BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ye H, Liu Y, Zhan L, Liu Y, Qin Z. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics 2020;10:4359-73. [PMID: 32292500 DOI: 10.7150/thno.44298] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 13.7] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Gao X, Chen S, Guo J, Zhang Y. DropLab: an automated magnetic digital microfluidic platform for sample-to-answer point-of-care testing-development and application to quantitative immunodiagnostics. Microsyst Nanoeng 2023;9:10. [PMID: 36644334 DOI: 10.1038/s41378-022-00475-y] [Reference Citation Analysis]
2 Wang K, Wang M, Ma T, Li W, Zhang H. Review on the Selection of Aptamers and Application in Paper-Based Sensors. Biosensors (Basel) 2022;13. [PMID: 36671874 DOI: 10.3390/bios13010039] [Reference Citation Analysis]
3 Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022. [PMID: 36067039 DOI: 10.1021/acs.chemrev.1c01012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ren J, Yin X, Hu H, Wang S, Tian Y, Chen Y, Li Y, Wang J, Zhang D. A multi-scenario dip-stick immunoassay of 17β-estradiol based on multifunctional and non-composite nanoparticles with colorimetric-nanozyme-magnetic properties. Sensors and Actuators B: Chemical 2022;367:132150. [DOI: 10.1016/j.snb.2022.132150] [Reference Citation Analysis]
5 Plech A, Ziefuß AR, Levantino M, Streubel R, Reich S, Reichenberger S. Low Efficiency of Laser Heating of Gold Particles at the Plasmon Resonance: An X-ray Calorimetry Study. ACS Photonics. [DOI: 10.1021/acsphotonics.2c00588] [Reference Citation Analysis]
6 Liu Y, Zhan L, Kangas J, Wang Y, Bischof J. Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays. Sci Rep 2022;12:12729. [PMID: 35882876 DOI: 10.1038/s41598-022-14841-3] [Reference Citation Analysis]
7 Chen X, Yuan W, Zhou Q, Tan Y, Wang R, Dong S. Sensitive and visual identification of Chlamydia trachomatis using multiple cross displacement amplification integrated with a gold nanoparticle-based lateral flow biosensor for point-of-care use. Front Cell Infect Microbiol 2022;12:949514. [DOI: 10.3389/fcimb.2022.949514] [Reference Citation Analysis]
8 Chen X, Zhou Q, Tan Y, Wang R, Wu X, Liu J, Liu R, Wang S, Dong S. Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use. Front Microbiol 2022;13:914620. [DOI: 10.3389/fmicb.2022.914620] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Luo H, Liu S, Shi L, Li Z, Bai Q, Du X, Wang L, Zha H, Li C. Paper-Based Fluidic Sensing Platforms for β-Adrenergic Agonist Residue Point-of-Care Testing. Biosensors 2022;12:518. [DOI: 10.3390/bios12070518] [Reference Citation Analysis]
10 Manessis G, Gelasakis AI, Bossis I. Point-of-Care Diagnostics for Farm Animal Diseases: From Biosensors to Integrated Lab-on-Chip Devices. Biosensors 2022;12:455. [DOI: 10.3390/bios12070455] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Hui YY, Tang Y, Azuma T, Lin H, Liao F, Chen Q, Kuo J, Wang Y, Chang H. Design and implementation of a low‐cost portable reader for thermometric lateral flow immunoassay. J Chinese Chemical Soc. [DOI: 10.1002/jccs.202200124] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Azuma T, Hui YY, Chen OY, Wang YL, Chang HC. Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing. Sci Rep 2022;12:3905. [PMID: 35273286 DOI: 10.1038/s41598-022-07963-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sloan-Dennison S, O'Connor E, Dear JW, Graham D, Faulds K. Towards quantitative point of care detection using SERS lateral flow immunoassays. Anal Bioanal Chem 2022. [PMID: 35113216 DOI: 10.1007/s00216-022-03933-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022;6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022;196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
16 Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics 2022;12:574-602. [PMID: 34976202 DOI: 10.7150/thno.67184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
17 Park SB, Shin JH. Pressed Lateral Flow Assay Strips for Flow Delay-Induced Signal Enhancement in Lateral Flow Assay Strips. Biochip J 2022;16:480-9. [PMID: 36320437 DOI: 10.1007/s13206-022-00085-w] [Reference Citation Analysis]
18 Liu Y, Zhan L, Shen JW, Baro B, Alemany A, Sackrison J, Mitjà O, Bischof JC. fM-aM Detection of the SARS-CoV-2 Antigen by Advanced Lateral Flow Immunoassay Based on Gold Nanospheres. ACS Appl Nano Mater 2021;4:13826-37. [PMID: 34957379 DOI: 10.1021/acsanm.1c03217] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
19 Kang P, Wang Y, Wilson BA, Liu Y, Dawkrajai N, Randrianalisoa J, Qin Z. Nanoparticle Fragmentation below the Melting Point under Single Picosecond Laser Pulse Stimulation. J Phys Chem C 2021;125:26718-30. [DOI: 10.1021/acs.jpcc.1c06684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Wu Y, Sun J, Huang X, Lai W, Xiong Y. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 2021;118:658-78. [DOI: 10.1016/j.tifs.2021.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
21 Chen S, Meng L, Wang L, Huang X, Ali S, Chen X, Yu M, Yi M, Li L, Chen X, Yuan L, Shi W, Huang G. SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags. Sens Actuators B Chem 2021;348:130706. [PMID: 34493903 DOI: 10.1016/j.snb.2021.130706] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
22 Zhou Y, Wu Y, Ding L, Huang X, Xiong Y. Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends Analyt Chem 2021;145:116452. [PMID: 34629572 DOI: 10.1016/j.trac.2021.116452] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
23 Srivastav S, Dankov A, Adanalic M, Grzeschik R, Tran V, Pagel-Wieder S, Gessler F, Spreitzer I, Scholz T, Schnierle B, Anastasiou OE, Dittmer U, Schlücker S. Rapid and Sensitive SERS-Based Lateral Flow Test for SARS-CoV2-Specific IgM/IgG Antibodies. Anal Chem 2021;93:12391-9. [PMID: 34468139 DOI: 10.1021/acs.analchem.1c02305] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
24 Cao X, Song Q, Sun Y, Mao Y, Lu W, Li L. A SERS-LFA biosensor combined with aptamer recognition for simultaneous detection of thrombin and PDGF-BB in prostate cancer plasma. Nanotechnology 2021;32. [PMID: 34298537 DOI: 10.1088/1361-6528/ac1754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Diao M, Lang L, Feng J, Li R. Molecular detections of coronavirus: current and emerging methodologies. Expert Rev Anti Infect Ther 2021;:1-12. [PMID: 34225540 DOI: 10.1080/14787210.2021.1949986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Hwang YJ, Lee KK, Kim JW, Chung KH, Kim SJ, Yun WS, Lee CS. Effective Diagnosis of Foot-And-Mouth Disease Virus (FMDV) Serotypes O and A Based on Optical and Electrochemical Dual-Modal Detection. Biomolecules 2021;11:841. [PMID: 34198783 DOI: 10.3390/biom11060841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Kang P, Wang Y, Wilson BA, Randrianalisoa J, Qin Z. Nanoparticle fragmentation at solid state under single picosecond laser pulse stimulation.. [DOI: 10.1101/2021.06.02.446841] [Reference Citation Analysis]
28 Le TS, He S, Takahashi M, Enomoto Y, Matsumura Y, Maenosono S. Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes. Langmuir 2021;37:6566-77. [PMID: 34008984 DOI: 10.1021/acs.langmuir.1c00905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Jia X, Liu Z, Peng Y, Hou G, Chen W, Xiao R. Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS-LFIA detector. Mikrochim Acta 2021;188:206. [PMID: 34046739 DOI: 10.1007/s00604-021-04857-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Mahmoudinobar F, Britton D, Montclare JK. Protein-based lateral flow assays for COVID-19 detection. Protein Eng Des Sel 2021;34:gzab010. [PMID: 33991088 DOI: 10.1093/protein/gzab010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
31 Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021;9:540. [PMID: 34066112 DOI: 10.3390/biomedicines9050540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 88] [Cited by in F6Publishing: 101] [Article Influence: 44.0] [Reference Citation Analysis]
33 Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Srivastava AK, Khan R. SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS Appl Bio Mater 2021;4:2974-95. [DOI: 10.1021/acsabm.1c00102] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 26.5] [Reference Citation Analysis]
34 Liu Y, Zhan L, Wang Y, Kangas J, Larkin D, Boulware DR, Bischof JC. Improved Influenza Diagnostics through Thermal Contrast Amplification. Diagnostics (Basel) 2021;11:462. [PMID: 33800088 DOI: 10.3390/diagnostics11030462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, Veedu RN. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 2021;11:5174-96. [PMID: 33859741 DOI: 10.7150/thno.56471] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
36 Ye H, Shen Z, Li Y. Adhesive rolling of nanoparticles in a lateral flow inspired from diagnostics of COVID-19. Extreme Mech Lett 2021;44:101239. [PMID: 33644275 DOI: 10.1016/j.eml.2021.101239] [Reference Citation Analysis]
37 Kawasaki H, Suzuki H, Maekawa M, Hariyama T. Combination of the NanoSuit method and gold/platinum particle-based lateral flow assay for quantitative and highly sensitive diagnosis using a desktop scanning electron microscope. J Pharm Biomed Anal 2021;196:113924. [PMID: 33581588 DOI: 10.1016/j.jpba.2021.113924] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Mattioli IA, Hassan A, Oliveira ON Jr, Crespilho FN. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens 2020;5:3655-77. [PMID: 33267587 DOI: 10.1021/acssensors.0c01382] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
39 Khlebtsov B, Khlebtsov N. Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. Nanomaterials (Basel) 2020;10:E2228. [PMID: 33182579 DOI: 10.3390/nano10112228] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
40 Yuan J, Chen X, Duan H, Cai X, Li Y, Guo L, Huang X, Xiong Y. Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta 2020;187:640. [PMID: 33151410 DOI: 10.1007/s00604-020-04617-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
41 Peng T, Liu X, Adams LG, Agarwal G, Akey B, Cirillo J, Deckert V, Delfan S, Fry E, Han Z, Hemmer P, Kattawar G, Kim M, Lee MC, Lu C, Mogford J, Nessler R, Neuman B, Nie X, Pan J, Pryor J, Rajil N, Shih Y, Sokolov A, Svidzinsky A, Wang D, Yi Z, Zheltikov A, Scully M. Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Appl Phys Lett 2020;117:120601. [PMID: 33012808 DOI: 10.1063/5.0021842] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
42 Fu D, Shi Y, Liu JB, Wu TM, Jia CY, Yang HQ, Zhang DD, Yang XL, Wang HM, Ma YS. Targeting Long Non-coding RNA to Therapeutically Regulate Gene Expression in Cancer. Mol Ther Nucleic Acids 2020;21:712-24. [PMID: 32771923 DOI: 10.1016/j.omtn.2020.07.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
43 Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020;10:8061-79. [PMID: 32724458 DOI: 10.7150/thno.42284] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
44 Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, Gutiérrez G, Moyano A, Salvador M, Rivas M, Blanco-López MC. Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules 2020;10:E824. [PMID: 32481493 DOI: 10.3390/biom10060824] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]