BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019;9:902-22. [PMID: 31649842 DOI: 10.1016/j.apsb.2019.01.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Mei MS, Xu Y, Shi S, Wang S, Wang H. Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023;306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Reference Citation Analysis]
2 Lu S, Ou M, Ye Q, Tong X, Guo Y, Pan D, Wu Z. A novel strategy for designing the antioxidant and adhesive bifunctional protein using the Lactobacillus strain-derived LPxTG motif structure. Process Biochemistry 2023. [DOI: 10.1016/j.procbio.2023.01.019] [Reference Citation Analysis]
3 Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023;15. [PMID: 36678906 DOI: 10.3390/pharmaceutics15010277] [Reference Citation Analysis]
4 Heider J, Kilian J, Garifulina A, Hering S, Langer T, Seidel T. Apo2ph4: A Versatile Workflow for the Generation of Receptor-based Pharmacophore Models for Virtual Screening. J Chem Inf Model 2023;63:101-10. [PMID: 36526584 DOI: 10.1021/acs.jcim.2c00814] [Reference Citation Analysis]
5 Li H, Wang J, Fu Y, Zhu K, Dong Z, Shan J, Di L, Jiang S, Yuan T. The Bioavailability of Glycyrrhizinic Acid Was Enhanced by Probiotic Lactobacillus rhamnosus R0011 Supplementation in Liver Fibrosis Rats. Nutrients 2022;14. [PMID: 36558437 DOI: 10.3390/nu14245278] [Reference Citation Analysis]
6 Han H, Liu L, Zhang J, Zhang M, Chen X, Huang Y, Ma W, Qin H, Shen L, Zhang J, Yang W. New Lactobacillus plantarum membrane proteins (LpMPs) towards oral anti-inflammatory agents against dextran sulfate sodium-induced colitis. International Immunopharmacology 2022;113:109416. [DOI: 10.1016/j.intimp.2022.109416] [Reference Citation Analysis]
7 Poudwal S, Misra A, Shende P. Enhancement of oral bioavailability of insulin using a combination of surface-modified inclusion complex and SNEDDS. Journal of Molecular Liquids 2022;368:120641. [DOI: 10.1016/j.molliq.2022.120641] [Reference Citation Analysis]
8 Sepasi T, Ghadiri T, Bani F, Ebrahimi-kalan A, Khodakarimi S, Zarebkohan A, Gorji A. Nanotechnology-based approaches in diagnosis and treatment of epilepsy. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05557-6] [Reference Citation Analysis]
9 Liu L, Cao W, Xia M, Tian C, Wu W, Cai Y, Chu X. Self-Emulsifying Drug Delivery System Enhances Tissue Distribution of Cinnamaldehyde by Altering the Properties of the Mucus Layer. AAPS PharmSciTech 2022;23:261. [PMID: 36131215 DOI: 10.1208/s12249-022-02416-4] [Reference Citation Analysis]
10 Shinn J, Lee J, Lee SA, Lee SJ, Choi AH, Kim JS, Kim SJ, Kim HJ, Lee C, Kim Y, Kim J, Choi J, Jung B, Kim T, Nam H, Kim H, Lee Y. Oral Nanomedicines for siRNA Delivery to Treat Inflammatory Bowel Disease. Pharmaceutics 2022;14:1969. [PMID: 36145716 DOI: 10.3390/pharmaceutics14091969] [Reference Citation Analysis]
11 Wang Z, Mo H, He Z, Chen A, Cheng P. Extracellular vesicles as an emerging drug delivery system for cancer treatment: Current strategies and recent advances. Biomedicine & Pharmacotherapy 2022;153:113480. [DOI: 10.1016/j.biopha.2022.113480] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 zhou J, Li S, Zhang J, Luo F, Sun Y, Guan M, Ma H, Liu Q. Ionic liquid combined with bile acid pathway for oral delivery of rhGH.. [DOI: 10.21203/rs.3.rs-1889592/v1] [Reference Citation Analysis]
13 Yang F, Zhao D, Zhang K, Wang Z, Wang Y, Wu C, Cui S, Guo T, Chen L, Chen J. Oral delivery of marine shellfish supramolecule peptides for skin wound healing. Colloids Surf B Biointerfaces 2022;216:112592. [PMID: 35636327 DOI: 10.1016/j.colsurfb.2022.112592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li N, Qiu L, Song H, Xiao T, Luo T, Deng Z, Zheng L. Inhibition mechanism of oligopeptides from soft-shelled turtle egg against α-glucosidase and their gastrointestinal digestive properties. J Food Biochem 2022;:e14328. [PMID: 35894555 DOI: 10.1111/jfbc.14328] [Reference Citation Analysis]
15 Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. Food Reviews International. [DOI: 10.1080/87559129.2022.2062772] [Reference Citation Analysis]
16 Weng H, Hu L, Hu L, Zhou Y, Wang A, Wang N, Li W, Zhu C, Guo S, Yu M, Gan Y. The complexation of insulin with sodium N‐[8‐(2‐hydroxybenzoyl)amino]‐caprylate for enhanced oral delivery: Effects of concentration, ratio, and pH. Chinese Chemical Letters 2022;33:1889-94. [DOI: 10.1016/j.cclet.2021.10.023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022;27:1372. [PMID: 35209162 DOI: 10.3390/molecules27041372] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
18 Deshayes C, Arafath MN, Apaire-marchais V, Roger E. Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. Front Med Technol 2022;3:778645. [DOI: 10.3389/fmedt.2021.778645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022;8:e08674. [PMID: 35028457 DOI: 10.1016/j.heliyon.2021.e08674] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
20 Rasin AB, Usoltseva RV, Kusaykin MI. Fucoidan based nanoparticles: Structure and applications. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00010-3] [Reference Citation Analysis]
21 Dash P, Ghosh S, Nayak B. Oral Delivery of Polymeric Nanoparticles for Solid Tumors. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_11] [Reference Citation Analysis]
22 Kósa D, Pető Á, Fenyvesi F, Váradi J, Vecsernyés M, Budai I, Németh J, Fehér P, Bácskay I, Ujhelyi Z. Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021;14:9. [DOI: 10.3390/pharmaceutics14010009] [Reference Citation Analysis]
23 Berillo D, Zharkinbekov Z, Kim Y, Raziyeva K, Temirkhanova K, Saparov A. Stimuli-Responsive Polymers for Transdermal, Transmucosal and Ocular Drug Delivery. Pharmaceutics 2021;13:2050. [PMID: 34959332 DOI: 10.3390/pharmaceutics13122050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Guo H, Zhao W, Meng F, Yu Z, Zhang M. Biodegradable nano-porous Mn3O4 with sustainable release for improving the stability and bioactivity of peptide RVPSL. LWT 2021;152:112384. [DOI: 10.1016/j.lwt.2021.112384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Zandanel C, Ponchel G, Noiray M, Vauthier C. Nanoparticles facing the gut barrier: Retention or mucosal absorption? Mechanisms and dependency to nanoparticle characteristics. Int J Pharm 2021;609:121147. [PMID: 34600059 DOI: 10.1016/j.ijpharm.2021.121147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Aljabali AA, Hassan SS, Pabari RM, Shahcheraghi SH, Mishra V, Charbe NB, Chellappan DK, Dureja H, Gupta G, Almutary AG, Alnuqaydan AM, Verma SK, Panda PK, Mishra YK, Serrano-Aroca Á, Dua K, Uversky VN, Redwan EM, Bahar B, Bhatia A, Negi P, Goyal R, McCarron P, Bakshi HA, Tambuwala MM. The viral capsid as novel nanomaterials for drug delivery. Future Sci OA 2021;7:FSO744. [PMID: 34737885 DOI: 10.2144/fsoa-2021-0031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021;11:2609-44. [PMID: 34589385 DOI: 10.1016/j.apsb.2021.07.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
28 Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli AR, Kadian N, Sanyal S, Roy A, Dodd-O J, Acevedo-Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. Adv Ther (Weinh) 2021;:2100104. [PMID: 34514085 DOI: 10.1002/adtp.202100104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zhang Z, Lu Y, Qi J, Wu W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm Sin B 2021;11:2449-68. [PMID: 34522594 DOI: 10.1016/j.apsb.2020.12.022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
30 Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021;174:348-68. [PMID: 33964356 DOI: 10.1016/j.addr.2021.04.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
31 Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021;11:1789-812. [PMID: 34386321 DOI: 10.1016/j.apsb.2020.09.013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
32 Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021;:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
33 Han Y, Liu W, Chen L, Xin X, Wang Q, Zhang X, Jin M, Gao Z, Huang W. Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy. Biomaterials 2021;275:120944. [PMID: 34153783 DOI: 10.1016/j.biomaterials.2021.120944] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Verma S, Goand UK, Husain A, Katekar RA, Garg R, Gayen JR. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res 2021. [PMID: 33988872 DOI: 10.1002/ddr.21832] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
35 Zhang Y, Xiong M, Ni X, Wang J, Rong H, Su Y, Yu S, Mohammad IS, Leung SSY, Hu H. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium. ACS Appl Mater Interfaces 2021;13:18077-88. [PMID: 33830730 DOI: 10.1021/acsami.1c00580] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
36 Wang W, Huang Z, Li Y, Wang W, Shi J, Fu F, Huang Y, Pan X, Wu C. Impact of particle size and pH on protein corona formation of solid lipid nanoparticles: A proof-of-concept study. Acta Pharm Sin B 2021;11:1030-46. [PMID: 33996415 DOI: 10.1016/j.apsb.2020.10.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
37 Martínez-López AL, González-Navarro CJ, Aranaz P, Vizmanos JL, Irache JM. In vivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caenorhabditis elegans as a model under hyperglycemic conditions. Acta Pharm Sin B 2021;11:989-1002. [PMID: 33996411 DOI: 10.1016/j.apsb.2021.02.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Krętowski R, Kusaczuk M, Naumowicz M, Cechowska-Pasko M. The Pro-Apoptotic Effect of Silica Nanoparticles Depends on Their Size and Dose, as Well as the Type of Glioblastoma Cells. Int J Mol Sci 2021;22:3564. [PMID: 33808150 DOI: 10.3390/ijms22073564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Murabito A, Cnudde S, Hirsch E, Ghigo A. Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2020;134:3259-82. [PMID: 33346357 DOI: 10.1042/CS20201244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Yu Z, Guo H, Zhao W, Zhang M, Li J, Liu J. Stability and angiotensin converting enzyme inhibitory activity of peptide RVPSL-loaded graphene oxide. IFRJ 2021;28:173-180. [DOI: 10.47836/ifrj.28.1.17] [Reference Citation Analysis]
41 Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021;597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Dubey SK, Parab S, Dabholkar N, Agrawal M, Singhvi G, Alexander A, Bapat RA, Kesharwani P. Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021;26:931-50. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
43 Nafiujjaman M, Shahriar SMS, Hasan MN. Bile acid-inspired oral small molecules drug delivery. Bioinspired and Biomimetic Materials for Drug Delivery 2021. [DOI: 10.1016/b978-0-12-821352-0.00017-4] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Sharma T, Katare OP, Jain A, Jain S, Chaudhari D, Borges B, Singh B. QbD-Steered Development of Biotin-Conjugated Nanostructured Lipid Carriers for Oral Delivery of Chrysin: Role of Surface Modification for Improving Biopharmaceutical Performance. Colloids and Surfaces B: Biointerfaces 2021;197:111429. [DOI: 10.1016/j.colsurfb.2020.111429] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
45 Sasikumar PG, Ramachandra M. Peptide and peptide-inspired checkpoint inhibitors: Protein fragments to cancer immunotherapy. Medicine in Drug Discovery 2020;8:100073. [DOI: 10.1016/j.medidd.2020.100073] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
46 Arévalo-pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. Journal of Controlled Release 2020;327:703-24. [DOI: 10.1016/j.jconrel.2020.09.026] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 9.7] [Reference Citation Analysis]
47 Kanugo A, Misra A. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Therapeutic Delivery 2020;11:713-32. [DOI: 10.4155/tde-2020-0068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
48 Tong T, Wang L, You X, Wu J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater Sci 2020;8:5804-23. [PMID: 33016274 DOI: 10.1039/d0bm01151g] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
49 Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Lindén M, Kumeria T, Popat A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release 2020;326:544-55. [DOI: 10.1016/j.jconrel.2020.07.021] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 16.0] [Reference Citation Analysis]
50 Liu W, Li D, Dong Z, Liu K, He H, Lu Y, Wu W, Li Q, Gan L, Qi J. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Int J Pharm 2020;587:119682. [PMID: 32717284 DOI: 10.1016/j.ijpharm.2020.119682] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
51 Chauhan PS, Yadav D, Tayal S, Jin JO. Therapeutic Advancements in the Management of Diabetes Mellitus with Special Reference to Nanotechnology. Curr Pharm Des 2020;26:4909-16. [PMID: 32851952 DOI: 10.2174/1381612826666200826135401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Goel H, Razdan K, Singla R, Talegaonkar S, Khurana RK, Tiwary AK, Sinha VR, Singh KK. Engineered Site-specific Vesicular Systems for Colonic Delivery: Trends and Implications. Curr Pharm Des 2020;26:5441-55. [PMID: 32787754 DOI: 10.2174/1381612826666200813132301] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020;18:E390. [PMID: 32726987 DOI: 10.3390/md18080390] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
54 Brayden DJ. Evolving peptides for oral intake. Nat Biomed Eng 2020;4:487-8. [PMID: 32393890 DOI: 10.1038/s41551-020-0559-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
55 Zhang Y, Zhang H, Ghosh D, Williams RO 3rd. Just how prevalent are peptide therapeutic products? A critical review. Int J Pharm 2020;587:119491. [PMID: 32622810 DOI: 10.1016/j.ijpharm.2020.119491] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
56 Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020;157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 31.0] [Reference Citation Analysis]
57 Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 2021;11:1-23. [PMID: 32337668 DOI: 10.1007/s13346-020-00746-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
58 Li J, Chen B, Yu T, Guo M, Zhao S, Zhang Y, Jin C, Peng X, Zeng J, Yang J, Song X. An efficient controlled release strategy for hypertension therapy: Folate-mediated lipid nanoparticles for oral peptide delivery. Pharmacol Res 2020;157:104796. [PMID: 32278048 DOI: 10.1016/j.phrs.2020.104796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
59 Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials (Basel) 2020;10:E656. [PMID: 32244653 DOI: 10.3390/nano10040656] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 31.7] [Reference Citation Analysis]
60 Ahadian S, Finbloom JA, Mofidfar M, Diltemiz SE, Nasrollahi F, Davoodi E, Hosseini V, Mylonaki I, Sangabathuni S, Montazerian H, Fetah K, Nasiri R, Dokmeci MR, Stevens MM, Desai TA, Khademhosseini A. Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020;157:37-62. [PMID: 32707147 DOI: 10.1016/j.addr.2020.07.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 23.0] [Reference Citation Analysis]
61 Bai Y, Zhou R, Wu L, Zheng Y, Liu X, Wu R, Li X, Huang Y. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. J Mater Chem B 2020;8:2636-49. [DOI: 10.1039/c9tb02860a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]