BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen X, Leng Y, Hao L, Duan H, Yuan J, Zhang W, Huang X, Xiong Y. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics 2020;10:3737-48. [PMID: 32206119 DOI: 10.7150/thno.42364] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC Trends in Analytical Chemistry 2022;157:116754. [DOI: 10.1016/j.trac.2022.116754] [Reference Citation Analysis]
2 Ma X, Cai D, Zhang Z, Dai Q, Li X, Yu B, Ge B, Liu S, Wang X, Huang F. Peptidomimetic-liganded gold nanoclusters for controlled iron delivery and synergistic suppression of tumor growth. Nano Res 2022. [DOI: 10.1007/s12274-022-5103-y] [Reference Citation Analysis]
3 Zhu K, Zou H, Chen J, Hu J, Xiong S, Fu J, Xiong Y, Huang X. Rapid and sensitive determination of lactoferrin in milk powder by boronate affinity amplified dynamic light scattering immunosensor. Food Chemistry 2022. [DOI: 10.1016/j.foodchem.2022.134983] [Reference Citation Analysis]
4 Hong D, Jo EJ, Jung C, Kim MG. Absorption-Modulated SiO2@Au Core-Satellite Nanoparticles for Highly Sensitive Detection of SARS-CoV-2 Nucleocapsid Protein in Lateral Flow Immunosensors. ACS Appl Mater Interfaces 2022. [PMID: 36191048 DOI: 10.1021/acsami.2c13303] [Reference Citation Analysis]
5 Ren J, Yin X, Hu H, Wang S, Tian Y, Chen Y, Li Y, Wang J, Zhang D. A multi-scenario dip-stick immunoassay of 17β-estradiol based on multifunctional and non-composite nanoparticles with colorimetric-nanozyme-magnetic properties. Sensors and Actuators B: Chemical 2022;367:132150. [DOI: 10.1016/j.snb.2022.132150] [Reference Citation Analysis]
6 Xu H, Lan H, Pan D, Xu J, Wang X. Visual Detection of Chicken Adulteration Based on a Lateral Flow Strip-PCR Strategy. Foods 2022;11:2351. [PMID: 35954117 DOI: 10.3390/foods11152351] [Reference Citation Analysis]
7 Hao L, Yang W, Xu Y, Cui T, Zhu G, Zeng W, Bian K, Liang H, Zhang P, Zhang B. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022;212:114411. [PMID: 35623251 DOI: 10.1016/j.bios.2022.114411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Su Z, Dou W, Liu X, Ping J, Li D, Ying Y, Xie L. Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116673] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhu K, Chen J, Hu J, Xiong S, Zeng L, Huang X, Xiong Y. Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosens Bioelectron 2022;200:113914. [PMID: 34973568 DOI: 10.1016/j.bios.2021.113914] [Reference Citation Analysis]
10 Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS Nano 2022;16:3351-61. [PMID: 35137583 DOI: 10.1021/acsnano.2c00008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
11 Oh HK, Kim K, Park J, Im H, Maher S, Kim MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022;205:114094. [PMID: 35202985 DOI: 10.1016/j.bios.2022.114094] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
12 Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202112031] [Reference Citation Analysis]
13 Li D, Huang M, Shi Z, Huang L, Jin J, Jiang C, Yu W, Guo Z, Wang J. Ultrasensitive Competitive Lateral Flow Immunoassay with Visual Semiquantitative Inspection and Flexible Quantification Capabilities. Anal Chem 2022. [PMID: 35107983 DOI: 10.1021/acs.analchem.1c05364] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
14 Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics 2022;12:574-602. [PMID: 34976202 DOI: 10.7150/thno.67184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
15 Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem Int Ed Engl 2021;:e202112031. [PMID: 34881816 DOI: 10.1002/anie.202112031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Cheng X, Zheng S, Wang W, Han H, Yang X, Shen W, Wang C, Wang S. Synthesis of two-dimensional graphene oxide-fluorescent nanoprobe for ultrasensitive and multiplex immunochromatographic detection of respiratory bacteria. Chemical Engineering Journal 2021;426:131836. [DOI: 10.1016/j.cej.2021.131836] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
17 Babaei-afrapoli Z, Faridi-majidi R, Negahdari B, Dabir K, Tavoosidana G. Evaluating gold nanoparticles parameters in competitive Immunochromatographich Assay via Dot Blot and Bradford Assay as new approaches. Microchemical Journal 2021;170:106525. [DOI: 10.1016/j.microc.2021.106525] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Hsiao WW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. Biosensors (Basel) 2021;11:295. [PMID: 34562885 DOI: 10.3390/bios11090295] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
19 Alam N, Tong L, He Z, Tang R, Ahsan L, Ni Y. Improving the sensitivity of cellulose fiber-based lateral flow assay by incorporating a water-dissolvable polyvinyl alcohol dam. Cellulose (Lond) 2021;:1-11. [PMID: 34305338 DOI: 10.1007/s10570-021-04083-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Chen X, Miao X, Ma T, Leng Y, Hao L, Duan H, Yuan J, Li Y, Huang X, Xiong Y. Gold Nanobeads with Enhanced Absorbance for Improved Sensitivity in Competitive Lateral Flow Immunoassays. Foods 2021;10:1488. [PMID: 34198969 DOI: 10.3390/foods10071488] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
21 Kim HM, Kim J, Bock S, An J, Choi YS, Pham XH, Cha MG, Seong B, Kim W, Kim YH, Song H, Kim JW, Park SM, Lee SH, Rho WY, Lee S, Jeong DH, Lee HY, Jun BH. Silver-Assembled Silica Nanoparticles in Lateral Flow Immunoassay for Visual Inspection of Prostate-Specific Antigen. Sensors (Basel) 2021;21:4099. [PMID: 34203603 DOI: 10.3390/s21124099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sens Actuators B Chem 2021;343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130139] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
23 Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB. Methods for Increasing Sensitivity of Immunochromatographic Test Systems with Colorimetric Detection (Review). Appl Biochem Microbiol 2021;57:143-51. [DOI: 10.1134/s0003683821020113] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
24 Duan H, Chen X, Wu Y, Leng Y, Huang X, Xiong Y. Integrated nanoparticle size with membrane porosity for improved analytical performance in sandwich immunochromatographic assay. Anal Chim Acta 2021;1141:136-43. [PMID: 33248647 DOI: 10.1016/j.aca.2020.10.041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Wang G, Yang L, Li C, Yu H, He Z, Yang C, Sun J, Zhang P, Gu X, Tang BZ. Novel strategy to prepare fluorescent polymeric nanoparticles based on aggregation-induced emission via precipitation polymerization for fluorescent lateral flow assay. Mater Chem Front 2021;5:2452-8. [DOI: 10.1039/d0qm00998a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
26 Huang L, Jin J, Ao L, Jiang C, Zhang Y, Wen HM, Wang J, Wang H, Hu J. Hierarchical Plasmonic-Fluorescent Labels for Highly Sensitive Lateral Flow Immunoassay with Flexible Dual-Modal Switching. ACS Appl Mater Interfaces 2020;12:58149-60. [PMID: 33326226 DOI: 10.1021/acsami.0c18667] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
27 Martiskainen I, Talha SM, Vuorenpää K, Salminen T, Juntunen E, Chattopadhyay S, Kumar D, Vuorinen T, Pettersson K, Khanna N, Batra G. Upconverting nanoparticle reporter-based highly sensitive rapid lateral flow immunoassay for hepatitis B virus surface antigen. Anal Bioanal Chem 2021;413:967-78. [PMID: 33230700 DOI: 10.1007/s00216-020-03055-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
28 Yuan J, Chen X, Duan H, Cai X, Li Y, Guo L, Huang X, Xiong Y. Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta 2020;187:640. [PMID: 33151410 DOI: 10.1007/s00604-020-04617-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
29 Zhou Y, Chen Y, Liu Y, Fang H, Huang X, Leng Y, Liu Z, Hou L, Zhang W, Lai W, Xiong Y. Controlled copper in situ growth-amplified lateral flow sensors for sensitive, reliable, and field-deployable infectious disease diagnostics. Biosens Bioelectron 2021;171:112753. [PMID: 33120235 DOI: 10.1016/j.bios.2020.112753] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
30 Li Y, Chen X, Yuan J, Leng Y, Lai W, Huang X, Xiong Y. Integrated gold superparticles into lateral flow immunoassays for the rapid and sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 2020;103:6940-9. [PMID: 32475677 DOI: 10.3168/jds.2019-17934] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
31 Ye H, Liu Y, Zhan L, Liu Y, Qin Z. Signal amplification and quantification on lateral flow assays by laser excitation of plasmonic nanomaterials. Theranostics 2020;10:4359-73. [PMID: 32292500 DOI: 10.7150/thno.44298] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 20.5] [Reference Citation Analysis]