Review Open Access
Copyright ©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Apr 15, 2016; 8(4): 389-401
Published online Apr 15, 2016. doi: 10.4251/wjgo.v8.i4.389
Medical treatment for gastro-entero-pancreatic neuroendocrine tumours
Rossana Berardi, Francesca Morgese, Mariangela Torniai, Agnese Savini, Silvia Rinaldi, Miriam Caramanti, Consuelo Ferrini, Stefano Cascinu, Department of Medical Oncology, Università Politecnica delle Marche, 60126 Ancona, Italy
Stefano Partelli, Massimo Falconi, Chirurgia del Pancreas, Ospedale San Raffaele IRCCS, Università Vita e Salute, 20132 Milano, Italy
Author contributions: Berardi R was responsible for manuscript conception, revising literature and writing the paper and had the final responsibility to submit for publication; Morgese F, Torniai M, Savini A, Partelli S, Rinaldi S, Caramanti M, Ferrini C, Falconi M and Cascinu S contributed to performing research, analysing literature data, writing the paper; all authors had contributed to the manuscript and approved the final version.
Conflict-of-interest statement: All authors declare that they have no competing interests.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Rossana Berardi, MD, Department of Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi di Ancona, Via Conca 71, 60126 Ancona, Italy. r.berardi@univpm.it
Telephone: +39-071-5965715 Fax: +39-071-5965053
Received: May 24, 2015
Peer-review started: May 25, 2015
First decision: September 14, 2015
Revised: January 18, 2016
Accepted: February 14, 2016
Article in press: February 16, 2016
Published online: April 15, 2016

Abstract

Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) represents a various family of rare tumours. Surgery is the first choice in GEP-NENs patients with localized disease whilst in the metastatic setting many other treatment options are available. Somatostatin analogues are indicated for symptoms control in functioning tumours. Furthermore they may be effective to inhibit tumour progression. GEP-NENs pathogenesis has been extensively studied in the last years therefore several driver mutations pathway genes have been identified as crucial factors in their tumourigenesis. GEP-NENs can over-express vascular endothelial growth factor (VEGF), basic-fibroblastic growth factor, transforming growth factor (TGF-α and -β), platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1) and their receptors PDGF receptor, IGF-1 receptor, epidermal growth factor receptor, VEGF receptor, and c-kit (stem cell factor receptor) that can be considered as potential targets. The availability of new targeted agents, such as everolimus and sunitinib that are effective in advanced and metastatic pancreatic neuroendocrine tumours, has provided new treatment opportunities. Many trials combing new drugs are ongoing.

Key Words: Neuroendocrine neoplasms of the gastro-entero-pancreatic system, Chemotherapy, Targeted agents, Somatostatin analogues, Everolimus, Sunitinib

Core tip: In this review, recent evidences in the biology and pathology of neuroendocrine neoplasms of the gastro-entero-pancreatic system were analysed, focusing on new biological perspectives of medical treatment. The evidence-based data of new-targeted drugs and the new molecular knowledge are summarized looking at the basis for future studies.



INTRODUCTION

Neuroendocrine neoplasms of the gastro-entero-pancreatic system (GEP-NENs) include a heterogeneous group of disease emerging from neuroendocrine cells of gastro-intestinal tract and pancreatic islets[1]. Nevertheless, despite their morphologic, clinical and prognostic heterogeneity, GEP-NENs are often considered as a single entity[2].

Although still considered a rare disease, SEER data showed an increasing incidence in the last three decades up to 3.65/100000 per years[3]. This may be due to a remarkable improvement of diagnostic technique as well as a real change in population demography[4]. GEP-NENs are more frequently detected in adult population[5] and in about 50% of cases nodal (25%) or distant (25%) metastases are already existing from the beginning[3,6]. On the basis of their morphologic features and proliferation index, NENs are currently stratified in two groups, according to WHO 2010 classification criteria[7]: Neuroendocrine carcinomas, G3 tumours with ki67 proliferation index > 20%, and neuroendocrine tumours (NETs), including G1 (ki67 < 3%) and G2 (ki67 between 3% and 20%) neoplasms. Neuroendocrine carcinomas represent a separate cluster in the family of NENs, with specific biological features and a more aggressive behavior, so chemotherapy is currently considered the standard of care in this specific set[8,9]. Conversely well and moderately-differentiated NENs do not represent a single entity and their pathogenesis has become clearer in recent years. In fact many driver mutations pathway genes have been identified as crucial factors in their tumourigenesis. Therefore altered pathways represent as a profitable therapeutic choice in neoplastic disease and also in NENs[10-13].

Despite extensive and remarkable medical exertions, therapeutic choices are still unsatisfactory, mainly due to the lack of a broad knowledge of biological mechanisms and predictive factors. This review aims to summarize the present knowledge about chemotherapy and the pathways involved in sporadic well and moderately differentiated GEP-NETs, highlighting available evidences and new biological perspectives on biological and targeted therapies.

CHEMOTHERAPY

Although most of the studies were conducted on a heterogeneous population and the relationship between response rate (RR) and proliferation index value is often not clearly defined, GEP-NENs, therapy should include cytotoxic agents, especially in symptomatic subjects, progressive disease, moderated differentiation and more aggressive features. Chemotherapy should also be evaluated when the aim is to obtain a response in case of bulky lesions. However the best sequence for chemotherapy still remains uncertain[14-18].

The most common used chemotherapy schemes include alkylating agents [streptozotocin (STZ), dacarbazine, temozolomide], antimetabolites [5-fluorouracil (5-FU), capecitabine] and platinum derivatives.

Temozolomide combined with 5-FU[19] or capecitabine[20] can represent the regimen of choice in G1 and G2 advanced P-NENs. Retrospective data showed a RR of 70% and progression-free survival (PFS) of 18 mo for temozolomide and capecitabine combination[20].

Furthermore the association of STZ and 5-FU is frequently evaluated as a first-line therapy for advanced P-NENs with RRs between 6% to 40%, with the benefit in PFS ranging between 5 and 20 mo and with a median overall survival of 16-24 mo[19].

Then, oxaliplatin in combination with capecitabine could also be considered for different setting of G1-G2 GEP-NETs[15]. None of small retrospective studies or case reports conducted with other chemotherapy regimens have demonstrated sufficient efficacy in GEP-NETs.

SOMATOSTATIN

Many studies have shown the importance of somatostatin in the regulation of NENs’ physiological functions. Currently, a cluster of five distinct somatostatin receptors (SSTRs) has been characterized in humans (SSTR1-SSTR5)[21,22].

The presence of SSTRs has been demonstrated in over 80% of well-differentiated GEP-NENs, with a clear predominance of SSTR2 both in GI-NENs (90%) and P-NETs (80%)[23,24].

Among the different SSTR subtypes, SSTR2 is usually the most prevalent in NENs, after that SSTR1 and SSTR5, whilst SSTR3 is less commonly expressed and SSTR4 almost absent[25-27].

In general, tumour dedifferentiation is usually associated with a reduction of receptor density and changes in receptor subtype profile; thus, the presence of SSTRs might be also useful as a tumour specific predictor of prognosis.

Furthermore, the presence of SSTR5 seems to correlate with a major risk of angioinvasion and distant metastasis[28]; instead, the loss expression of SSTR2 could be highly associated with the disregulation of tumour proliferation, consequently promoting tumour growth[29]. The lack of SSTR2 induces the generation of new membrane dimers, with development of different receptors, characterized by new function[29-36]. It remains unclear if only numeric reduction of SSTRs or also their down-regulation are linked with tumour dedifferentiation[37]. In pancreatic gastrinomas, glucagonomas and VIPomas, SSTRs are high expressed (80%-100% of patients). However, SSTRs seem to be expressed in 50%-70% of insulinomas, especially SSTR5 mRNA expression was demonstrated to be positively correlated with histopathological features of tumour aggressiveness in primary insulinomas[38].

Therefore, in P-NENs subtypes, which express less SSTR, short synthetic analogues of somatostatin (SSAs) show a reduced activity in symptoms’ control with a worsen hypoglycaemia[39,40]. This high and heterogeneous expression does not show any relevant correlation between the subtype(s) expressed and the primary tumour origin, or a specific hormone secretion[41-43].

The intracellular pathways activated by SSTRs appear different in several types of tumour cells and depend on the specific SSTR distribution pattern, signalling elements, as well as to receptor desensitization, internalization, and cross talk[44,45].

The activation of G-proteins regulates the different critical enzymatic proteins such as adenylyl cyclase and protein kinase A, phospho-tyrosine phosphatases (PTPs) and mitogen activated kinases (MAPKs)[22,46,47].

In particular SSTR1 induces MAPK pathway activations, SSTR2 improves SHP1 and epidermal growth factor receptor (EGFR) work, up-regulate p21 and Rb reducing MAPK switching on and blocking cellular proliferation. SSTR3 activates p53 and Bax inducing apoptosis, besides it blocks vascular EGFR (VEGFR). SSTR5 induce the activations of PTPs. Globally, these mechanisms leads to an inhibition of cellular proliferation and hormones secretion. Conversely, SSTR4 promotes cell mitosis up-regulating MAPK/ERK1/2 pathway[21,48].

Since the 80s’, several SSAs including octreotide, lanreotide, vapreotide, seglitide and pasireotide, were studied. In contrast to the endogenous somatostatin, these peptides have a more durable half-life (1.5-2 h vs 1-2 min) and activity, as they have a greater resistance to peptidase[49].

Furthermore, compared to native somatostatin, they have diverse affinity for the aforementioned receptor subtypes[25,37,50]. In particular the natural ligands of SSTR1-5 can bind all SSTRs with high affinity. Conversely different SSAs, in the same cell type, may elicit differential effects, due to the activation of different subsets of intracellular mediators[45,51,52].

The analogues octreotide, lanreotide, vapreotide and seglitide exhibit elevated affinity for SSTR2 and lower for SSTR3 and SSTR5. Multi-SSTR-targeted analogue SOM230 (pasireotide) shows higher binding capacity towards SSTR1 and activates also SSTR 2, 3 and 5[50,53].

The various SSTR binding show a different affinity with their own ligands, which is responsible for the distinct biological and clinical activity[37]. Imam et al[54] and Eriksson et al[55] demonstrated a pro-apoptotic role of SSAs. In fact they analysed tumor samples of GEP-NENs patients, who received high doses of SSAs[54,55], finding increased apoptosis processes. The antiproliferative effect of SSAs is mediated by direct and indirect mechanisms. The inhibition of SSTRs, if expressed on tumour cells’ membrane, operates directly on cell proliferation, stimulating antimitotic and apoptotic activities. SSAs induce cell growth inhibition also with indirect activities, such as angiogenesis inhibition, modulation of immune system and growth factors’ block.

The indirect antiproliferative efficacy of SSAs does not require SSTR tumour expression and is shown by an antiangiogenic or immunomodulation mechanism, mediated by stimulation of the production of natural-killer cells[56-58]. The antiproliferative activity of SSAs has been shown through various experimental models[59-64]. The indication of using SSAs as fundamental therapy in NETs derives mainly from two studies: PROMID and CLARINET trials[65,66]. The PROMID study showed a significant benefit with octreotide LAR (long-acting release) therapy in 85 subjects affected by advanced midgut NENs.

This study demonstrated an advantage in time to progression (TTP). In fact in patients treated with octreotide LAR a mTTP of 14.3 mo was observed, whilst patients in the control arm, receiving placebo, reported a mTTP of 6 mo. Sixty-four percent of subjects in the experimental arm showed stable disease (SD), which was observed only in 37.2% of subjects assuming placebo. Furthermore, patients treated with octreotide LAR experienced a 67% risk reduction of tumour progression compared with patients receiving placebo. The benefit of octreotide LAR was independent either of chromogranin level or hormone secretion.

The study did not show significant differences in OS, presumably due to the few deaths’ percentage in both treatment arms. Furthermore the failure of the demonstration of an impact of octreotide in survival could be also done to the high rate of cross-over[67].

Based on PROMID results, octreotide LAR has been approved as treatment of recurrent and advanced neuroendocrine tumors’ patients, irrespective of the site of primary tumour, functional status and symptoms’ presence. Lanreotide is another SSA with a similar in vitro hormone release inhibitory profile to octreotide[68].

Recently, the CLARINET trial focused on 204 subjects suffering of nonfunctioning GEP-NENs who were randomized to receive either depot lanreotide, 120 mg every 4 wk for 96 wk, or placebo. The study demonstrated an improvement in PFS for patients treated with lanreotide (mPFS not reached in lanreotide arm; mPFS of 18 mo in placebo arm). This benefit was confirmed both in patients with P-NENs and midgut NENs.

Pasireotide, a new SSA, is characterized by an elevated binding affinity to four of the five SSTR sub-types[69]. Hence, due to its broad binding profile, pasireotide may represent an effective therapeutic opportunity in tumours refractory to octreotide or lanreotide[70]. However, its role in GEP-NETs still remains to be defined. In a phase III study pasireotide did not improve the control of flushing or diarrhea in patients affected by refractory carcinoid syndrome[71] (Table 1). The antiproliferative effects are being tested in several clinical studies[72,73]. Telotristat etiprate (LX1606) is an oral serotonin synthesis inhibitor used in patients with diarrhoea related to carcinoid syndrome[74].

Table 1 Ongoing phaseIII trials in gastro-entero-pancreatic neuroendocrine tumours.
ClinicalTrials.gov IdentifierInvestigated drugTargetType of enrolled pts
NCT00171873Octreotide LAR 30 mgSSTRLocally inoperable or metastatic well differentiated NETs of the midgut Naïve pts
NCT01524783Everolimus plus BSC vs PBO plus BSCmTORUnresectable or metastatic G1 or G2 neuroendocrine tumours of GI or lung Treatment-naïve pts and pre-treated pts (all available treatment options are allowed) with PD
NCT00842348Lanreotide autogel 120 mgSSTRNon-functioning GEP-NETs
NCT00690430Pasireotide LAR 60 mg vs Octreotide LAR 40 mgSSTRMetastatic carcinoid tumours Pts with disease-related symptoms inadequately controlled by somatostatin analogues
NCT00774930Somatuline depot (lanreotide) vs PCBSSTRCarcinoid tumours with liver metastasis Treatment-naïve pts and pts pre-treated with and responsive to somatostatine analogues
NCT00092287Lanreotide autogel vs Sandostatin LARSSTRCarcinoid tumours localized in lung, stomach or midgut Treatment-naïve pts and pts pre-treated with and responsive to somatostatine analogues
NCT00263659Telotristat etiprate (LX1606) vs PBOTPHWell-differentiated metastatic NETs with carcinoid syndrome Treatment-naïve pts
NCT01677910Telotristat etiprate (LX1606) vs PBOTPHWell-differentiated metastatic NETs with carcinoid syndrome Pts with disease-related symptoms inadequately controlled by somatostatin analogues

A recent randomized prospective single-arm study has been conducted in patients with carcinoid tumour and diarrhoea (≥ 4 bowel movements/day) inadequately controlled by octreotide. Among patients treated with telotristat etiprate, 28% experienced a ≥ 30% reduction in bowel movements frequency for more than 2 wk and 56% had a biochemical response. These results suggest a potential activity of telotristat etiprate in controlling carcinoid syndrome and diarrhoea. Pavel et al[75] made a prospective exploratory dose escalating 12-wk open label multicentre study of telotristat etiprate in metastatic well-differentiated NETs with ≥ 4-bowel movements/day. Whole patients experienced reductions in bowel movements, 74.2% mean reduction in metabolites of serotonin and 75% of patients reported adequate relief of GI symptoms (Table 1).

MAMMALIAN TARGET OF RAPAMYCIN PROTEIN KINASE B, PHOSPHOINOSITIDE 3-KINASE AND PHOSPHATASE AND TENSIN HOMOLOG PATHWAY

A considerable number of intracellular pathways seem to conditionate tumorigenesis and neoplastic spread in NENs, as receptor tyrosine kinases (RTKs) and G-protein coupled receptors (GPCRs) transduction mechanisms. Their action seems to be modulated by Ras/Raf, MAPK, phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) and JNK increasing cells’ growth and number. The AKT family of serine/threonine kinases is an important mediator of PI3K signaling, promoting the principal cellular functions[76]. Akt isoforms seem to be an eminent target for GEP-NENs therapy[77]. PI3K/AKT/mTOR pathway is especially activated among P-NENs[78] and their somatic mutations are detected among a minority of P-NETs[79]. Although discrete mutations in the aforementioned pathway are rarely found in GEP-NENs, overexpression of mTOR and/or its downstream targets is been individuated in a high frequency of cases and it is correlated with higher proliferative activity and adverse clinical outcomes[80,81]. mTOR is composed by two complexes working together guarantying many cells’ activities[82-91]. The importance of mTOR inhibitors results from the aforementioned considerations[92,93]. RADIANT-1 (phase II study) represents the first trial demonstrating everolimus utility in GEP-NETs[94]. The trial compared everolimus alone vs everolimus plus octreotide in 160 patients. Regarding combined therapy arm the median PFS was 16.7 mo with a quite well tolerance.

In RADIANT-2 (phase III trial) subjects affected by symptomatic well-differentiated NETs received everolimus plus octreotide vs octreotide alone. A lack of significant benefit in PFS was showed in the combination arm. The most common grade 3/4 side effects in the everolimus arm were stomatitis (6.5%), diarrhea (6%), infections (5.1%), and hyperglycemia (5.1%)[95]. RADIANT-3 (phase III trial) contemplated everolimus vs placebo[96]. The study recruited only G1-G2 P-NETs subjects. Everolimus arm was associated with a better PFS although a low ORR. Therefore everolimus was approved in the management of advanced P-NETs.

RADIANT-4 (ongoing phase III trial) investigates role of everolimus in gastrointestinal/pulmonary neuroendocrine tumors. It may lead to a better definition of the role of everolimus in patients with carcinoid tumours. Finally, other targeted therapies are being studied in NETs (Table 1). Furthermore temsirolimus, another mTOR inhibitor, was evaluated in NETs[97]. However, the results were not considered clinically relevant and further studies with this agent in NETs won’t be performed.

Another fundamental target implicated is PTEN (phosphatase and tensin homologue). Loss of PTEN is commonly individualized in a several human cancers[98] and it is related to the presence of metastases and therapy resistance towards mTOR inhibition[99-103]. PTEN is localized in the nucleus. Its activation through internalization leads to a reduction of Act[104-106]. PTEN is frequently mutated in P-NETs and a low expression of PTEN correlates with high grading[107].

PI3K pathway represents a hot point in NETs proliferation and some studies evaluating its inhibition are ongoing. BEZ235 is a PI3K inhibitor studied associated with everolimus (phase II study) (Table 2). Then a phase I study is on-going using BYL179 in combination with everolimus and exemestane in P-NETs.

Table 2 Ongoing phase II trials in gastro-entero-pancreatic neuroendocrine tumours.
ClinicalTrials.gov IdentifierInvestigated drugTargetType of enrolled pts
NCT01841736PazopanibVEGFR PDGFR FGFR c-kitProgressive carcinoid tumours
NCT02399215NintedanibVEGFR FGFR PDGFRCarcinoid tumour Metastatic carcinoid tumour Neuroendocrine neoplasm
NCT01994213Famitinibc-kit PDGFR VEGFR FltGastroenteropancreatic neuroendocrine tumour
NCT01121939Bevacizumab plus pertuzumab plus sandostatin LARVEGF HER2Advanced neuroendocrine cancers
NCT02259725Regorafenibc-RAF BRAF VEGFR PDGFRa FGFR-1 c-kit RET Flt-3Gastrinoma Glucagonoma Insulinoma Metastatic gastrointestinal carcinoid tumour Pancreatic polypeptide tumour Pulmonary carcinoid tumour Recurrent gastrointestinal carcinoid tumour Recurrent Islet cell carcinoma Somatostatinoma
NCT01784861X-82 plus everolimusmTORPancreatic neuroendocrine tumours
NCT01508104BEZ235 plus everolimusPI3KAdvanced cancers of different types
NCT00781911CixutumumabIGF-1RNeuroendocrine tumours
INSULIN GROWTH FACTOR-1

Insulin growth factor 1 (IGF-1) represents a fundamental factor in tumour expansion, so its inhibition may reduce tumour proliferation. NETs have demonstrated to secrete a significant quantity of IGF-1, then its receptor (IGF-1R) shows a key role in GEP-NETs tumorigenesis[108,109].

Furthermore, many evidences have related a major IGF-1R expression with the presence of functioning and symptomatic NETs[109-118]. Cixutumumab (CIX), a monoclonal antibody competitively binding IGF-1R and then causing its degradation, is currently being evaluated in an on-going trial in association with octreotide depot (Table 2). The usefulness of CIX has already been demonstrated in combination with many other therapeutic options[119].

VEGF

Angiogenesis displays a crucial role for tumour expansion and distant spread and it’s mediated by VEGF and its receptors (VEGFRs). Four VEGF forms were identified: VEGF-A, VEGF-B, VEGF-C and VEGF-D, with a different affinity to their three own receptors[120-129]. Octreotide showed an inhibition of angiogenesis probably mediated by an interaction with VEGF pathway[130]. The tyrosine kinase inhibitor (TKI) sunitinib[131] has been demonstrated a valid targeted therapy option in NENs.

A phase II trial evaluated the efficacy of sunitinib in GEP-NETs demonstrating a significant antitumour activity in P-NETs, while among patients with carcinoid tumours OR were only 2.4%; the treatment was average well tolerated with especially gastrointestinal toxicities[132].

As a consequence of these results, a phase III trial evaluated sunitinib vs placebo in 171 low- and intermediate-grade advanced P-NETs[133]. In the experimental arm was demonstrated an improvement of PFS although the RRs associated with the drug were only 9.3%. The benefit was independent of previous treatments and concomitant administration of SSAs. Considering the importance of VEGF in pathogenesis of NENs, bevacizumab, an antibody directed against VEGF[134], has been used either alone or in combination with other drugs with favourable results[135].

CYTOTOXIC T-LYMPHOCYTE ANTIGEN-4 AND PROGRAMMED DEATH-1

Recently, immunotherapy was demonstrated to be an important treatment option in various cancers. In fact several new immune-target drugs, directed towards specific immune checkpoints, showed an important antitumoral effect.

The first developed immune agents were directed against mediator of immunity inhibition, as cytotoxic t-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1). These mediators are both membrane glycoprotein, which are mainly expressed in activated T-lymphocyte.

CTLA-4, known also as CD152, owns an elevated kinship with CD28 and plays a crucial role regulating immunity’s homeostasis, through the switching-off of T-lymphocyte activation. Its expression seems to be mayor stimulated in switched-on effector T-lymphocytes (Teff cells)[136]. CTLA-4 is constitutive and represented in regulatory T lymphocytes (Treg)[137]. As aforementioned said, it joints CD28, thanks to theirs high affinity, to costimulatory proteins (CD80, CD86) represented in antigen-presenting cells (APC).

Several humanized monoclonal antibodies directed vs CTLA-4, were studied, such as ipilimumab and tremelimumab. The programmed cell death protein-1, PD-1, a membrane protein, acts inhibiting a large group of molecules owning to CD28 family of T-lymphocytes regulators. PD-1 is most represented on surface membrane of activated monocytes, T lymphocytes, and B lymphocytes. PD-1 have different ligands, the most known are PD-L1[138] and PD-L2[139].

PD-L1, a transmembrane protein notably presents in macrophages, in T-ymphocytes, B lymphocytes and dendritic cells (DCs), its concentration increases since cellular activating processes. PD-L1 may be presented also in some tissues not involved in immune system. The principal function of PD-1 seems to be reducing autoimmunity and switching off T-lymphocyte activities involved in inflammatory response to infection[140-142].

In conclusion the linkage between PD-1, mainly expressed in activated T-lymphocytes and PD-L1, principally expressed in tissue DCs, induce a switching-off of T-lymphocytes activation and a blockage of their effector activity[143]. Identifying a selected group of NENs’ patients that could benefit from immunotherapies is not still possible because no predictive biomarkers to immune drugs have been found. Further studies are needed to evaluate the exact expression of aforementioned target immune proteins (PD-1, PD-L1/L2) in the various NENs.

EGF AND TRANSFORMING GROWTH FACTOR ALPHA

EGF and transforming growth factor alpha (TGF-α) are polypeptides that bind the EGFRs regulating cellular responses to growth signals through activating signal transduction pathways (RAS-RAF-MAPK). From a biological point of view, EGF is a mitogen factor regulating growth, proliferation and differentiation of numerous cell types; abnormalities in EGF-signalling pathways have been related to tumour growth and progression[144].

The EGFR belongs to the HER receptor family. Gastrointestinal (GI) and pancreatic NETs express and activate EGFRs[145]. Papouchado et al[146] demonstrated a most elevated presence of EGFR (> 91%) in GI-NENs, (especially in rectal NETs), whilst in P-NENs its expression was lower (< 25%).

Srivastava et al[147] showed instead an elevated presence of EGFR and TGF-α, in P-NENs. Sixty-three per cent of neoplasms in fact showed positivity for TGF-α and 65% for EGFR. However the study did not demonstrate an association with measure, functional status, ability to secrete hormones, or biologic behaviour[147].

TGF-α is expressed in approximately 70%-100% of NETs depending on the technique used (immunohistochemistry or northern blot analysis)[148-150] and is commonly over-expressed in larger rectal NETs with a high Ki-67 index[150]. TGF-α binds with high affinity to the EGFR extracellular domain. Cytoplasmic substrates phosphorylation occurs and initiates a signalling cascade (RAS/RAF/MAPK-ERK) that drives pro-proliferative gene expression, cytoskeletal rearrangement, and increased cell proliferation[144].

Gefitinib is a targeted agent that selectively inhibits receptor tyrosine kinases, including EGFR. A phase II trial enrolling subjects affected by advanced NENs, gefitinib exhibited somewhat promising initial results. At 6 mo, 61% of patients affected by carcinoid tumours and 31% affected by P-NEN were progression-free; however, objective responses for each group were low, 5% and 9.6%, respectively[151].

BASIC FIBROBLASTIC GROWTH FACTOR

The basic fibroblastic growth factor (bFGF) is involved in both physiological and pathological processes by interaction with determinated receptors localized in cellular membrane[152,153].

Because overexpression of bFGF and/or its receptors is frequently detected in tumours, the development of antagonists to bFGF and its receptors has been studied as a potential strategy for cancer therapy[154-156].

Almost five isoform of transmembrane FGF receptors (FGFR), able to dimerize, are well known. The first four subtypes are characterized by a tyrosine kinase activity[157]. Chaudhry et al[158] searched for mRNA expression of 6 different transmembrane receptors (FGFR, EGFR, IGF-1R, TGF-betaR1 and betaR2), and the presence of SSTRs in determinate subtypes of GEP-NENs tissues (gastrinoma, insulinoma, tumours with carcinoid syndrome, not-functioning neoplasms) using reverse transcriptase-polymerase chain reaction. Among the four tumour subtypes, expression frequencies of the receptors aforementioned varied significantly[158]. Taken together, these studies have accounted for high growth factor abundance in GEP-NENs. Considering these results GEP-NENs seems to have an elevated growth factors concentration.

C-KIT/ PLATELET DERIVED GROWTH FACTOR

The c-kit receptor, also referred to CD117 or platelet derived growth factor receptor (PDGFR) is a type I  transmembrane glycoprotein. It is usually included in the family of tyrosine kinase receptor (RTK)[159].

In tumor cells, PDGF promotes proliferation and neoplastic spread[160-163]. Various subtypes of c-kit receptor have been already identified[164] but their ligand still remains stem cell factor (SCF), a hematopoietic cytokine involved in cell survival, proliferation and differentiation[165]. Few pre-clinical studies performed of GEP-NETs have shown a variable expression of c-kit, with ranges from 0% to 38%, and PDGFRα in carcinoids[166], with a particularly high expression in gastrinomas (up to 100% of c-kit expression)[167].

MULTI-TARGETED AGENTS

Famitinib is an oral tyrosine-inhibitor agent targeting at c-kit, PDGFR, VEGFR2, VEGFR3, Flt1 and Flt3. Its efficacy in GEP-NETs is currently being evaluated (Table 2).

Regorafenib is a novel multi-kinase inhibitor (c-RAF; BRAF, VEGFR-1, 2, 3; PDGFRα, FGFR-1; c-kit; RET; Flt-3) belonging to the group of biaryl urea chemicals[168-170]. Pazopanib is an oral inhibitor of several specific cellular pathways involved in neoplastic growth and dissemination[171]. Its efficacy in NENs was demonstrated in a phase II clinical trial combining pazopanib and SSA achieving a 17% RR in G1 P-NETs[172]. Data related to ongoing trials with pazopanib and with regorafenib in NETs are summarized in Table 2.

CONCLUSION

In GEP-NETs tumourigenesis and progression are often involved SSTRs, mTOR/Akt/PI3K and PTEN, IGF-1, VEGF, EGF, TGF, FGF and c-kit/PDGF and its corresponding receptors[145,148,149,173-177] (Figure 1). The recent availability of novel drugs has provided new treatment opportunities and holds promise given the expression in GEP-NENs of this variety of targets[33,178,179].

Figure 1
Figure 1 Illustration of principal pathways involved in cellular differentiation, proliferation, survival and apoptosis: Somatostatin receptors, mammalian target of rapamycin protein kinase B, phosphoinositide 3-kinase and phosphatase and tensin homolog, insulin-like growth factor 1 receptor, vascular endothelial growth factor receptor, epidermal growth factor receptor, transforming growth factor receptor, fibroblast growth factors. SSTRs: Somatostatin receptors; mTOR: Mammalian target of rapamycin; Akt: Protein kinase B; PI3K: Phosphoinositide 3-kinase; PTEN: Phosphatase and tensin homolog; IGFR: Insulin-like growth factor receptor; VEGFR: Vascular endothelial growth factor receptor; EGFR: Epidermal growth factor receptor; TGFR: Transforming growth factor receptor.
Footnotes

P- Reviewer: Kleeff J S- Editor: Ji FF L- Editor: A E- Editor: Lu YJ

References
1.  Cives M, Strosberg J. An update on gastroenteropancreatic neuroendocrine tumors. Oncology (Williston Park). 2014;28:749-756, 758.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  Yang Z, Tang LH, Klimstra DS. Gastroenteropancreatic neuroendocrine neoplasms: historical context and current issues. Semin Diagn Pathol. 2013;30:186-196.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063-3072.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3022]  [Cited by in F6Publishing: 3036]  [Article Influence: 189.8]  [Reference Citation Analysis (0)]
4.  van der Zwan JM, Trama A, Otter R, Larrañaga N, Tavilla A, Marcos-Gragera R, Dei Tos AP, Baudin E, Poston G, Links T. Rare neuroendocrine tumours: results of the surveillance of rare cancers in Europe project. Eur J Cancer. 2013;49:2565-2578.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 80]  [Cited by in F6Publishing: 73]  [Article Influence: 6.6]  [Reference Citation Analysis (0)]
5.  Lepage C, Bouvier AM, Faivre J. Endocrine tumours: epidemiology of malignant digestive neuroendocrine tumours. Eur J Endocrinol. 2013;168:R77-R83.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 44]  [Cited by in F6Publishing: 39]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
6.  Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011;40:1-18, vii.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 600]  [Cited by in F6Publishing: 589]  [Article Influence: 45.3]  [Reference Citation Analysis (0)]
7.  Rindi G, Arnold R, Bosman FT, Capella C, Klimstra DS, Kloppel G, Komminoth P, Solcia E. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In WHO Classification of Tumours of the Digestive System. Lyon: IARC Press 2010; 13-14.  [PubMed]  [DOI]  [Cited in This Article: ]
8.  Sorbye H, Strosberg J, Baudin E, Klimstra DS, Yao JC. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer. 2014;120:2814-2823.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 215]  [Cited by in F6Publishing: 231]  [Article Influence: 23.1]  [Reference Citation Analysis (0)]
9.  La Rosa S, Sessa F. High-grade poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: from morphology to proliferation and back. Endocr Pathol. 2014;25:193-198.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 22]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
10.  Capdevila J, Salazar R, Halperín I, Abad A, Yao JC. Innovations therapy: mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 Suppl 1:27-34.  [PubMed]  [DOI]  [Cited in This Article: ]
11.  Capdevila J, Tabernero J. A shining light in the darkness for the treatment of pancreatic neuroendocrine tumors. Cancer Discov. 2011;1:213-221.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 137]  [Reference Citation Analysis (0)]
12.  Hilfenhaus G, Göhrig A, Pape UF, Neumann T, Jann H, Zdunek D, Hess G, Stassen JM, Wiedenmann B, Detjen K. Placental growth factor supports neuroendocrine tumor growth and predicts disease prognosis in patients. Endocr Relat Cancer. 2013;20:305-319.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 25]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
13.  Oberstein PE, Saif MW. Update on prognostic and predictive biomarkers for pancreatic neuroendocrine tumors. JOP. 2012;13:368-371.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
14.  Vilar E, Salazar R, Pérez-García J, Cortes J, Oberg K, Tabernero J. Chemotherapy and role of the proliferation marker Ki-67 in digestive neuroendocrine tumors. Endocr Relat Cancer. 2007;14:221-232.  [PubMed]  [DOI]  [Cited in This Article: ]
15.  Bajetta E, Catena L, Procopio G, De Dosso S, Bichisao E, Ferrari L, Martinetti A, Platania M, Verzoni E, Formisano B. Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother Pharmacol. 2007;59:637-642.  [PubMed]  [DOI]  [Cited in This Article: ]
16.  Brixi-Benmansour H, Jouve JL, Mitry E, Bonnetain F, Landi B, Hentic O, Bedenne L, Cadiot G. Phase II study of first-line FOLFIRI for progressive metastatic well-differentiated pancreatic endocrine carcinoma. Dig Liver Dis. 2011;43:912-916.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 24]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
17.  Engstrom PF, Lavin PT, Moertel CG, Folsch E, Douglass HO. Streptozocin plus fluorouracil versus doxorubicin therapy for metastatic carcinoid tumor. J Clin Oncol. 1984;2:1255-1259.  [PubMed]  [DOI]  [Cited in This Article: ]
18.  Vogl TJ, Naguib NN, Zangos S, Eichler K, Hedayati A, Nour-Eldin NE. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur J Radiol. 2009;72:517-528.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 117]  [Cited by in F6Publishing: 112]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
19.  Moertel CG, Hanley JA, Johnson LA. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1980;303:1189-1194.  [PubMed]  [DOI]  [Cited in This Article: ]
20.  Strosberg JR, Fine RL, Choi J, Nasir A, Coppola D, Chen DT, Helm J, Kvols L. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117:268-275.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 529]  [Cited by in F6Publishing: 514]  [Article Influence: 36.7]  [Reference Citation Analysis (0)]
21.  Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157-198.  [PubMed]  [DOI]  [Cited in This Article: ]
22.  Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. Biochim Biophys Acta. 2003;1616:1-84.  [PubMed]  [DOI]  [Cited in This Article: ]
23.  Ferone D, Arvigo M, Semino C, Jaquet P, Saveanu A, Taylor JE, Moreau JP, Culler MD, Albertelli M, Minuto F. Somatostatin and dopamine receptor expression in lung carcinoma cells and effects of chimeric somatostatin-dopamine molecules on cell proliferation. Am J Physiol Endocrinol Metab. 2005;289:E1044-E1050.  [PubMed]  [DOI]  [Cited in This Article: ]
24.  Arnold R, Trautmann ME, Creutzfeldt W, Benning R, Benning M, Neuhaus C, Jürgensen R, Stein K, Schäfer H, Bruns C. Somatostatin analogue octreotide and inhibition of tumour growth in metastatic endocrine gastroenteropancreatic tumours. Gut. 1996;38:430-438.  [PubMed]  [DOI]  [Cited in This Article: ]
25.  Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389-427.  [PubMed]  [DOI]  [Cited in This Article: ]
26.  Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30:781-793.  [PubMed]  [DOI]  [Cited in This Article: ]
27.  Reubi JC. Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology. 2004;80 Suppl 1:51-56.  [PubMed]  [DOI]  [Cited in This Article: ]
28.  Schmid HA, Lambertini C, van Vugt HH, Barzaghi-Rinaudo P, Schäfer J, Hillenbrand R, Sailer AW, Kaufmann M, Nuciforo P. Monoclonal antibodies against the human somatostatin receptor subtypes 1-5: development and immunohistochemical application in neuroendocrine tumors. Neuroendocrinology. 2012;95:232-247.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 26]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
29.  Reubi JC, Laissue J, Krenning E, Lamberts SW. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J Steroid Biochem Mol Biol. 1992;43:27-35.  [PubMed]  [DOI]  [Cited in This Article: ]
30.  Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem. 2000;275:7862-7869.  [PubMed]  [DOI]  [Cited in This Article: ]
31.  Corleto VD, Falconi M, Panzuto F, Milione M, De Luca O, Perri P, Cannizzaro R, Bordi C, Pederzoli P, Scarpa A. Somatostatin receptor subtypes 2 and 5 are associated with better survival in well-differentiated endocrine carcinomas. Neuroendocrinology. 2009;89:223-230.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36]  [Cited by in F6Publishing: 37]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
32.  Kim HS, Lee HS, Kim WH. Clinical significance of protein expression of cyclooxygenase-2 and somatostatin receptors in gastroenteropancreatic neuroendocrine tumors. Cancer Res Treat. 2011;43:181-188.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 31]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
33.  Srirajaskanthan R, Watkins J, Marelli L, Khan K, Caplin ME. Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology. 2009;89:308-314.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 57]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
34.  Zamora V, Cabanne A, Salanova R, Bestani C, Domenichini E, Marmissolle F, Giacomi N, O’Connor J, Méndez G, Roca E. Immunohistochemical expression of somatostatin receptors in digestive endocrine tumours. Dig Liver Dis. 2010;42:220-225.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 40]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
35.  Reubi JC, Kvols LK, Waser B, Nagorney DM, Heitz PU, Charboneau JW, Reading CC, Moertel C. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res. 1990;50:5969-5977.  [PubMed]  [DOI]  [Cited in This Article: ]
36.  Oconnor JM, Belli S, Pesce V, Mendez GA, Bestani C, Marmissolle F, Giacomi N, Belli S, Dominichini E, Chacon M. Somatostatin receptor (sstr) expression and proliferative index (ki 67) in 100 patients (pts) with gastroenteropancreatic neuroendocrine tumours (gep-nets). Clinical-pathological correlation. J Clin Oncol. 2012;30:Abstr e14598.  [PubMed]  [DOI]  [Cited in This Article: ]
37.  Modlin IM, Pavel M, Kidd M, Gustafsson BI. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther. 2010;31:169-188.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 109]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
38.  de Sá SV, Corrêa-Giannella ML, Machado MC, de Souza JJ, Pereira MA, Patzina RA, Siqueira SA, Machado MC, Giannella-Neto D. Somatostatin receptor subtype 5 (SSTR5) mRNA expression is related to histopathological features of cell proliferation in insulinomas. Endocr Relat Cancer. 2006;13:69-78.  [PubMed]  [DOI]  [Cited in This Article: ]
39.  Portela-Gomes GM, Stridsberg M, Grimelius L, Rorstad O, Janson ET. Differential expression of the five somatostatin receptor subtypes in human benign and malignant insulinomas - predominance of receptor subtype 4. Endocr Pathol. 2007;18:79-85.  [PubMed]  [DOI]  [Cited in This Article: ]
40.  Janson ET, Oberg K. Neuroendocrine tumors--somatostatin receptor expression and somatostatin analog treatment. Cancer Chemother Biol Response Modif. 2003;21:535-546.  [PubMed]  [DOI]  [Cited in This Article: ]
41.  Reubi JC, Kappeler A, Waser B, Laissue J, Hipkin RW, Schonbrunn A. Immunohistochemical localization of somatostatin receptors sst2A in human tumors. Am J Pathol. 1998;153:233-245.  [PubMed]  [DOI]  [Cited in This Article: ]
42.  Papotti M, Bongiovanni M, Volante M, Allìa E, Landolfi S, Helboe L, Schindler M, Cole SL, Bussolati G. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440:461-475.  [PubMed]  [DOI]  [Cited in This Article: ]
43.  Volante M, Rosas R, Allìa E, Granata R, Baragli A, Muccioli G, Papotti M. Somatostatin, cortistatin and their receptors in tumours. Mol Cell Endocrinol. 2008;286:219-229.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 44]  [Cited by in F6Publishing: 39]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
44.  Lahlou H, Guillermet J, Hortala M, Vernejoul F, Pyronnet S, Bousquet C, Susini C. Molecular signaling of somatostatin receptors. Ann N Y Acad Sci. 2004;1014:121-131.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 111]  [Cited by in F6Publishing: 117]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
45.  Schonbrunn A. Selective agonism in somatostatin receptor signaling and regulation. Mol Cell Endocrinol. 2008;286:35-39.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 40]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
46.  Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov. 2003;2:999-1017.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 410]  [Cited by in F6Publishing: 398]  [Article Influence: 19.9]  [Reference Citation Analysis (0)]
47.  Florio T. Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases. Mol Cell Endocrinol. 2008;286:40-48.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 53]  [Cited by in F6Publishing: 56]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
48.  Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr Rev. 1995;16:427-442.  [PubMed]  [DOI]  [Cited in This Article: ]
49.  Oberg K. Future aspects of somatostatin-receptor-mediated therapy. Neuroendocrinology. 2004;80 Suppl 1:57-61.  [PubMed]  [DOI]  [Cited in This Article: ]
50.  Bruns C, Lewis I, Briner U, Meno-Tetang G, Weckbecker G. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol. 2002;146:707-716.  [PubMed]  [DOI]  [Cited in This Article: ]
51.  Ben-Shlomo A, Zhou C, Pichurin O, Chesnokova V, Liu NA, Culler MD, Melmed S. Constitutive somatostatin receptor activity determines tonic pituitary cell response. Mol Endocrinol. 2009;23:337-348.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 26]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
52.  Cescato R, Loesch KA, Waser B, Mäcke HR, Rivier JE, Reubi JC, Schonbrunn A. Agonist-biased signaling at the sst2A receptor: the multi-somatostatin analogs KE108 and SOM230 activate and antagonize distinct signaling pathways. Mol Endocrinol. 2010;24:240-249.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 56]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
53.  Reubi JC, Eisenwiener KP, Rink H, Waser B, Mäcke HR. A new peptidic somatostatin agonist with high affinity to all five somatostatin receptors. Eur J Pharmacol. 2002;456:45-49.  [PubMed]  [DOI]  [Cited in This Article: ]
54.  Imam H, Eriksson B, Lukinius A, Janson ET, Lindgren PG, Wilander E, Oberg K. Induction of apoptosis in neuroendocrine tumors of the digestive system during treatment with somatostatin analogs. Acta Oncol. 1997;36:607-614.  [PubMed]  [DOI]  [Cited in This Article: ]
55.  Eriksson B, Renstrup J, Imam H, Oberg K. High-dose treatment with lanreotide of patients with advanced neuroendocrine gastrointestinal tumors: clinical and biological effects. Ann Oncol. 1997;8:1041-1044.  [PubMed]  [DOI]  [Cited in This Article: ]
56.  Lamberts SW, Krenning EP, Reubi JC. The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr Rev. 1991;12:450-482.  [PubMed]  [DOI]  [Cited in This Article: ]
57.  Bousquet C, Puente E, Buscail L, Vaysse N, Susini C. Antiproliferative effect of somatostatin and analogs. Chemotherapy. 2001;47 Suppl 2:30-39.  [PubMed]  [DOI]  [Cited in This Article: ]
58.  Butturini G, Bettini R, Missiaglia E, Mantovani W, Dalai I, Capelli P, Ferdeghini M, Pederzoli P, Scarpa A, Falconi M. Predictive factors of efficacy of the somatostatin analogue octreotide as first line therapy for advanced pancreatic endocrine carcinoma. Endocr Relat Cancer. 2006;13:1213-1221.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 70]  [Cited by in F6Publishing: 77]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
59.  Schally AV. Oncological applications of somatostatin analogues. Cancer Res. 1988;48:6977-6985.  [PubMed]  [DOI]  [Cited in This Article: ]
60.  Weckbecker G, Raulf F, Stolz B, Bruns C. Somatostatin analogs for diagnosis and treatment of cancer. Pharmacol Ther. 1993;60:245-264.  [PubMed]  [DOI]  [Cited in This Article: ]
61.  Pollak MN, Schally AV. Mechanisms of antineoplastic action of somatostatin analogs. Proc Soc Exp Biol Med. 1998;217:143-152.  [PubMed]  [DOI]  [Cited in This Article: ]
62.  Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy. Biopolymers. 2002;66:161-183.  [PubMed]  [DOI]  [Cited in This Article: ]
63.  Schally AV, Nagy A. Chemotherapy targeted to cancers through tumoral hormone receptors. Trends Endocrinol Metab. 2004;15:300-310.  [PubMed]  [DOI]  [Cited in This Article: ]
64.  Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C. Antitumor effects of somatostatin. Mol Cell Endocrinol. 2008;286:230-237.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 115]  [Cited by in F6Publishing: 116]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
65.  Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656-4663.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1609]  [Cited by in F6Publishing: 1607]  [Article Influence: 107.1]  [Reference Citation Analysis (0)]
66.  Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, Cadiot G, Wolin EM, Capdevila J, Wall L. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371:224-233.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1142]  [Cited by in F6Publishing: 1122]  [Article Influence: 112.2]  [Reference Citation Analysis (0)]
67.  Arnold R, Wittenberg M, Rinke A, Schade-Brittinger C, Aminossadati B, Ronicke Gress TM, Mueller HH; PROMID Study Group. Placebo controlled, double blind, prospective, randomized study on the effect of octreotide LAR in the control of tumour growth in patients with metastatic neuroendocrine midgut tumours (PROMID): results on long-term survival. J Clin Oncol. 2013;31:Abstr 4030.  [PubMed]  [DOI]  [Cited in This Article: ]
68.  Hofland LJ, van Koetsveld PM, Waaijers M, Zuyderwijk J, Lamberts SW. Relative potencies of the somatostatin analogs octreotide, BIM-23014, and RC-160 on the inhibition of hormone release by cultured human endocrine tumor cells and normal rat anterior pituitary cells. Endocrinology. 1994;134:301-306.  [PubMed]  [DOI]  [Cited in This Article: ]
69.  Weckbecker G, Briner U, Lewis I, Bruns C. SOM230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-I axis in rats, primates, and dogs. Endocrinology. 2002;143:4123-4130.  [PubMed]  [DOI]  [Cited in This Article: ]
70.  Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008;286:69-74.  [PubMed]  [DOI]  [Cited in This Article: ]
71.  Wolin EM, Jarzab B, Eriksson B, Walter T, Toumpanakis C, Morse M, Tomassetti P, Weber M, Fogelman DR, Ramage J. A multicenter, randomized, blinded, phase III study of pasireotide LAR versus octreotide LAR in patients with metastatic neuroendocrine tumours (NET) with disease-related symptoms inadequately controlled by somatostatin analogs. J Clin Oncol. 2013;31:Abstr 4031.  [PubMed]  [DOI]  [Cited in This Article: ]
72.  Lee Moffitt H. Study of pasireotide long acting release (LAR) in patients with metastatic neuroendocrine tumours. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).  Available from: http://www.clinicaltrials.gov/ct2/show/NCT01253161 NLM identifier: NCT01253161.  [PubMed]  [DOI]  [Cited in This Article: ]
73.  Novartis Pharmaceuticals. Efficacy of everolimus alone or in combination with pasireotide LAR in advanced PNET (COOPERATE-1). In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US).  Available from: http://www.clinicaltrials.gov/ct2/show/NCT01374451.  [PubMed]  [DOI]  [Cited in This Article: ]
74.  Kulke MH, O’Dorisio T, Phan A, Bergsland E, Law L, Banks P, Freiman J, Frazier K, Jackson J, Yao JC. Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014;21:705-714.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 100]  [Cited by in F6Publishing: 108]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
75.  Pavel M, Hörsch D, Caplin M, Ramage J, Seufferlein T, Valle J, Banks P, Lapuerta P, Sands A, Zambrowicz B. Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab. 2015;100:1511-1519.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 78]  [Cited by in F6Publishing: 83]  [Article Influence: 9.2]  [Reference Citation Analysis (0)]
76.  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39812]  [Cited by in F6Publishing: 42993]  [Article Influence: 3307.2]  [Reference Citation Analysis (4)]
77.  Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001;15:2203-2208.  [PubMed]  [DOI]  [Cited in This Article: ]
78.  Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, Piemonti L, Capurso G, Di Florio A, delle Fave G. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28:245-255.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 391]  [Cited by in F6Publishing: 391]  [Article Influence: 26.1]  [Reference Citation Analysis (0)]
79.  Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J. 2002;16:771-780.  [PubMed]  [DOI]  [Cited in This Article: ]
80.  Alonso-Gordoa T, Capdevila J, Grande E. GEP-NETs update: Biotherapy for neuroendocrine tumours. Eur J Endocrinol. 2015;172:R31-R46.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 36]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
81.  Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199-1203.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1227]  [Cited by in F6Publishing: 1235]  [Article Influence: 95.0]  [Reference Citation Analysis (0)]
82.  Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002;13:2276-2288.  [PubMed]  [DOI]  [Cited in This Article: ]
83.  Jaeschke A, Dennis PB, Thomas G. mTOR: a mediator of intracellular homeostasis. Curr Top Microbiol Immunol. 2004;279:283-298.  [PubMed]  [DOI]  [Cited in This Article: ]
84.  Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424-430.  [PubMed]  [DOI]  [Cited in This Article: ]
85.  Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda). 2006;21:362-369.  [PubMed]  [DOI]  [Cited in This Article: ]
86.  Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest. 2006;116:1767-1775.  [PubMed]  [DOI]  [Cited in This Article: ]
87.  Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574:63-71.  [PubMed]  [DOI]  [Cited in This Article: ]
88.  Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9-22.  [PubMed]  [DOI]  [Cited in This Article: ]
89.  Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17:596-603.  [PubMed]  [DOI]  [Cited in This Article: ]
90.  Ellisen LW. Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle. 2005;4:1500-1502.  [PubMed]  [DOI]  [Cited in This Article: ]
91.  Kaper F, Dornhoefer N, Giaccia AJ. Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions. Cancer Res. 2006;66:1561-1569.  [PubMed]  [DOI]  [Cited in This Article: ]
92.  Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502-511.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 680]  [Cited by in F6Publishing: 619]  [Article Influence: 38.7]  [Reference Citation Analysis (0)]
93.  Cingarlini S, Bonomi M, Corbo V, Scarpa A, Tortora G. Profiling mTOR pathway in neuroendocrine tumors. Target Oncol. 2012;7:183-188.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 31]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
94.  Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P, Hoosen S, St Peter J, Haas T, Lebwohl D. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69-76.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 478]  [Cited by in F6Publishing: 462]  [Article Influence: 30.8]  [Reference Citation Analysis (0)]
95.  Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, Klimovsky J, Lebwohl D, Jehl V, Wolin EM. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378:2005-2012.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 740]  [Cited by in F6Publishing: 710]  [Article Influence: 54.6]  [Reference Citation Analysis (0)]
96.  Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, Hobday TJ, Okusaka T, Capdevila J, de Vries EG. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:514-523.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2039]  [Cited by in F6Publishing: 1969]  [Article Influence: 151.5]  [Reference Citation Analysis (0)]
97.  Duran I, Kortmansky J, Singh D, Hirte H, Kocha W, Goss G, Le L, Oza A, Nicklee T, Ho J. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95:1148-1154.  [PubMed]  [DOI]  [Cited in This Article: ]
98.  Maehama T, Dixon JE. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 1999;9:125-128.  [PubMed]  [DOI]  [Cited in This Article: ]
99.  Hafsi S, Pezzino FM, Candido S, Ligresti G, Spandidos DA, Soua Z, McCubrey JA, Travali S, Libra M. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). Int J Oncol. 2012;40:639-644.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 64]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
100.  Zhang S, Yu D. PI(3)king apart PTEN’s role in cancer. Clin Cancer Res. 2010;16:4325-4330.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 181]  [Cited by in F6Publishing: 196]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
101.  Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM, Sellers WR. Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999;96:2110-2115.  [PubMed]  [DOI]  [Cited in This Article: ]
102.  Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA. 1998;95:13513-13518.  [PubMed]  [DOI]  [Cited in This Article: ]
103.  Furnari FB, Huang HJ, Cavenee WK. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 1998;58:5002-5008.  [PubMed]  [DOI]  [Cited in This Article: ]
104.  Putz U, Howitt J, Doan A, Goh CP, Low LH, Silke J, Tan SS. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci Signal. 2012;5:ra70.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 205]  [Cited by in F6Publishing: 226]  [Article Influence: 18.8]  [Reference Citation Analysis (0)]
105.  Tamura M, Gu J, Takino T, Yamada KM. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999;59:442-449.  [PubMed]  [DOI]  [Cited in This Article: ]
106.  Kim JS, Xu X, Li H, Solomon D, Lane WS, Jin T, Waldman T. Mechanistic analysis of a DNA damage-induced, PTEN-dependent size checkpoint in human cells. Mol Cell Biol. 2011;31:2756-2771.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 25]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
107.  Wang L, Ignat A, Axiotis CA. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl Immunohistochem Mol Morphol. 2002;10:139-146.  [PubMed]  [DOI]  [Cited in This Article: ]
108.  Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28:20-47.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 738]  [Cited by in F6Publishing: 728]  [Article Influence: 42.8]  [Reference Citation Analysis (0)]
109.  Furukawa M, Raffeld M, Mateo C, Sakamoto A, Moody TW, Ito T, Venzon DJ, Serrano J, Jensen RT. Increased expression of insulin-like growth factor I and/or its receptor in gastrinomas is associated with low curability, increased growth, and development of metastases. Clin Cancer Res. 2005;11:3233-3242.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 50]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
110.  Nilsson O, Wängberg B, Theodorsson E, Skottner A, Ahlman H. Presence of IGF-I in human midgut carcinoid tumours--an autocrine regulator of carcinoid tumour growth? Int J Cancer. 1992;51:195-203.  [PubMed]  [DOI]  [Cited in This Article: ]
111.  Nilsson O, Wängberg B, McRae A, Dahlström A, Ahlman H. Growth factors and carcinoid tumours. Acta Oncol. 1993;32:115-124.  [PubMed]  [DOI]  [Cited in This Article: ]
112.  Wulbrand U, Wied M, Zöfel P, Göke B, Arnold R, Fehmann H. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur J Clin Invest. 1998;28:1038-1049.  [PubMed]  [DOI]  [Cited in This Article: ]
113.  von Wichert G, Jehle PM, Hoeflich A, Koschnick S, Dralle H, Wolf E, Wiedenmann B, Boehm BO, Adler G, Seufferlein T. Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res. 2000;60:4573-4581.  [PubMed]  [DOI]  [Cited in This Article: ]
114.  Höpfner M, Baradari V, Huether A, Schöfl C, Scherübl H. The insulin-like growth factor receptor 1 is a promising target for novel treatment approaches in neuroendocrine gastrointestinal tumours. Endocr Relat Cancer. 2006;13:135-149.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 50]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
115.  Vitale L, Lenzi L, Huntsman SA, Canaider S, Frabetti F, Casadei R, Facchin F, Carinci P, Zannotti M, Coppola D. Differential expression of alternatively spliced mRNA forms of the insulin-like growth factor 1 receptor in human neuroendocrine tumors. Oncol Rep. 2006;15:1249-1256.  [PubMed]  [DOI]  [Cited in This Article: ]
116.  Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol. 2011;152:367-379.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 99]  [Cited by in F6Publishing: 104]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
117.  Gloesenkamp C, Nitzsche B, Lim AR, Normant E, Vosburgh E, Schrader M, Ocker M, Scherübl H, Höpfner M. Heat shock protein 90 is a promising target for effective growth inhibition of gastrointestinal neuroendocrine tumors. Int J Oncol. 2012;40:1659-1667.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 15]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
118.  Gilbert JA, Adhikari LJ, Lloyd RV, Halfdanarson TR, Muders MH, Ames MM. Molecular markers for novel therapeutic strategies in pancreatic endocrine tumors. Pancreas. 2013;42:411-421.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 36]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
119.  Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res. 2007;13:5549s-5555s.  [PubMed]  [DOI]  [Cited in This Article: ]
120.  Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27-31.  [PubMed]  [DOI]  [Cited in This Article: ]
121.  Berger DP, Herbstritt L, Dengler WA, Marmé D, Mertelsmann R, Fiebig HH. Vascular endothelial growth factor (VEGF) mRNA expression in human tumor models of different histologies. Ann Oncol. 1995;6:817-825.  [PubMed]  [DOI]  [Cited in This Article: ]
122.  Lawnicka H, Stepień H, Wyczółkowska J, Kolago B, Kunert-Radek J, Komorowski J. Effect of somatostatin and octreotide on proliferation and vascular endothelial growth factor secretion from murine endothelial cell line (HECa10) culture. Biochem Biophys Res Commun. 2000;268:567-571.  [PubMed]  [DOI]  [Cited in This Article: ]
123.  Kuo CJ, Farnebo F, Yu EY, Christofferson R, Swearingen RA, Carter R, von Recum HA, Yuan J, Kamihara J, Flynn E. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA. 2001;98:4605-4610.  [PubMed]  [DOI]  [Cited in This Article: ]
124.  Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE. 2001;2001:re21.  [PubMed]  [DOI]  [Cited in This Article: ]
125.  Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol. 2002;515:33-48.  [PubMed]  [DOI]  [Cited in This Article: ]
126.  Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669-676.  [PubMed]  [DOI]  [Cited in This Article: ]
127.  Treiber G, Wex T, Röcken C, Fostitsch P, Malfertheiner P. Impact of biomarkers on disease survival and progression in patients treated with octreotide for advanced hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:699-708.  [PubMed]  [DOI]  [Cited in This Article: ]
128.  Dimitroulopoulos D, Xinopoulos D, Tsamakidis K, Zisimopoulos A, Andriotis E, Panagiotakos D, Fotopoulou A, Chrysohoou C, Bazinis A, Daskalopoulou D. Long acting octreotide in the treatment of advanced hepatocellular cancer and overexpression of somatostatin receptors: randomized placebo-controlled trial. World J Gastroenterol. 2007;13:3164-3170.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 40]  [Cited by in F6Publishing: 42]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
129.  Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol. 2007;39:1349-1357.  [PubMed]  [DOI]  [Cited in This Article: ]
130.  Modlin IM, Oberg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, Caplin M, Delle Fave G, Kaltsas GA, Krenning EP. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61-72.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1131]  [Cited by in F6Publishing: 1117]  [Article Influence: 69.8]  [Reference Citation Analysis (0)]
131.  Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, Bello C, Deprimo S, Brega N, Massimini G. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25-35.  [PubMed]  [DOI]  [Cited in This Article: ]
132.  Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, Bergsland E, Stuart K, Tye L, Huang X. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26:3403-3410.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 467]  [Cited by in F6Publishing: 431]  [Article Influence: 26.9]  [Reference Citation Analysis (0)]
133.  Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C, Valle J, Metrakos P, Smith D, Vinik A. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364:501-513.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1805]  [Cited by in F6Publishing: 1693]  [Article Influence: 130.2]  [Reference Citation Analysis (0)]
134.  Yao JC, Phan A, Hoff PM, Chen HX, Charnsangavej C, Yeung SC, Hess K, Ng C, Abbruzzese JL, Ajani JA. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26:1316-1323.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 321]  [Cited by in F6Publishing: 350]  [Article Influence: 21.9]  [Reference Citation Analysis (0)]
135.  Faivre S, Sablin MP, Dreyer C, Raymond E. Novel anticancer agents in clinical trials for well-differentiated neuroendocrine tumors. Endocrinol Metab Clin North Am. 2010;39:811-826.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 26]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
136.  Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535-543.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 442]  [Cited by in F6Publishing: 431]  [Article Influence: 15.4]  [Reference Citation Analysis (0)]
137.  Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303-310.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1642]  [Cited by in F6Publishing: 1647]  [Article Influence: 68.6]  [Reference Citation Analysis (0)]
138.  Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027-1034.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3572]  [Cited by in F6Publishing: 3735]  [Article Influence: 155.6]  [Reference Citation Analysis (0)]
139.  Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261-268.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2021]  [Cited by in F6Publishing: 2102]  [Article Influence: 91.4]  [Reference Citation Analysis (0)]
140.  Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887-3895.  [PubMed]  [DOI]  [Cited in This Article: ]
141.  Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203:883-895.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 839]  [Cited by in F6Publishing: 932]  [Article Influence: 51.8]  [Reference Citation Analysis (0)]
142.  Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813-824.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 808]  [Cited by in F6Publishing: 909]  [Article Influence: 53.5]  [Reference Citation Analysis (0)]
143.  Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209:1201-1217.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 638]  [Cited by in F6Publishing: 773]  [Article Influence: 64.4]  [Reference Citation Analysis (0)]
144.  Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284:31-53.  [PubMed]  [DOI]  [Cited in This Article: ]
145.  Shah T, Hochhauser D, Frow R, Quaglia A, Dhillon AP, Caplin ME. Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J Neuroendocrinol. 2006;18:355-360.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 58]  [Cited by in F6Publishing: 66]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
146.  Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, Lloyd RV. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol. 2005;18:1329-1335.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 74]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
147.  Srivastava A, Alexander J, Lomakin I, Dayal Y. Immunohistochemical expression of transforming growth factor alpha and epidermal growth factor receptor in pancreatic endocrine tumors. Hum Pathol. 2001;32:1184-1189.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 33]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]
148.  Krishnamurthy S, Dayal Y. Immunohistochemical expression of transforming growth factor alpha and epidermal growth factor receptor in gastrointestinal carcinoids. Am J Surg Pathol. 1997;21:327-333.  [PubMed]  [DOI]  [Cited in This Article: ]
149.  Nilsson O, Wängberg B, Kölby L, Schultz GS, Ahlman H. Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours. Int J Cancer. 1995;60:645-651.  [PubMed]  [DOI]  [Cited in This Article: ]
150.  Shimizu T, Tanaka S, Haruma K, Kitadai Y, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F. Growth characteristics of rectal carcinoid tumors. Oncology. 2000;59:229-237.  [PubMed]  [DOI]  [Cited in This Article: ]
151.  Hobday TJ, Holen K, Donehower RC, Camoriano J, Kim G, Picus J, Philip P, Lloyd R, Mahoney M, Erlichman C. A phase II trial of gefitinib in patients (pts) with progressive metastatic neuroendocrine tumours (NET): a phase II consortium (P2C) study. J Clin Oncol. 2006;24:189S.  [PubMed]  [DOI]  [Cited in This Article: ]
152.  Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8:235-253.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1242]  [Cited by in F6Publishing: 1350]  [Article Influence: 90.0]  [Reference Citation Analysis (0)]
153.  Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9:639-651.  [PubMed]  [DOI]  [Cited in This Article: ]
154.  Cronauer MV, Schulz WA, Seifert HH, Ackermann R, Burchardt M. Fibroblast growth factors and their receptors in urological cancers: basic research and clinical implications. Eur Urol. 2003;43:309-319.  [PubMed]  [DOI]  [Cited in This Article: ]
155.  Rusnati M, Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des. 2007;13:2025-2044.  [PubMed]  [DOI]  [Cited in This Article: ]
156.  Wu X, Yan Q, Huang Y, Huang H, Su Z, Xiao J, Zeng Y, Wang Y, Nie C, Yang Y. Isolation of a novel basic FGF-binding peptide with potent antiangiogenetic activity. J Cell Mol Med. 2010;14:351-356.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 42]  [Article Influence: 3.2]  [Reference Citation Analysis (0)]
157.  Trueb B. Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell Mol Life Sci. 2011;68:951-964.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 91]  [Cited by in F6Publishing: 81]  [Article Influence: 5.8]  [Reference Citation Analysis (0)]
158.  Chaudhry A, Funa K, Oberg K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol. 1993;32:107-114.  [PubMed]  [DOI]  [Cited in This Article: ]
159.  Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6:3341-3351.  [PubMed]  [DOI]  [Cited in This Article: ]
160.  Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22:1276-1312.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1567]  [Cited by in F6Publishing: 1625]  [Article Influence: 101.6]  [Reference Citation Analysis (0)]
161.  Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X, Eriksson U, Pietras K. Paracrine signaling by platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res. 2009;69:369-378.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 163]  [Cited by in F6Publishing: 178]  [Article Influence: 11.9]  [Reference Citation Analysis (0)]
162.  Jain RK, Booth MF. What brings pericytes to tumor vessels? J Clin Invest. 2003;112:1134-1136.  [PubMed]  [DOI]  [Cited in This Article: ]
163.  Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC, Bai W, Yu L, Kowalski J, Liang X. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 2004;23:2800-2810.  [PubMed]  [DOI]  [Cited in This Article: ]
164.  Crosier PS, Ricciardi ST, Hall LR, Vitas MR, Clark SC, Crosier KE. Expression of isoforms of the human receptor tyrosine kinase c-kit in leukemic cell lines and acute myeloid leukemia. Blood. 1993;82:1151-1158.  [PubMed]  [DOI]  [Cited in This Article: ]
165.  Chen SQ, Xiong AQ. The progress and implication of stem cell factor. Jichuyixue Yu Linchuang. 2002;22:385-390.  [PubMed]  [DOI]  [Cited in This Article: ]
166.  Yao JC, Zhang JX, Rashid A, Yeung SC, Szklaruk J, Hess K, Xie K, Ellis L, Abbruzzese JL, Ajani JA. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res. 2007;13:234-240.  [PubMed]  [DOI]  [Cited in This Article: ]
167.  Lankat-Buttgereit B, Hörsch D, Barth P, Arnold R, Blöcker S, Göke R. Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion. 2005;71:131-140.  [PubMed]  [DOI]  [Cited in This Article: ]
168.  Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099-7109.  [PubMed]  [DOI]  [Cited in This Article: ]
169.  Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol. 2005;23:329-336.  [PubMed]  [DOI]  [Cited in This Article: ]
170.  Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245-255.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 838]  [Cited by in F6Publishing: 922]  [Article Influence: 70.9]  [Reference Citation Analysis (0)]
171.  Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 2007;9:115-119.  [PubMed]  [DOI]  [Cited in This Article: ]
172.  Phan AT, Yao JC, Fogelman DR, Hess KR, Ng CS, Bullock SA, Malinoski P, Regan E, Kulke M. A prospective, multi-institutional phase II study of GW786034 (pazopanib) and depot octreotide (Sandostatin LAR) in advanced low-grade neuroendocrine carcinoma (LGNEC). J Clin Oncol. 2010;28:abstr 4001.  [PubMed]  [DOI]  [Cited in This Article: ]
173.  Chaudhry A, Papanicolaou V, Oberg K, Heldin CH, Funa K. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res. 1992;52:1006-1012.  [PubMed]  [DOI]  [Cited in This Article: ]
174.  Chaudhry A, Oberg K, Gobl A, Heldin CH, Funa K. Expression of transforming growth factors beta 1, beta 2, beta 3 in neuroendocrine tumors of the digestive system. Anticancer Res. 1994;14:2085-2091.  [PubMed]  [DOI]  [Cited in This Article: ]
175.  Christofori G, Naik P, Hanahan D. Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol. 1995;9:1760-1770.  [PubMed]  [DOI]  [Cited in This Article: ]
176.  La Rosa S, Chiaravalli AM, Capella C, Uccella S, Sessa F. Immunohistochemical localization of acidic fibroblast growth factor in normal human enterochromaffin cells and related gastrointestinal tumours. Virchows Arch. 1997;430:117-124.  [PubMed]  [DOI]  [Cited in This Article: ]
177.  Van Gompel JJ, Chen H. Insulin-like growth factor 1 signaling in human gastrointestinal carcinoid tumor cells. Surgery. 2004;136:1297-1302.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 16]  [Cited by in F6Publishing: 18]  [Article Influence: 0.9]  [Reference Citation Analysis (0)]
178.  Hofland LJ, Lamberts SW. Somatostatin receptors and disease: role of receptor subtypes. Baillieres Clin Endocrinol Metab. 1996;10:163-176.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 50]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
179.  Welin S, Fjällskog ML, Saras J, Eriksson B, Janson ET. Expression of tyrosine kinase receptors in malignant midgut carcinoid tumors. Neuroendocrinology. 2006;84:42-48.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 26]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]