siegenthaler J, Lesiyon R, Kurien N, Rechenberg R, Baule N, Hardy A, Becker M. Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein. Diam Relat Mater 2021;118:108542. [PMID: 34334952 DOI: 10.1016/j.diamond.2021.108542] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
347 Mou K, Abdalla M, Wei DQ, Khan MT, Lodhi MS, Darwish DB, Sharaf M, Tu X. Emerging mutations in envelope protein of SARS-CoV-2 and their effect on thermodynamic properties. Inform Med Unlocked 2021;25:100675. [PMID: 34337139 DOI: 10.1016/j.imu.2021.100675] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
348 Robishaw JD, Alter SM, Solano JJ, Shih RD, DeMets DL, Maki DG, Hennekens CH. Genomic surveillance to combat COVID-19: challenges and opportunities. Lancet Microbe 2021;2:e481-4. [PMID: 34337584 DOI: 10.1016/S2666-5247(21)00121-X] [Cited by in Crossref: 54] [Cited by in F6Publishing: 24] [Article Influence: 27.0] [Reference Citation Analysis]
349 Behisi MA, Altaweel HM, Gassas RF, Aldehaiman M, Alkhamees AA. COVID-19 Pandemic and Mental Health Status of Saudi Citizens Living Abroad. Int J Environ Res Public Health 2021;18:7857. [PMID: 34360149 DOI: 10.3390/ijerph18157857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
350 Leli C, Di Matteo L, Gotta F, Cornaglia E, Vay D, Megna I, Pensato RE, Boverio R, Rocchetti A. Performance of a SARS-CoV-2 antigen rapid immunoassay in patients admitted to the emergency department. Int J Infect Dis 2021;110:135-40. [PMID: 34302961 DOI: 10.1016/j.ijid.2021.07.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
351 Chong ZX, Liew WPP, Ong HK, Yong CY, Shit CS, Ho WY, Ng SYL, Yeap SK. Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract 2021;225:153565. [PMID: 34333398 DOI: 10.1016/j.prp.2021.153565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
352 Tasakis RN, Samaras G, Jamison A, Lee M, Paulus A, Whitehouse G, Verkoczy L, Papavasiliou FN, Diaz M. SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS One 2021;16:e0255169. [PMID: 34297786 DOI: 10.1371/journal.pone.0255169] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
353 Cava C, Bertoli G, Castiglioni I. Potential drugs against COVID-19 revealed by gene expression profile, molecular docking and molecular dynamic simulation. Future Virol 2021. [PMID: 34306168 DOI: 10.2217/fvl-2020-0392] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
354 Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Bębnowska D, Wołącewicz M, Majchrzak A, Parczewski M. Interplay between Neutrophils, NETs and T-Cells in SARS-CoV-2 Infection-A Missing Piece of the Puzzle in the COVID-19 Pathogenesis? Cells 2021;10:1817. [PMID: 34359987 DOI: 10.3390/cells10071817] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
355 Zuin M, Gentili V, Cervellati C, Rizzo R, Zuliani G. Viral Load Difference between Symptomatic and Asymptomatic COVID-19 Patients: Systematic Review and Meta-Analysis. Infect Dis Rep 2021;13:645-53. [PMID: 34287354 DOI: 10.3390/idr13030061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
356 Tsai KC, Lee YC, Tseng TS. Comprehensive Deep Mutational Scanning Reveals the Immune-Escaping Hotspots of SARS-CoV-2 Receptor-Binding Domain Targeting Neutralizing Antibodies. Front Microbiol 2021;12:698365. [PMID: 34335530 DOI: 10.3389/fmicb.2021.698365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
357 Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol 2021;12:701501. [PMID: 34322129 DOI: 10.3389/fimmu.2021.701501] [Cited by in Crossref: 61] [Cited by in F6Publishing: 71] [Article Influence: 30.5] [Reference Citation Analysis]
358 Salleh MZ, Derrick JP, Deris ZZ. Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. Int J Mol Sci 2021;22:7425. [PMID: 34299045 DOI: 10.3390/ijms22147425] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 20.0] [Reference Citation Analysis]
359 Yang CH, Li HC, Lee WH, Lo SY. Antibodies Targeting Two Epitopes in SARS-CoV-2 Neutralize Pseudoviruses with the Spike Proteins from Different Variants. Pathogens 2021;10:869. [PMID: 34358019 DOI: 10.3390/pathogens10070869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
360 Kumar A, Kumar P, Saumya KU, Giri R. Investigating the conformational dynamics of SARS-CoV-2 NSP6 protein with emphasis on non-transmembrane 91-112 & 231-290 regions.. [DOI: 10.1101/2021.07.06.451329] [Reference Citation Analysis]
361 Lo CW, Matsuura R, Iimura K, Wada S, Shinjo A, Benno Y, Nakagawa M, Takei M, Aida Y. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci Rep 2021;11:13804. [PMID: 34226623 DOI: 10.1038/s41598-021-93231-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
362 Awada C, Abdullah MMB, Traboulsi H, Dab C, Alshoaibi A. SARS-CoV-2 Receptor Binding Domain as a Stable-Potential Target for SARS-CoV-2 Detection by Surface-Enhanced Raman Spectroscopy. Sensors (Basel) 2021;21:4617. [PMID: 34283162 DOI: 10.3390/s21134617] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
363 Xu J, Wu Z, Zhang M, Liu S, Zhou L, Yang C, Liu C. The Role of the Gastrointestinal System in Neuroinvasion by SARS-CoV-2. Front Neurosci 2021;15:694446. [PMID: 34276298 DOI: 10.3389/fnins.2021.694446] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
364 Nikonova AA, Faizuloev EB, Gracheva AV, Isakov IY, Zverev VV. Genetic Diversity and Evolution of the Biological Features of the Pandemic SARS-CoV-2. Acta Naturae 2021;13:77-88. [PMID: 34707899 DOI: 10.32607/actanaturae.11337] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
365 Infantino M, Benucci M, Manfredi M. COVID-19 e autoimmunità. Riv Ital Med Lab 2021;17. [DOI: 10.23736/s1825-859x.21.00104-3] [Reference Citation Analysis]
366 Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci 2021;22:7135. [PMID: 34281186 DOI: 10.3390/ijms22137135] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
367 Wang R, Chen J, Gao K, Wei GW. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics 2021;113:2158-70. [PMID: 34004284 DOI: 10.1016/j.ygeno.2021.05.006] [Cited by in Crossref: 110] [Cited by in F6Publishing: 115] [Article Influence: 55.0] [Reference Citation Analysis]
368 Rizma BRP, Ananto AD, Sunarwidhi AL. The Study of Potential Antiviral Compounds from Indonesian Medicinal Plants as Anti-COVID-19 with Molecular Docking Approach. J Mol Docking 2021;1:32-39. [DOI: 10.33084/jmd.v1i1.2307] [Reference Citation Analysis]
369 Shamkh IM, Pratiwi D. Development of SARS-CoV-2 Inhibitors Using Molecular Docking Study with Different Coronavirus Spike Protein and ACE2. J Mol Docking 2021;1:1-14. [DOI: 10.33084/jmd.v1i1.2212] [Reference Citation Analysis]
370 Caruso ÍP, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL. Dynamics of the SARS-CoV-2 nucleoprotein N-terminal domain triggers RNA duplex destabilization. Biophys J 2021;120:2814-27. [PMID: 34197802 DOI: 10.1016/j.bpj.2021.06.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
371 Qayyum S, Mohammad T, Slominski RM, Hassan MI, Tuckey RC, Raman C, Slominski AT. Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. Am J Physiol Endocrinol Metab 2021;321:E246-51. [PMID: 34181461 DOI: 10.1152/ajpendo.00174.2021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
372 Mahmud S, Biswas S, Paul GK, Mita MA, Promi MM, Afrose S, Hasan MR, Zaman S, Uddin MS, Dhama K, Emran TB, Saleh MA, Simal-Gandara J. Plant-Based Phytochemical Screening by Targeting Main Protease of SARS-CoV-2 to Design Effective Potent Inhibitors. Biology (Basel) 2021;10:589. [PMID: 34206970 DOI: 10.3390/biology10070589] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
373 Canessa E. Uncovering Signals from the Coronavirus Genome. Genes (Basel) 2021;12:973. [PMID: 34202172 DOI: 10.3390/genes12070973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
374 Gudowska-Sawczuk M, Mroczko B. The Role of Neuropilin-1 (NRP-1) in SARS-CoV-2 Infection: Review. J Clin Med 2021;10:2772. [PMID: 34202613 DOI: 10.3390/jcm10132772] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
375 Paolini A, Borella R, De Biasi S, Neroni A, Mattioli M, Lo Tartaro D, Simonini C, Franceschini L, Cicco G, Piparo AM, Cossarizza A, Gibellini L. Cell Death in Coronavirus Infections: Uncovering Its Role during COVID-19. Cells 2021;10:1585. [PMID: 34201847 DOI: 10.3390/cells10071585] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
376 Lazarevic I, Pravica V, Miljanovic D, Cupic M. Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far? Viruses 2021;13:1192. [PMID: 34206453 DOI: 10.3390/v13071192] [Cited by in Crossref: 96] [Cited by in F6Publishing: 107] [Article Influence: 48.0] [Reference Citation Analysis]
377 Kang HM, Choi EH, Kim YJ. Updates on the coronavirus disease 2019 vaccine and consideration in children. Clin Exp Pediatr 2021;64:328-38. [PMID: 34148333 DOI: 10.3345/cep.2021.00696] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
378 Megyeri K, Dernovics Á, Al-Luhaibi ZII, Rosztóczy A. COVID-19-associated diarrhea. World J Gastroenterol 2021; 27(23): 3208-3222 [PMID: 34163106 DOI: 10.3748/wjg.v27.i23.3208] [Cited by in CrossRef: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
379 Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021;10:971. [PMID: 34204362 DOI: 10.3390/antiox10060971] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
380 Mao R, Bie L, Xu M, Wang X, Gao J. Antiviral drug design based on the opening mechanism of spike glycoprotein in SARS-CoV-2. Phys Chem Chem Phys 2021;23:12549-58. [PMID: 34008647 DOI: 10.1039/d1cp01045j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
381 Ferrari L, Nigro S, Bordini L, Carugno M, Bollati V. SARS-CoV-2 tests in occupational settings: what you look for is what you get. Med Lav 2021;112:183-93. [PMID: 34142672 DOI: 10.23749/mdl.v112i3.11472] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
382 Qin L, Ding X, Li Y, Chen Q, Meng J, Jiang T. Co-mutation modules capture the evolution and transmission patterns of SARS-CoV-2. Brief Bioinform 2021:bbab222. [PMID: 34121111 DOI: 10.1093/bib/bbab222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
383 Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021;6:233. [PMID: 34117216 DOI: 10.1038/s41392-021-00653-w] [Cited by in Crossref: 101] [Cited by in F6Publishing: 106] [Article Influence: 50.5] [Reference Citation Analysis]
384 Kulus J, Kulus M, Stefańska K, Sobolewski J, Piotrowska-Kempisty H, Mozdziak P, Kempisty B. SARS-CoV-2 Genetic Variability and Non-Specific Immunity Associated with the Use of Different BCG Strains-A Molecular and Clinical Approach. Vaccines (Basel) 2021;9:639. [PMID: 34200951 DOI: 10.3390/vaccines9060639] [Reference Citation Analysis]
385 Gadhave K, Kumar P, Kumar A, Bhardwaj T, Garg N, Giri R. Conformational dynamics of 13 amino acids long NSP11 of SARS-CoV-2 under membrane mimetics and different solvent conditions. Microb Pathog 2021;158:105041. [PMID: 34119626 DOI: 10.1016/j.micpath.2021.105041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
386 Cho CD, Li SG, Yang KS, Lalonde TJ, Yu G, Qiao Y, Xu S, Liu WR. Drug Repurposing for the SARS-CoV-2 Papain-Like Protease.. [DOI: 10.1101/2021.06.04.447160] [Reference Citation Analysis]
387 Gégout Petit A, Jeulin H, Legrand K, Jay N, Bochnakian A, Vallois P, Schvoerer E, Guillemin F. Seroprevalence of SARS-CoV-2, Symptom Profiles and Sero-Neutralization in a Suburban Area, France. Viruses 2021;13:1076. [PMID: 34200070 DOI: 10.3390/v13061076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
388 Yu S, Chen K, Fang L, Mao H, Lou X, Li C, Zhang Y. Comparison and Analysis of Neutralizing Antibody Levels in Serum after Inoculating with SARS-CoV-2, MERS-CoV, or SARS-CoV Vaccines in Humans. Vaccines (Basel) 2021;9:588. [PMID: 34199384 DOI: 10.3390/vaccines9060588] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
389 Troyer Z, Alhusaini N, Tabler CO, Sweet T, de Carvalho KIL, Schlatzer DM, Carias L, King CL, Matreyek K, Tilton JC. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles 2021;10:e12112. [PMID: 34188786 DOI: 10.1002/jev2.12112] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
390 Maali A, Teimouri H, Azad M, Amiri S, Adibzadeh S; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran; Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran, Department of Medical Biotechnology, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. In-silico Immunomodelling of SARS-CoV-2. JoMMID 2021;9:88-96. [DOI: 10.52547/jommid.9.2.88] [Reference Citation Analysis]
391 Adhiyanto C, Hendarmin LA, Suwarsono EA, Harriyati Z, Suryani, Puspitaningrum R, Nurjadi D. The Identification of the SARS-CoV-2 Whole Genome: Nine Cases Among Patients in Banten Province, Indonesia. J Pure Appl Microbiol 2021;15:936-948. [DOI: 10.22207/jpam.15.2.52] [Reference Citation Analysis]
392 Martelli Júnior H, Gueiros LA, de Lucena EG, Coletta RD. Increase in the number of Sjögren's syndrome cases in Brazil in the COVID-19 Era. Oral Dis 2021. [PMID: 34042242 DOI: 10.1111/odi.13925] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
393 He Y, Wang J, Ren J, Zhao Y, Chen J, Chen X. Effect of COVID-19 on Male Reproductive System - A Systematic Review. Front Endocrinol (Lausanne) 2021;12:677701. [PMID: 34122351 DOI: 10.3389/fendo.2021.677701] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
394 Qu C, Fuhler GM, Pan Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int J Mol Sci 2021;22:5672. [PMID: 34073529 DOI: 10.3390/ijms22115672] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
395 Li T, Kenney AD, Liu H, Fiches GN, Zhou D, Biswas A, Que J, Santoso N, Yount JS, Zhu J. SARS-CoV-2 Nsp14 activates NF-κB signaling and induces IL-8 upregulation. bioRxiv 2021:2021. [PMID: 34075374 DOI: 10.1101/2021.05.26.445787] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
396 Das A, Pandita D, Jain GK, Agarwal P, Grewal AS, Khar RK, Lather V. Role of phytoconstituents in the management of COVID-19. Chem Biol Interact 2021;341:109449. [PMID: 33798507 DOI: 10.1016/j.cbi.2021.109449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
397 Dos Anjos de Paula RC, de Maria Frota Vasconcelos T, da Costa FBS, de Brito LA, Torres DM, Moura AEF, Oliveira DN, de Lima Henn GA, Rodrigues PGB, de Sousa Pereira I, Braga ILS, Rocha FA, Frota NAF, Carvalho FMM, Pitombeira MS, Tavares-Junior JWL, Montenegro RC, Braga-Neto P, Nóbrega PR, Sobreira-Neto MA. Characterization of Headache in COVID-19: a Retrospective Multicenter Study. Mol Neurobiol 2021. [PMID: 34036488 DOI: 10.1007/s12035-021-02430-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
398 Nahid AA, Ghosh A. Investigating the possible origin and transmission routes of SARS-CoV-2 genomes and variants of concern in Bangladesh.. [DOI: 10.1101/2021.05.24.444482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
399 Phan LMT, Tieu MV, Pham TT, Cho S. Clinical Utility of Biosensing Platforms for Confirmation of SARS-CoV-2 Infection. Biosensors (Basel) 2021;11:167. [PMID: 34073756 DOI: 10.3390/bios11060167] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
400 Güler G, Özdemir H, Omar D, Akdoğan G. Coronavirus disease 2019 (COVID-19): Biophysical and biochemical aspects of SARS-CoV-2 and general characteristics. Prog Biophys Mol Biol 2021;164:3-18. [PMID: 34033836 DOI: 10.1016/j.pbiomolbio.2021.05.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
401 Matsuura R, Lo CW, Wada S, Somei J, Ochiai H, Murakami T, Saito N, Ogawa T, Shinjo A, Benno Y, Nakagawa M, Takei M, Aida Y. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO2 Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021;13:942. [PMID: 34065382 DOI: 10.3390/v13050942] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
402 Jukič M, Škrlj B, Tomšič G, Pleško S, Podlipnik Č, Bren U. Prioritisation of Compounds for 3CLpro Inhibitor Development on SARS-CoV-2 Variants. Molecules 2021;26:3003. [PMID: 34070140 DOI: 10.3390/molecules26103003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
403 Guo H, Zhou L, Ma Z, Tian Z, Zhou F. Promising Immunotherapies against COVID-19. Adv Ther (Weinh) 2021;:2100044. [PMID: 34179345 DOI: 10.1002/adtp.202100044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
404 Sixto-López Y, Martínez-Archundia M. Drug repositioning to target NSP15 protein on SARS-CoV-2 as possible COVID-19 treatment. J Comput Chem 2021;42:897-907. [PMID: 33713492 DOI: 10.1002/jcc.26512] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
405 Legebeke J, Lord J, Penrice-randal R, Vallejo AF, Poole S, Brendish NJ, Dong X, Hartley C, Holloway JW, Lucas JS, Williams AP, Wheway G, Strazzeri F, Gardner A, Schofield JP, Skipp PJ, Hiscox JA, Polak ME, Clark TW, Baralle D. Distinct immune responses in patients infected with influenza or SARS-CoV-2, and in COVID-19 survivors, characterised by transcriptomic and cellular abundance differences in blood.. [DOI: 10.1101/2021.05.12.21257086] [Reference Citation Analysis]
406 Papadopoulou A, Musa H, Sivaganesan M, Mccoy D, Deloukas P, Marouli E. COVID-19 susceptibility variants associate with blood clots, thrombophlebitis and circulatory diseases.. [DOI: 10.1101/2021.05.04.21256617] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
407 Gonçalves DA, Ribeiro V, Gualberto A, Peres F, Luconi M, Gameiro J. COVID-19 and Obesity: An Epidemiologic Analysis of the Brazilian Data. Int J Endocrinol 2021;2021:6667135. [PMID: 34040642 DOI: 10.1155/2021/6667135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
408 Abubakar MB, Usman D, El-Saber Batiha G, Cruz-Martins N, Malami I, Ibrahim KG, Abubakar B, Bello MB, Muhammad A, Gan SH, Dabai AI, Alblihed M, Ghosh A, Badr RH, Thangadurai D, Imam MU. Natural Products Modulating Angiotensin Converting Enzyme 2 (ACE2) as Potential COVID-19 Therapies. Front Pharmacol 2021;12:629935. [PMID: 34012391 DOI: 10.3389/fphar.2021.629935] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
409 Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv Drug Deliv Rev 2021;172:314-38. [PMID: 33482248 DOI: 10.1016/j.addr.2021.01.014] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 26.0] [Reference Citation Analysis]
410 Kumar V, Singh J, Hasnain SE, Sundar D. Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity.. [DOI: 10.1101/2021.04.29.441933] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
411 Wang R, Hu Q, Wang H, Zhu G, Wang M, Zhang Q, Zhao Y, Li C, Zhang Y, Ge G, Chen H, Chen L. Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Int J Biol Macromol 2021;183:182-92. [PMID: 33901557 DOI: 10.1016/j.ijbiomac.2021.04.129] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
412 Srivastava N, Garg P, Srivastava P, Seth PK. A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ 2021;9:e11171. [PMID: 33981493 DOI: 10.7717/peerj.11171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
413 Mittal S, Federman HG, Sievert D, Gleeson JG. The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist 2021;:10738584211009149. [PMID: 33874789 DOI: 10.1177/10738584211009149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
414 Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021;9:868. [PMID: 33920724 DOI: 10.3390/microorganisms9040868] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
415 Kabir MA, Ahmed R, Chowdhury R, Iqbal SMA, Paulmurugan R, Demirci U, Asghar W. Management of COVID-19: current status and future prospects. Microbes Infect 2021;23:104832. [PMID: 33872807 DOI: 10.1016/j.micinf.2021.104832] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
416 Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform 2021;22:726-41. [PMID: 33147623 DOI: 10.1093/bib/bbaa288] [Cited by in Crossref: 67] [Cited by in F6Publishing: 79] [Article Influence: 33.5] [Reference Citation Analysis]
417 Nain Z, Rana HK, Liò P, Islam SMS, Summers MA, Moni MA. Pathogenetic profiling of COVID-19 and SARS-like viruses. Brief Bioinform 2021;22:1175-96. [PMID: 32778874 DOI: 10.1093/bib/bbaa173] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
418 Cai Z, Lu C, He J, Liu L, Zou Y, Zhang Z, Zhu Z, Ge X, Wu A, Jiang T, Zheng H, Peng Y. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 2021;22:1297-308. [PMID: 33757279 DOI: 10.1093/bib/bbaa334] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
419 Wu Z, Zhang Q, Ye G, Zhang H, Heng BC, Fei Y, Zhao B, Zhou J. Structural and physiological changes of the human body upon SARS-CoV-2 infection. J Zhejiang Univ Sci B 2021;22:310-7. [PMID: 33835765 DOI: 10.1631/jzus.B2000523] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
420 Cao Y, Yang R, Lee I, Zhang W, Sun J, Wang W, Meng X. Characterization of the SARS-CoV-2 E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Sci 2021;30:1114-30. [PMID: 33813796 DOI: 10.1002/pro.4075] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
421 Vardhan S, Sahoo SK. Virtual screening by targeting proteolytic sites of furin and TMPRSS2 to propose potential compounds obstructing the entry of SARS-CoV-2 virus into human host cells. J Tradit Complement Med 2021. [PMID: 33868970 DOI: 10.1016/j.jtcme.2021.04.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
422 Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, Sharma A, Kumar A, Handu S. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells 2021;10:821. [PMID: 33917481 DOI: 10.3390/cells10040821] [Cited by in Crossref: 108] [Cited by in F6Publishing: 117] [Article Influence: 54.0] [Reference Citation Analysis]
423 Stephen Z F. The airborne dilemma. Arch Clin Nephrol 2021. [DOI: 10.17352/acn.000050] [Reference Citation Analysis]
424 Pluskota-Karwatka D, Hoffmann M, Barciszewski J. Reducing SARS-CoV-2 Pathological Protein Activity with Small Molecules. J Pharm Anal 2021. [PMID: 33842018 DOI: 10.1016/j.jpha.2021.03.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
425 Amendola G, Ettari R, Previti S, Di Chio C, Messere A, Di Maro S, Hammerschmidt SJ, Zimmer C, Zimmermann RA, Schirmeister T, Zappalà M, Cosconati S. Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening. J Chem Inf Model 2021;61:2062-73. [PMID: 33784094 DOI: 10.1021/acs.jcim.1c00184] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
426 Krumm ZA, Lloyd GM, Francis CP, Nasif LH, Mitchell DA, Golde TE, Giasson BI, Xia Y. Precision therapeutic targets for COVID-19. Virol J 2021;18:66. [PMID: 33781287 DOI: 10.1186/s12985-021-01526-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
427 Gupta S, Mallick D, Banerjee K, Mukherjee S, Sarkar S, Lee ST, Basuchowdhuri P, Jana SS. D155Y Substitution of SARS-CoV-2 ORF3a Weakens Binding with Caveolin-1.. [DOI: 10.1101/2021.03.26.437194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
428 Goncalves Cabecinhas AR, Roloff T, Stange M, Bertelli C, Huber M, Ramette A, Chen C, Nadeau S, Gerth Y, Yerly S, Opota O, Pillonel T, Schuster T, Metzger CMJA, Sieber J, Bel M, Wohlwend N, Baumann C, Koch MC, Bittel P, Leuzinger K, Brunner M, Suter-Riniker F, Berlinger L, Søgaard KK, Beckmann C, Noppen C, Redondo M, Steffen I, Seth-Smith HMB, Mari A, Lienhard R, Risch M, Nolte O, Eckerle I, Martinetti Lucchini G, Hodcroft EB, Neher RA, Stadler T, Hirsch HH, Leib SL, Risch L, Kaiser L, Trkola A, Greub G, Egli A. SARS-CoV-2 N501Y Introductions and Transmissions in Switzerland from Beginning of October 2020 to February 2021-Implementation of Swiss-Wide Diagnostic Screening and Whole Genome Sequencing. Microorganisms 2021;9:677. [PMID: 33806013 DOI: 10.3390/microorganisms9040677] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
429 Shamsi S, Anjum H, Shahbaaz M, Khan MS, Ataya FS, Alamri A, Alhumaydhi FA, Husain FM, Rehman MT, Mohammad T, Islam A, Anjum F, Shamsi A. A computational study on active constituents of Habb-ul-aas and Tabasheer as inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2021;:1-12. [PMID: 33759703 DOI: 10.1080/07391102.2021.1900920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
430 Desai S, Rashmi S, Rane A, Dharavath B, Sawant A, Dutt A. An integrated approach to determine the abundance, mutation rate and phylogeny of the SARS-CoV-2 genome. Brief Bioinform 2021;22:1065-75. [PMID: 33479725 DOI: 10.1093/bib/bbaa437] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
431 El Hassab MA, Ibrahim TM, Al-Rashood ST, Alharbi A, Eskandrani RO, Eldehna WM. In silico identification of novel SARS-COV-2 2'-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches. J Enzyme Inhib Med Chem 2021;36:727-36. [PMID: 33685335 DOI: 10.1080/14756366.2021.1885396] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
432 Guerler A, Baker D, van den Beek M, Gruening B, Bouvier D, Coraor N, Shank SD, Zehr JD, Schatz MC, Nekrutenko A. Fast and accurate genome-wide predictions and structural modeling of protein-protein interactions using Galaxy.. [DOI: 10.1101/2021.03.17.435706] [Reference Citation Analysis]
433 Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacol Transl Sci 2021;4:1079-95. [PMID: 34136757 DOI: 10.1021/acsptsci.0c00215] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
434 Loo KY, Letchumanan V, Ser HL, Teoh SL, Law JW, Tan LT, Ab Mutalib NS, Chan KG, Lee LH. COVID-19: Insights into Potential Vaccines. Microorganisms 2021;9:605. [PMID: 33804162 DOI: 10.3390/microorganisms9030605] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
435 Kundu S, Singh S. Genomic Variation and Treatment Strategies of COVID-19: A Descriptive Review. TOCOVIDJ 2021;1:6-19. [DOI: 10.2174/2666958702101010006] [Reference Citation Analysis]
436 Tang KT, Hsu BC, Chen DY. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front Immunol 2021;12:645013. [PMID: 33777042 DOI: 10.3389/fimmu.2021.645013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
437 Mengist HM, Dilnessa T, Jin T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem 2021;9:622898. [PMID: 33889562 DOI: 10.3389/fchem.2021.622898] [Cited by in Crossref: 97] [Cited by in F6Publishing: 111] [Article Influence: 48.5] [Reference Citation Analysis]
438 Rahman MM, Zhou N, Huang J. An Overview on the Development of mRNA-Based Vaccines and Their Formulation Strategies for Improved Antigen Expression In Vivo. Vaccines (Basel) 2021;9:244. [PMID: 33799516 DOI: 10.3390/vaccines9030244] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
439 Chen RH, Yang LJ, Hamdoun S, Chung SK, Lam CW, Zhang KX, Guo X, Xia C, Law BYK, Wong VKW. 1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection. Front Pharmacol 2021;12:634176. [PMID: 33897423 DOI: 10.3389/fphar.2021.634176] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
440 Zapata-cardona MI, Flórez-álvarez L, Zapata-builes W, Guerra-sandoval AL, Guerra-almonacid CM, Hincapié-garcía J, Rugeles MT, Hernandez JC. Atorvastatin effectively inhibits late replicative cycle steps of SARS-CoV-2 in vitro.. [DOI: 10.1101/2021.03.01.433498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
441 Riester E, Findeisen P, Hegel JK, Kabesch M, Ambrosch A, Rank CM, Langen F, Laengin T, Niederhauser C. Performance evaluation of the Roche Elecsys Anti-SARS-CoV-2 S immunoassay.. [DOI: 10.1101/2021.03.02.21252203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
442 Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Lima LB, Montenegro RC. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Int J Biol Macromol 2021;179:1-19. [PMID: 33667553 DOI: 10.1016/j.ijbiomac.2021.02.203] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
443 di Bari I, Franzin R, Picerno A, Stasi A, Cimmarusti MT, Di Chiano M, Curci C, Pontrelli P, Chironna M, Castellano G, Gallone A, Sabbà C, Gesualdo L, Sallustio F. Severe acute respiratory syndrome coronavirus 2 may exploit human transcription factors involved in retinoic acid and interferon-mediated response: a hypothesis supported by an in silico analysis. New Microbes New Infect 2021;41:100853. [PMID: 33680474 DOI: 10.1016/j.nmni.2021.100853] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
444 Beig Parikhani A, Bazaz M, Bamehr H, Fereshteh S, Amiri S, Salehi-Vaziri M, Arashkia A, Azadmanesh K. The Inclusive Review on SARS-CoV-2 Biology, Epidemiology, Diagnosis, and Potential Management Options. Curr Microbiol 2021;78:1099-114. [PMID: 33638671 DOI: 10.1007/s00284-021-02396-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
445 Farouk AE, Baig MH, Khan MI, Park T, Alotaibi SS, Dong JJ. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: A viroinformatics study. Saudi J Biol Sci 2021;28:3262-9. [PMID: 33654454 DOI: 10.1016/j.sjbs.2021.02.066] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
446 Tasakis RN, Samaras G, Jamison A, Lee M, Paulus A, Whitehouse G, Verkoczy L, Papavasiliou FN, Diaz M. SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts.. [DOI: 10.1101/2021.02.19.431311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
447 O'Keefe S, Roboti P, Duah KB, Zong G, Schneider H, Shi WQ, High S. Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor. J Cell Sci 2021;134:jcs257758. [PMID: 33468620 DOI: 10.1242/jcs.257758] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
448 Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, Gressett TE, Longo MT, Engler-Chiurazzi EB, Bix G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev 2021;58:1-15. [PMID: 33674185 DOI: 10.1016/j.cytogfr.2021.02.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 16.5] [Reference Citation Analysis]
449 Biji A, Khatun O, Swaraj S, Narayan R, Rajmani R, Sardar R, Satish D, Mehta S, Bindhu H, Jeevan M, Saini DK, Singh A, Gupta D, Tripathi S. Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples.. [DOI: 10.1101/2021.02.18.431825] [Reference Citation Analysis]
450 Alaşalvar C, Öztürk N, Gökce H, Güder A, Menteşe E, Bektaş H. Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative. J Biomol Struct Dyn 2021;:1-14. [PMID: 33594957 DOI: 10.1080/07391102.2021.1887764] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
451 Qaswal AB, Suleiman A, Guzu H, Harb T, Atiyat B. The Potential Role of Lithium as an Antiviral Agent against SARS-CoV-2 via Membrane Depolarization: Review and Hypothesis. Sci Pharm 2021;89:11. [DOI: 10.3390/scipharm89010011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
452 Swain SS, Singh SR, Sahoo A, Hussain T, Pati S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J Biomol Struct Dyn 2021;:1-14. [PMID: 33583350 DOI: 10.1080/07391102.2021.1885495] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
453 Gégout petit A, Jeulin H, Legrand K, Bochnakian A, Vallois P, Schvoerer E, Guillemin F. Seroprevalence of SARS-CoV-2, symptom profiles and seroneutralization during the first COVID-19 wave in a suburban area, France.. [DOI: 10.1101/2021.02.10.21250862] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
454 Zhang WS, Pan J, Li F, Zhu M, Xu M, Zhu H, Yu Y, Su G. Reverse Transcription Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a for Facile and Highly Sensitive Colorimetric SARS-CoV-2 Detection. Anal Chem 2021;93:4126-33. [PMID: 33570401 DOI: 10.1021/acs.analchem.1c00013] [Cited by in Crossref: 62] [Cited by in F6Publishing: 75] [Article Influence: 31.0] [Reference Citation Analysis]
455 Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andréll J, Braesch-Andersen S, Cassaniti I, Percivalle E, Sarasini A, Bergami F, Di Martino R, Colaneri M, Vecchia M, Sambo M, Zuccaro V, Bruno R, Sachs M, Oggionni T, Meloni F, Abolhassani H, Bertoglio F, Schubert M, Byrne-Steele M, Han J, Hust M, Xue Y, Hammarström L, Baldanti F, Marcotte H, Pan-Hammarström Q. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med (N Y) 2021;2:281-295.e4. [PMID: 33589885 DOI: 10.1016/j.medj.2021.02.001] [Cited by in Crossref: 78] [Cited by in F6Publishing: 101] [Article Influence: 39.0] [Reference Citation Analysis]
456 Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021;93:2722-34. [PMID: 33475167 DOI: 10.1002/jmv.26814] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
457 Shamsi A, Mohammad T, Anwar S, Amani S, Khan MS, Husain FM, Rehman MT, Islam A, Hassan MI. Potential drug targets of SARS-CoV-2: From genomics to therapeutics. Int J Biol Macromol 2021;177:1-9. [PMID: 33577820 DOI: 10.1016/j.ijbiomac.2021.02.071] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 21.5] [Reference Citation Analysis]
458 Mok PL, Koh AE, Farhana A, Alsrhani A, Alam MK, Suresh Kumar S. Computational drug screening against the SARS-CoV-2 Saudi Arabia isolates through a multiple-sequence alignment approach. Saudi J Biol Sci 2021;28:2502-9. [PMID: 33551661 DOI: 10.1016/j.sjbs.2021.01.051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
459 Elmahallawy EK, Mohamed Y, Abdo W, El-Gohary FA, Ahmed Awad Ali S, Yanai T. New Insights Into Potential Benefits of Bioactive Compounds of Bee Products on COVID-19: A Review and Assessment of Recent Research. Front Mol Biosci 2020;7:618318. [PMID: 33628764 DOI: 10.3389/fmolb.2020.618318] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
460 Mehmood I, Ijaz M, Ahmad S, Ahmed T, Bari A, Abro A, Allemailem KS, Almatroudi A, Tahir Ul Qamar M. SARS-CoV-2: An Update on Genomics, Risk Assessment, Potential Therapeutics and Vaccine Development. Int J Environ Res Public Health 2021;18:1626. [PMID: 33567746 DOI: 10.3390/ijerph18041626] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
461 Troyano-Hernáez P, Reinosa R, Holguín Á. Evolution of SARS-CoV-2 Envelope, Membrane, Nucleocapsid, and Spike Structural Proteins from the Beginning of the Pandemic to September 2020: A Global and Regional Approach by Epidemiological Week. Viruses 2021;13:243. [PMID: 33557213 DOI: 10.3390/v13020243] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 21.0] [Reference Citation Analysis]
462 Asrani P, Hussain A, Nasreen K, AlAjmi MF, Amir S, Sohal SS, Hassan MI. Guidelines and Safety Considerations in the Laboratory Diagnosis of SARS-CoV-2 Infection: A Prerequisite Study for Health Professionals. Risk Manag Healthc Policy 2021;14:379-89. [PMID: 33568956 DOI: 10.2147/RMHP.S284473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
463 Ahmed-Abakur EH, Alnour TMS. Genetic variations among SARS-CoV-2 strains isolated in China. Gene Rep 2020;21:100925. [PMID: 33521384 DOI: 10.1016/j.genrep.2020.100925] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
464 Greener M. Variations on a deadly theme: How COVID-19 is changing. Independent Nurse 2021;2021:15-17. [DOI: 10.12968/indn.2021.2.15] [Reference Citation Analysis]
465 De Donno A, Lobreglio G, Panico A, Grassi T, Bagordo F, Bozzetti MP, Massari S, Siculella L, Damiano F, Guerra F, Greco M, Chicone M, Lazzari R, Alifano P. IgM and IgG Profiles Reveal Peculiar Features of Humoral Immunity Response to SARS-CoV-2 Infection. Int J Environ Res Public Health 2021;18:1318. [PMID: 33535692 DOI: 10.3390/ijerph18031318] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
466 Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021;214:105778. [PMID: 33253656 DOI: 10.1016/j.actatropica.2020.105778] [Cited by in Crossref: 102] [Cited by in F6Publishing: 103] [Article Influence: 51.0] [Reference Citation Analysis]
467 Wong F, Ong J, Chai T. SARS-CoV-2 spike protein-, main protease- and papain-like-protease-targeting peptides from seed proteins following gastrointestinal digestion: An in silico study. Phytomedicine Plus 2021;1:100016. [DOI: 10.1016/j.phyplu.2020.100016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
468 Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Pharmacol 2020;11:630500. [PMID: 33597888 DOI: 10.3389/fphar.2020.630500] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
469 Jairajpuri DS, Hussain A, Nasreen K, Mohammad T, Anjum F, Tabish Rehman M, Mustafa Hasan G, Alajmi MF, Imtaiyaz Hassan M. Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi J Biol Sci 2021;28:2423-31. [PMID: 33526965 DOI: 10.1016/j.sjbs.2021.01.040] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
470 Chakraborty C, Bhattacharya M, Mallick B, Sharma AR, Lee SS, Agoramoorthy G. SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert Rev Clin Pharmacol 2021;14:225-38. [PMID: 33423554 DOI: 10.1080/17512433.2021.1874348] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
471 Vinod N. Exploring COVID-19: Relating the spike protein to infectivity, pathogenicity and Immunogenicity. Int J Clin Virol 2021;5:001-010. [DOI: 10.29328/journal.ijcv.1001029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
472 Vilar S, Isom DG. One Year of SARS-CoV-2: How Much Has the Virus Changed? Biology (Basel) 2021;10:91. [PMID: 33530355 DOI: 10.3390/biology10020091] [Cited by in Crossref: 53] [Cited by in F6Publishing: 63] [Article Influence: 26.5] [Reference Citation Analysis]
473 Lagoumintzis G, Chasapis CT, Alexandris N, Kouretas D, Tzartos S, Eliopoulos E, Farsalinos K, Poulas K. Nicotinic cholinergic system and COVID-19: In silico identification of interactions between α7 nicotinic acetylcholine receptor and the cryptic epitopes of SARS-Co-V and SARS-CoV-2 Spike glycoproteins. Food Chem Toxicol 2021;149:112009. [PMID: 33503469 DOI: 10.1016/j.fct.2021.112009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 12.5] [Reference Citation Analysis]
474 Janik E, Bartos M, Niemcewicz M, Gorniak L, Bijak M. SARS-CoV-2: Outline, Prevention, and Decontamination. Pathogens 2021;10:114. [PMID: 33498679 DOI: 10.3390/pathogens10020114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
475 Mastriani E, Rakov AV, Liu SL. Isolating SARS-CoV-2 Strains From Countries in the Same Meridian: Genome Evolutionary Analysis. JMIR Bioinform Biotech 2021;2:e25995. [PMID: 33497425 DOI: 10.2196/25995] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
476 Savale RU, Bhowmick S, Osman SM, Alasmary FA, Almutairi TM, Abdullah DS, Patil PC, Islam MA. Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Arch Biochem Biophys 2021;700:108771. [PMID: 33485847 DOI: 10.1016/j.abb.2021.108771] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
477 Sasaki M, Uemura K, Sato A, Toba S, Sanaki T, Maenaka K, Hall WW, Orba Y, Sawa H. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021;17:e1009233. [PMID: 33476327 DOI: 10.1371/journal.ppat.1009233] [Cited by in Crossref: 94] [Cited by in F6Publishing: 104] [Article Influence: 47.0] [Reference Citation Analysis]
478 Choudhury A, Das NC, Patra R, Mukherjee S. In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. J Med Virol 2021;93:2476-86. [PMID: 33404091 DOI: 10.1002/jmv.26776] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
479 Dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother 2021;136:111272. [PMID: 33486212 DOI: 10.1016/j.biopha.2021.111272] [Cited by in Crossref: 57] [Cited by in F6Publishing: 61] [Article Influence: 28.5] [Reference Citation Analysis]
480 Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med 2021;23:e3303. [PMID: 33305456 DOI: 10.1002/jgm.3303] [Cited by in Crossref: 88] [Cited by in F6Publishing: 96] [Article Influence: 44.0] [Reference Citation Analysis]
481 O'Keefe S, Roboti P, Duah KB, Zong G, Schneider H, Shi WQ, High S. Ipomoeassin-F inhibits the in vitro biogenesis of the SARS-CoV-2 spike protein and its host cell membrane receptor. bioRxiv 2021:2020. [PMID: 33269350 DOI: 10.1101/2020.11.24.390039] [Reference Citation Analysis]
482 Roy S. Physicians' Dilemma of False-Positive RT-PCR for COVID-19: a Case Report. SN Compr Clin Med 2021;:1-4. [PMID: 33426468 DOI: 10.1007/s42399-020-00655-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
483 Jukić M, Kralj S, Nikitina N, Bren U. Bioinformatic and MD Analysis of N501Y SARS-CoV-2 (UK) Variant. Computer Science Protecting Human Society Against Epidemics 2021. [DOI: 10.1007/978-3-030-86582-5_1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
484 Trikha A, Venkateswaran V. Challenges Faced in Treating COVID Patients and Lessons Learnt. Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications 2021. [DOI: 10.1007/978-981-16-5105-2_27] [Reference Citation Analysis]
485 Tong M, Xiong Y, Zhu C, Xu H, Zheng Q, Hu C, Jiang Y, Zou L, Xiao X, Chen F, Zhu Y. Elevated Serum Pentraxin-3 Levels is Positively Correlated to Disease Severity and Coagulopathy in COVID-19 Patients. Mediterr J Hematol Infect Dis 2021;13:e2021015. [PMID: 33489054 DOI: 10.4084/MJHID.2021.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
486 Arjmand S, Ghiasi B, Haghighi Poodeh S, Fatemi F, Hassani Nejad Z, Siadat SER. COVID-19 Diagnosis: A Comprehensive Review of Current Testing Platforms; Part A. COVID-19 2021. [DOI: 10.1007/978-981-16-3108-5_6] [Reference Citation Analysis]
487 Rathod K, Dhingra N, Dakshinamurthy S, Viswanath B. Could repurposing existing vaccines and antibiotics help to control the COVID-19 pandemic? Pandemic Outbreaks in the 21st Century 2021. [DOI: 10.1016/b978-0-323-85662-1.00020-3] [Reference Citation Analysis]
488 Pooranachithra M, Muthubharathi BC, Balamurugan K. A Paradigm Gap in Host–Pathogen Interaction Studies: Lesson from the COVID-19 Pandemic. Coronavirus Therapeutics – Volume II 2021. [DOI: 10.1007/978-3-030-85113-2_3] [Reference Citation Analysis]
489 Murthy TK, Joshi T, Gunnan S, Kulkarni N, V P, Kumar SB, Gowrishankar B. In silico analysis of Phyllanthus amarus phytochemicals as potent drugs against SARS-CoV-2 main protease. Current Research in Green and Sustainable Chemistry 2021;4:100159. [DOI: 10.1016/j.crgsc.2021.100159] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
490 Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv 2021;11:17478-86. [DOI: 10.1039/d1ra02529e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
491 Kang HM, Choi EH, Kim Y. Updates on Coronavirus Disease-2019 Vaccine and Consideration in Children. Pediatr Infect Vaccine 2021;28:7. [DOI: 10.14776/piv.2021.28.e6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
492 Kot L, Karpets L, Sviridova K, Chernikh M, Prishlyak R. Certain biochemical aspects of coronavirus infection COVID-19. BTSNUKSB 2021;86:17-22. [DOI: 10.17721/1728_2748.2021.86.17-22] [Reference Citation Analysis]
493 Lin B, Liu J, Liu Y, Qin X. Progress in understanding COVID-19: insights from the omics approach. Crit Rev Clin Lab Sci 2021;58:242-52. [PMID: 33375876 DOI: 10.1080/10408363.2020.1851167] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
494 Vinod N. Stages in COVID-19 vaccine development: The Nemesis, the Hubris and the Elpis. Int J Clin Virol 2020;4:126-135. [DOI: 10.29328/journal.ijcv.1001028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
495 Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021;267:118919. [PMID: 33352173 DOI: 10.1016/j.lfs.2020.118919] [Cited by in Crossref: 96] [Cited by in F6Publishing: 107] [Article Influence: 32.0] [Reference Citation Analysis]
496 Suryawanshi RK, Koganti R, Agelidis A, Patil CD, Shukla D. Dysregulation of Cell Signaling by SARS-CoV-2. Trends Microbiol 2021;29:224-37. [PMID: 33451855 DOI: 10.1016/j.tim.2020.12.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 45] [Article Influence: 12.7] [Reference Citation Analysis]
497 Vilar S, Isom DG. One Year of SARS-CoV-2: How Much Has the Virus Changed?. [DOI: 10.1101/2020.12.16.423071] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
498 Maciorowski D, Ogaugwu C, Durvasula SR, Durvasula R, Kunamneni A. Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS Discov 2021;26:311-29. [PMID: 33319627 DOI: 10.1177/2472555220979579] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
499 Gossen J, Albani S, Hanke A, Joseph BP, Bergh C, Kuzikov M, Costanzi E, Manelfi C, Storici P, Gribbon P, Beccari AR, Talarico C, Spyrakis F, Lindahl E, Zaliani A, Carloni P, Wade RC, Musiani F, Kokh DB, Rossetti G. A blueprint for high affinity SARS-CoV-2 Mpro inhibitors from activity-based compound library screening guided by analysis of protein dynamics.. [DOI: 10.1101/2020.12.14.422634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
500 Semper C, Watanabe N, Savchenko A. Structural characterization of nonstructural protein 1 from SARS-CoV-2. iScience 2021;24:101903. [PMID: 33319167 DOI: 10.1016/j.isci.2020.101903] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
501 Franco BDGDM, Landgraf M, Pinto UM. Alimentos, Sars-CoV-2 e Covid-19: contato possível, transmissão improvável. Estud av 2020;34:189-202. [DOI: 10.1590/s0103-4014.2020.34100.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
502 Devarajan A, Vaseghi M. Hydroxychloroquine can potentially interfere with immune function in COVID-19 patients: Mechanisms and insights. Redox Biol 2021;38:101810. [PMID: 33360293 DOI: 10.1016/j.redox.2020.101810] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
503 Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020;25:E5604. [PMID: 33260583 DOI: 10.3390/molecules25235604] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
504 Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol. 2020;10:587269. [PMID: 33324574 DOI: 10.3389/fcimb.2020.587269] [Cited by in Crossref: 278] [Cited by in F6Publishing: 297] [Article Influence: 92.7] [Reference Citation Analysis]
505 Mastriani E, Rakov AV, Liu S. Isolating SARS-CoV-2 Strains From Countries in the Same Meridian: Genome Evolutionary Analysis (Preprint).. [DOI: 10.2196/preprints.25995] [Reference Citation Analysis]
506 Khan S, Fakhar Z, Hussain A, Ahmad A, Jairajpuri DS, Alajmi MF, Hassan MI. Structure-based identification of potential SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2020;:1-14. [PMID: 33210561 DOI: 10.1080/07391102.2020.1848634] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
507 Patel D, Athar M, Jha PC. Computational investigation of binding of chloroquinone and hydroxychloroquinone against PLPro of SARS-CoV-2. J Biomol Struct Dyn 2020;:1-11. [PMID: 33200683 DOI: 10.1080/07391102.2020.1844804] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
508 Mastriani E, Rakov AV, Liu S. An evolutionary analysis of the SARS-CoV-2 genomes from the countries in the same meridian.. [DOI: 10.1101/2020.11.12.380816] [Reference Citation Analysis]
509 Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? Front Nanotechnol 2020;2:588915. [DOI: 10.3389/fnano.2020.588915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
510 Sherina N, Piralla A, Du L, Wan H, Kumagai-braesh M, Andréll J, Braesch-andersen S, Cassaniti I, Percivalle E, Sarasini A, Bergami F, Di Martino R, Colaneri M, Vecchia M, Sambo M, Zuccaro V, Bruno R, Oggionni T, Meloni F, Abolhassani H, Bertoglio F, Schubert M, Byrne-steele M, Han J, Hust M, Xue Y, Hammarström L, Baldanti F, Marcotte H, Pan-hammarström Q. Persistence of SARS-CoV-2 specific B- and T-cell responses in convalescent COVID-19 patients 6-8 months after the infection.. [DOI: 10.1101/2020.11.06.371617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
511 Janik E, Ceremuga M, Niemcewicz M, Bijak M. Dangerous Pathogens as a Potential Problem for Public Health. Medicina (Kaunas) 2020;56:E591. [PMID: 33172013 DOI: 10.3390/medicina56110591] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
512 Caselli E, Soffritti I, Lamberti G, D'Accolti M, Franco F, Demaria D, Contoli M, Passaro A, Contini C, Perri P. Anti-SARS-Cov-2 IgA Response in Tears of COVID-19 Patients. Biology (Basel) 2020;9:E374. [PMID: 33153065 DOI: 10.3390/biology9110374] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
513 Jain S, Batra H, Yadav P, Chand S. COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines (Basel) 2020;8. [PMID: 33153096 DOI: 10.3390/vaccines8040649] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
514 Kumari P, Singh A, Ngasainao MR, Shakeel I, Kumar S, Lal S, Singhal A, Sohal SS, Singh IK, Hassan MI. Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta 2020;510:488-97. [PMID: 32795547 DOI: 10.1016/j.cca.2020.08.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
515 Kumar A, Prasoon P, Kumari C, Pareek V, Faiq MA, Narayan RK, Kulandhasamy M, Kant K. SARS-CoV-2-specific virulence factors in COVID-19. J Med Virol 2021;93:1343-50. [PMID: 33085084 DOI: 10.1002/jmv.26615] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
516 El Hassab MA, Shoun AA, Al-Rashood ST, Al-Warhi T, Eldehna WM. Identification of a New Potential SARS-COV-2 RNA-Dependent RNA Polymerase Inhibitor via Combining Fragment-Based Drug Design, Docking, Molecular Dynamics, and MM-PBSA Calculations. Front Chem 2020;8:584894. [PMID: 33195080 DOI: 10.3389/fchem.2020.584894] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
517 He Y, Dong YC. A Perspective on Re-Detectable Positive SARS-CoV-2 Nucleic Acid Results in Recovered COVID-19 Patients. Disaster Med Public Health Prep 2020;:1-5. [PMID: 33087207 DOI: 10.1017/dmp.2020.392] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
518 Kwarteng A, Asiedu E, Sakyi SA, Asiedu SO. Targeting the SARS-CoV2 nucleocapsid protein for potential therapeutics using immuno-informatics and structure-based drug discovery techniques. Biomed Pharmacother 2020;132:110914. [PMID: 33254432 DOI: 10.1016/j.biopha.2020.110914] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
519 Asrani P, Hassan MI. SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Mol Cell Biochem 2021;476:675-87. [PMID: 33064288 DOI: 10.1007/s11010-020-03935-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
520 Schub D, Klemis V, Schneitler S, Mihm J, Lepper PM, Wilkens H, Bals R, Eichler H, Gärtner BC, Becker SL, Sester U, Sester M, Schmidt T. High levels of SARS-CoV-2-specific T cells with restricted functionality in severe courses of COVID-19. JCI Insight 2020;5:142167. [PMID: 32937615 DOI: 10.1172/jci.insight.142167] [Cited by in Crossref: 66] [Cited by in F6Publishing: 71] [Article Influence: 22.0] [Reference Citation Analysis]
521 Liu W, Guan WJ, Zhong NS. Strategies and Advances in Combating COVID-19 in China. Engineering (Beijing) 2020;6:1076-84. [PMID: 33078078 DOI: 10.1016/j.eng.2020.10.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
522 Skariyachan S, Gopal D, Chakrabarti S, Kempanna P, Uttarkar A, Muddebihalkar AG, Niranjan V. Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Comput Biol Med 2020;126:104054. [PMID: 33074111 DOI: 10.1016/j.compbiomed.2020.104054] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
523 Brown AS, Ackerley DF, Calcott MJ. High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor. Molecules 2020;25:E4666. [PMID: 33066278 DOI: 10.3390/molecules25204666] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
524 Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol. 2020;51:613-628. [PMID: 33011887 DOI: 10.1007/s10735-020-09915-3] [Cited by in Crossref: 176] [Cited by in F6Publishing: 134] [Article Influence: 58.7] [Reference Citation Analysis]
525 Petushkova AI, Zamyatnin AA Jr. Papain-Like Proteases as Coronaviral Drug Targets: Current Inhibitors, Opportunities, and Limitations. Pharmaceuticals (Basel) 2020;13:E277. [PMID: 32998368 DOI: 10.3390/ph13100277] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
526 Kabra R, Singh S. Evolutionary artificial intelligence based peptide discoveries for effective Covid-19 therapeutics. Biochim Biophys Acta Mol Basis Dis 2021;1867:165978. [PMID: 32980462 DOI: 10.1016/j.bbadis.2020.165978] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
527 Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. Targeting SARS-CoV-2 Main Protease: A Computational Drug Repurposing Study. Arch Med Res 2021;52:38-47. [PMID: 32962867 DOI: 10.1016/j.arcmed.2020.09.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 9.7] [Reference Citation Analysis]
528 Samaddar A, Grover M, Nag VL. Pathophysiology and Potential Therapeutic Candidates for COVID-19: A Poorly Understood Arena. Front Pharmacol. 2020;11:585888. [PMID: 33041830 DOI: 10.3389/fphar.2020.585888] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
529 Asrani P, Hasan GM, Sohal SS, Hassan MI. Molecular Basis of Pathogenesis of Coronaviruses: A Comparative Genomics Approach to Planetary Health to Prevent Zoonotic Outbreaks in the 21st Century. OMICS 2020;24:634-44. [PMID: 32940573 DOI: 10.1089/omi.2020.0131] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
530 Awais S, Shah SFH, Shah SGS. A Commentary on "A comparative overview of COVID-19, MERS and SARS: Review article" (International Journal of Surgery 2020; 81:1-8). Int J Surg 2020;83:28-9. [PMID: 32927142 DOI: 10.1016/j.ijsu.2020.08.049] [Reference Citation Analysis]
531 Qing H, Sharma L, Hilliard BK, Peng X, Swaminathan A, Tian J, Israni-winger K, Zhang C, Leão D, Ryu S, Habet V, Wang L, Tian X, Ma Y, Ishibe S, Young LH, Kotenko S, Compton S, Booth CJ, Ring AM, Dixit VD, Wilen CB, Pereira JP, Dela Cruz CS, Wang A. Type I Interferon Limits Viral Dissemination-Driven Clinical Heterogeneity in a Native Murine Betacoronavirus Model of COVID-19.. [DOI: 10.1101/2020.09.11.294231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
532 Fatima U, Rizvi SSA, Fatima S, Hassan MI. Impact of Hydroxychloroquine/Chloroquine in COVID-19 Therapy: Two Sides of the Coin. J Interferon Cytokine Res 2020;40:469-71. [PMID: 32881593 DOI: 10.1089/jir.2020.0105] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
533 Dzobo K, Chiririwa H, Dandara C, Dzobo W. Coronavirus Disease-2019 Treatment Strategies Targeting Interleukin-6 Signaling and Herbal Medicine. OMICS 2021;25:13-22. [PMID: 32857671 DOI: 10.1089/omi.2020.0122] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
534 Tripathi PK, Upadhyay S, Singh M, Raghavendhar S, Bhardwaj M, Sharma P, Patel AK. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int J Biol Macromol 2020;164:2622-31. [PMID: 32853604 DOI: 10.1016/j.ijbiomac.2020.08.166] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
535 Kothari A, Singh V, Nath UK, Kumar S, Rai V, Kaushal K, Omar BJ, Pandey A, Jain N. Immune Dysfunction and Multiple Treatment Modalities for the SARS-CoV-2 Pandemic: Races of Uncontrolled Running Sweat? Biology (Basel) 2020;9:E243. [PMID: 32846906 DOI: 10.3390/biology9090243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
536 Dominguez Andres A, Feng Y, Campos AR, Yin J, Yang CC, James B, Murad R, Kim H, Deshpande AJ, Gordon DE, Krogan N, Pippa R, Ronai ZA. SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells. bioRxiv 2020:2020. [PMID: 32839770 DOI: 10.1101/2020.08.18.256776] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
537 Victor MP, Das R, Ghosh TC. An in-silico study on SARS-CoV-2: Its compatibility with human tRNA pool, and the polymorphism arising in a single lineage over a month.. [DOI: 10.1101/2020.07.23.217083] [Reference Citation Analysis]
538 Mohammad T, Shamsi A, Anwar S, Umair M, Hussain A, Rehman MT, AlAjmi MF, Islam A, Hassan MI. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Res 2020;288:198102. [PMID: 32717346 DOI: 10.1016/j.virusres.2020.198102] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 17.3] [Reference Citation Analysis]
539 Schub D, Klemis V, Schneitler S, Mihm J, Lepper PM, Wilkens H, Bals R, Eichler H, Gärtner BC, Becker SL, Sester U, Sester M, Schmidt T. High levels of SARS-CoV-2 specific T-cells with restricted functionality in patients with severe course of COVID-19.. [DOI: 10.1101/2020.07.08.20148718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
540 Posani E, Dilucca M, Forcelloni S, Pavlopoulou A, Georgakilas AG, Giansanti A. Temporal evolution and adaptation of SARS-COV-2 codon usage.. [DOI: 10.1101/2020.05.29.123976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
541 Tran DH, Cuong HQ, Tran HT, Le UP, Do HDK, Bui LM, Hai ND, Linh HT, Thao NTT, Anh NH, Hieu NT, Thang CM, Vu VV, Phung HTT. A comparative study of isothermal nucleic acid amplification methods for SARS-CoV-2 detection at point-of-care.. [DOI: 10.1101/2020.05.24.113423] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
542 Ramu R, Patil S. CRISPR-Cas13 technology against COVID-19: A Perspective of genomic variations and therapeutic options. Int J Health Allied Sci 2020;9:381. [DOI: 10.4103/ijhas.ijhas_171_20] [Reference Citation Analysis]
543 [DOI: 10.1101/2020.08.24.264465] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
544 Lou JJ, Movassaghi M, Gordy D, Olson MG, Zhang T, Khurana MS, Chen Z, Perez-Rosendahl M, Thammachantha S, Singer EJ, Magaki SD, Vinters HV, Yong WH. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol 2021;2:2. [PMID: 33554218 DOI: 10.17879/freeneuropathology-2021-2993] [Cited by in F6Publishing: 29] [Reference Citation Analysis]
545 [DOI: 10.1101/2020.10.07.330068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
546 [DOI: 10.1101/2021.02.11.21251589] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
547 [DOI: 10.1101/2020.08.28.271163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
548 [DOI: 10.1101/2020.11.11.377713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]