BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors (Basel) 2021;21:5185. [PMID: 34372422 DOI: 10.3390/s21155185] [Cited by in Crossref: 66] [Cited by in F6Publishing: 76] [Article Influence: 66.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Xu X, Liu L, Xu L, Kuang H, Xu C. Development of a GNP-based lateral flow immunoassay for the detection of isoprothiolane in rice samples. Food Chemistry 2023;404:134483. [DOI: 10.1016/j.foodchem.2022.134483] [Reference Citation Analysis]
2 Liu X, Xia F, Zhang S, Cheng Y, Fan L, Kang S, Gao X, Sun X, Li J, Li X, Zhu L. Dual-color aggregation-induced emission nanoparticles for simultaneous lateral flow immunoassay of nitrofuran metabolites in aquatic products. Food Chemistry 2023;402:134235. [DOI: 10.1016/j.foodchem.2022.134235] [Reference Citation Analysis]
3 Calidonio JM, Hamad-schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochimica et Biophysica Acta (BBA) - General Subjects 2023;1867:130266. [DOI: 10.1016/j.bbagen.2022.130266] [Reference Citation Analysis]
4 Christopoulou N, Kalogianni DP, Christopoulos TK. Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays. Biosensors and Bioelectronics 2022;218:114737. [DOI: 10.1016/j.bios.2022.114737] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Chhillar M, kukkar D, Kukkar P, Kim K. Nanoparticle-antibody conjugate-based immunoassays for detection of CKD-associated biomarkers. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116857] [Reference Citation Analysis]
6 Chen C, Chiu P, Huang TH, Ho NY, Kao F, Tsai T. Quantitative lateral flow immunoassay for rapid detection of procollagen type I N-terminal propeptide in the monitoring of osteoporosis treatment. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.340695] [Reference Citation Analysis]
7 Rubio-monterde A, Quesada-gonzález D, Merkoçi A. Toward Integrated Molecular Lateral Flow Diagnostic Tests Using Advanced Micro- and Nanotechnology. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c04529] [Reference Citation Analysis]
8 Aboelqassem ZM, Ibrahim HM, Sayed RH, Sobhy HM, Hekal SHA. Preparation and evaluation of a lateral flow immunochromatographic nanogold diagnostic kit for brucellosis in sheep. Vet World 2022. [DOI: 10.14202/vetworld.2022.2658-2664] [Reference Citation Analysis]
9 Ang GY, Chan KG, Yean CY, Yu CY. Lateral Flow Immunoassays for SARS-CoV-2. Diagnostics 2022;12:2854. [DOI: 10.3390/diagnostics12112854] [Reference Citation Analysis]
10 Mohammadinejad A, Nooranian S, Kazemi Oskuee R, Mirzaei S, Aleyaghoob G, Zarrabi A, Selda Gunduz E, Nuri Ertas Y, Sheikh Beig Goharrizi MA. Development of Lateral Flow Assays for Rapid Detection of Troponin I: A Review. Critical Reviews in Analytical Chemistry 2022. [DOI: 10.1080/10408347.2022.2144995] [Reference Citation Analysis]
11 Dou L, Li Q, Wang Z, Shen J, Yu W. AIEgens: Next Generation Signaling Source for Immunoassays? ACS Sens 2022. [DOI: 10.1021/acssensors.2c02165] [Reference Citation Analysis]
12 Alhabbab RY. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. Micromachines 2022;13:1901. [DOI: 10.3390/mi13111901] [Reference Citation Analysis]
13 Mei X, Sun M, Zhang Y, Shen J, Li J, Xue C, Chang Y. Establishment of a carbohydrate binding module-based lateral flow immunoassay method for identifying hyaluronic acid. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.122] [Reference Citation Analysis]
14 Torio EA, Ressler VT, Kincaid VA, Hurst R, Hall MP, Encell LP, Zimmerman K, Forsyth SK, Rehrauer WM, Accola MA, Hsu C, Machleidt T, Dart ML. Development of a rapid, simple, and sensitive point-of-care technology platform utilizing ternary NanoLuc. Front Microbiol 2022;13. [DOI: 10.3389/fmicb.2022.970233] [Reference Citation Analysis]
15 Kumar SS, Jamalpure S, Ahmed AN, Taju G, Vimal S, Majeed SA, Suryakodi S, Rahamathulla S, Paknikar KM, Rajwade JM, Hameed ASS. An Indigenous, Field-Deployable, Lateral Flow Immunochromatographic Assay Rapidly Detects Infectious Myonecrosis in Shrimp, Litopenaeus vannamei. Mar Biotechnol (NY) 2022. [PMID: 36242690 DOI: 10.1007/s10126-022-10172-6] [Reference Citation Analysis]
16 Saviñon-flores AI, Saviñon-flores F, Trejo G, Méndez E, Ţălu Ş, González-fuentes MA, Méndez-albores A. A review of cardiac troponin I detection by surface enhanced Raman spectroscopy: Under the spotlight of point-of-care testing. Front Chem 2022;10:1017305. [DOI: 10.3389/fchem.2022.1017305] [Reference Citation Analysis]
17 Lazzarini E, Pace A, Trozzi I, Zangheri M, Guardigli M, Calabria D, Mirasoli M. An Origami Paper-Based Biosensor for Allergen Detection by Chemiluminescence Immunoassay on Magnetic Microbeads. Biosensors (Basel) 2022;12:825. [PMID: 36290961 DOI: 10.3390/bios12100825] [Reference Citation Analysis]
18 Mousivand M, Javan-nikkhah M, Anfossi L, Di Nardo F, Salina M, Bagherzadeh K. High performance aptasensing platform development through in silico aptamer engineering for aflatoxin B1 monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109418] [Reference Citation Analysis]
19 Yin H, Chen C, Katchman B, Newland C, May M, Patel J. Rapid detection of Salmonella enterica in leafy greens by a novel DNA microarray-based PathogenDx system. Food Microbiology 2022;107:104086. [DOI: 10.1016/j.fm.2022.104086] [Reference Citation Analysis]
20 Liang M, Cai X, Gao Y, Yan H, Fu J, Tang X, Zhang Q, Li P. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosensors and Bioelectronics 2022;213:114435. [DOI: 10.1016/j.bios.2022.114435] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Park J. Lateral Flow Immunoassay Reader Technologies for Quantitative Point-of-Care Testing. Sensors 2022;22:7398. [DOI: 10.3390/s22197398] [Reference Citation Analysis]
22 Hu C, Zhang Y, Zhou Y, Xiang YJ, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. J Agric Food Chem 2022. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Reference Citation Analysis]
23 Chatterjee S, Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need”. Journal of Immunoassay and Immunochemistry. [DOI: 10.1080/15321819.2022.2122063] [Reference Citation Analysis]
24 Hendrickson OD, Zvereva EA, Solopova ON, Zherdev AV, Sveshnikov PG, Eremin SA, Dzantiev BB. Double Immunochromatographic Test System for Sensitive Detection of Phycotoxins Domoic Acid and Okadaic Acid in Seawater and Seafood. Micromachines (Basel) 2022;13:1506. [PMID: 36144129 DOI: 10.3390/mi13091506] [Reference Citation Analysis]
25 Cavalera S, Pezzoni G, Grazioli S, Brocchi E, Baselli S, Lelli D, Colitti B, Serra T, Nardo FD, Chiarello M, Testa V, Rosati S, Baggiani C, Anfossi L. Investigation of the “Antigen Hook Effect” in Lateral Flow Sandwich Immunoassay: The Case of Lumpy Skin Disease Virus Detection. Biosensors 2022;12:739. [DOI: 10.3390/bios12090739] [Reference Citation Analysis]
26 Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022. [PMID: 36067039 DOI: 10.1021/acs.chemrev.1c01012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Shyam K, Kim H, Kole S, Oh M, Kim C, Kim D, Kim W. Antibody-based lateral flow chromatographic assays for detecting fish and shrimp pathogens: A technical review. Aquaculture 2022;558:738345. [DOI: 10.1016/j.aquaculture.2022.738345] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wang N, Zhang J, Xiao B, Sun X, Xie R, Chen A. Recent advances in the rapid detection of microRNA with lateral flow assays. Biosensors and Bioelectronics 2022;211:114345. [DOI: 10.1016/j.bios.2022.114345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Jiao X, Peng T, Liang Z, Hu Y, Meng B, Zhao Y, Xie J, Gong X, Jiang Y, Fang X, Yu X, Dai X. Lateral Flow Immunoassay Based on Time-Resolved Fluorescence Microspheres for Rapid and Quantitative Screening CA199 in Human Serum. IJMS 2022;23:9991. [DOI: 10.3390/ijms23179991] [Reference Citation Analysis]
30 Bian L, Li Z, He A, Wu B, Yang H, Wu Y, Hu F, Lin G, Zhang D. Ultrabright nanoparticle-labeled lateral flow immunoassay for detection of anti-SARS-CoV-2 neutralizing antibodies in human serum. Biomaterials 2022;:121694. [PMID: 35977850 DOI: 10.1016/j.biomaterials.2022.121694] [Reference Citation Analysis]
31 Yang M, Zhu W, Truong T, Pickering B, Babiuk S, Kobasa D, Banadyga L. Detection of Nipah and Hendra Viruses Using Recombinant Human Ephrin B2 Capture Virus in Immunoassays. Viruses 2022;14:1657. [DOI: 10.3390/v14081657] [Reference Citation Analysis]
32 M V, Bhatt A, Thekkuveettil A, Ganapathy S, Panniyammakal J, Sivadasanpillai H, Gopi M. To evaluate the feasibility of cadmium/tellurium (Cd/Te) quantum dots for developing N-terminal Natriuretic Peptide (NT-proBNP) in-vitro diagnostics. J Immunoassay Immunochem 2022;:1-10. [PMID: 35880389 DOI: 10.1080/15321819.2022.2103430] [Reference Citation Analysis]
33 Chao M, Xu X, Wu A, Song S, Kuang H, Xu C, Liu L. Gold immunochromatographic strip assay for the detection of triamcinolone acetonide and budesonide in milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;:1-13. [PMID: 35867536 DOI: 10.1080/19440049.2022.2099984] [Reference Citation Analysis]
34 Sayed RH, Abousenna MS, Elsaady SA, Soliman R, Saad MA. Development of Lateral Flow Immunochromatographic Test for Rapid Detection of SARS-CoV-2 Virus Antigens in Clinical Specimens. Nanomaterials 2022;12:2477. [DOI: 10.3390/nano12142477] [Reference Citation Analysis]
35 Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics 2022;12:1744. [DOI: 10.3390/diagnostics12071744] [Reference Citation Analysis]
36 Luckau L, Groves K, Blencowe C, Scrimshaw S, Dent A, Quaglia M. Impact of Bioconjugation on Structure and Function of Antibodies for Use in Immunoassay by Hydrogen-Deuterium Exchange Mass Spectrometry. Front Mol Biosci 2022;9:866843. [DOI: 10.3389/fmolb.2022.866843] [Reference Citation Analysis]
37 Climent E, Wan W, Rurack K. Toward Label‐Free Optical Multiplexing of Analytes in Indicator Release Lateral Flow Assays via Detection Zones Containing Tailored Capture Materials. Analysis & Sensing 2022;2. [DOI: 10.1002/anse.202100062] [Reference Citation Analysis]
38 Hendrickson OD, Zvereva EA, Solopova ON, Varlamov NE, Shemchukova OB, Zherdev AV, Sveshnikov PG, Dzantiev BB. Rapid detection of phycotoxin domoic acid in seawater and seafood based on the developed lateral flow immunoassay. Anal Methods 2022;14:2446-52. [PMID: 35699118 DOI: 10.1039/d2ay00751g] [Reference Citation Analysis]
39 Sotnikov DV, Byzova NA, Zherdev AV, Xu Y, Dzantiev BB. Silent Antibodies Start Talking: Enhanced Lateral Flow Serodiagnosis with Two-Stage Incorporation of Labels into Immune Complexes. Biosensors 2022;12:434. [DOI: 10.3390/bios12070434] [Reference Citation Analysis]
40 Li R, Tian X, Pang J, Li L, Yuan J, Tian Z, Wang Z. Point-of-Care Tests for Rapid Detection of Porcine Epidemic Diarrhea Virus: A Systematic Review and Meta-Analysis. Viruses 2022;14:1355. [DOI: 10.3390/v14071355] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Mirica A, Stan D, Chelcea I, Mihailescu CM, Ofiteru A, Bocancia-mateescu L. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022;10:922772. [DOI: 10.3389/fbioe.2022.922772] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods 2022;11:1691. [PMID: 35741890 DOI: 10.3390/foods11121691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Jiang H, Xu X, Song S, Wu A, Liu L, Kuang H, Xu C. A monoclonal antibody-based colloidal gold immunochromatographic strip for the analysis of novobiocin in beef and chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;39:1053-64. [PMID: 35486679 DOI: 10.1080/19440049.2022.2048089] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022;10:813666. [DOI: 10.3389/fchem.2022.813666] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Jing L, Xie C, Li Q, Yao H, Yang M, Li H, Xia F, Li S. A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine. J Anal Test 2022;6:120-8. [DOI: 10.1007/s41664-022-00228-w] [Reference Citation Analysis]
46 Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022. [PMID: 35561247 DOI: 10.1021/acs.analchem.2c00870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yu B, Cui Y, Mao X, Li Z, Li Z, Shi G. A time-resolved fluorescence lateral flow immunochromatographic assay based on oriented immobilized antibodies for the ultrasensitive detection of C-peptides in human serum. Analytica Chimica Acta 2022;1208:339833. [DOI: 10.1016/j.aca.2022.339833] [Reference Citation Analysis]
48 Li W, Li M, Zhang H, Li C, Xu H, Gong B, Fu J, Guo Z, Peng J, Zhou G, Tian Z, Wang Q. A Novel Immunochromatographic Strip Based on Latex Microspheres for the Rapid Detection of North American-Type Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol 2022;13:882112. [DOI: 10.3389/fmicb.2022.882112] [Reference Citation Analysis]
49 Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. J Anal Chem 2022;77:391-401. [DOI: 10.1134/s1061934822040141] [Reference Citation Analysis]
50 Zhao X, Byrne HJ, O’connor CM, Curtin J, Tian F. Limits of Detection of Mycotoxins by Laminar Flow Strips: A Review. Applied Nano 2022;3:91-101. [DOI: 10.3390/applnano3020006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Natarajan S, Joseph J, França Prazeres DM. Exploring carbohydrate binding module fusions and Fab fragments in a cellulose-based lateral flow immunoassay for detection of cystatin C. Sci Rep 2022;12:5478. [PMID: 35361862 DOI: 10.1038/s41598-022-09454-9] [Reference Citation Analysis]
52 Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022;7:884-92. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
53 Azuma T, Hui YY, Chen OY, Wang YL, Chang HC. Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing. Sci Rep 2022;12:3905. [PMID: 35273286 DOI: 10.1038/s41598-022-07963-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Yao J, Xu X, Liu L, Kuang H, Xu C. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;39:531-41. [PMID: 35104182 DOI: 10.1080/19440049.2021.2020909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Phuakrod A, Kusuwan N, Sripumkhai W, Pattamang P, Wongkamchai S. Semi-Automated Microfluidic Device Combined with a MiniPCR-Duplex Lateral Flow Dipstick for Screening and Visual Species Identification of Lymphatic Filariae. Micromachines (Basel) 2022;13:336. [PMID: 35208460 DOI: 10.3390/mi13020336] [Reference Citation Analysis]
56 Muir RK, Guerra M, Bogyo MM. Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. ACS Chem Biol 2022;17:281-91. [PMID: 35026106 DOI: 10.1021/acschembio.1c00753] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Otoo JA, Schlappi TS. REASSURED Multiplex Diagnostics: A Critical Review and Forecast. Biosensors (Basel) 2022;12:124. [PMID: 35200384 DOI: 10.3390/bios12020124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
58 Saadat S, Pandya H, Dey A, Rawtani D. Food forensics: techniques for authenticity determination of food products. Forensic Science International 2022. [DOI: 10.1016/j.forsciint.2022.111243] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
59 Head T, Cady NC. Monitoring and modulation of the tumor microenvironment for enhanced cancer modeling. Exp Biol Med (Maywood) 2022;:15353702221074293. [PMID: 35088603 DOI: 10.1177/15353702221074293] [Reference Citation Analysis]
60 Kaur M, Eltzov E. Optimizing Effective Parameters to Enhance the Sensitivity of Vertical Flow Assay for Detection of Escherichia coli. Biosensors 2022;12:63. [DOI: 10.3390/bios12020063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Majdinasab M, Badea M, Marty JL. Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals 2022;15:90. [DOI: 10.3390/ph15010090] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
62 Xu X, Lin L, Kuang H, Liu L, Xu L, Xu C. Gold nanoparticle-based lateral flow immunoassay for the rapid detection of flumetralin in orange. Analyst 2022;147:3684-3691. [DOI: 10.1039/d2an00899h] [Reference Citation Analysis]
63 Trevanich S. Techniques for Detection of Microbial Contamination. Microbial Decontamination of Food 2022. [DOI: 10.1007/978-981-19-5114-5_1] [Reference Citation Analysis]
64 Cheng Y, Xie B, Liang Y, Liu X, Chen H, Li J, Lei H, Xiao Z. A monoclonal antibody-based time-resolved fluorescence microsphere lateral flow immunoassay for paclobutrazol detection. Current Research in Food Science 2022;5:1395-1402. [DOI: 10.1016/j.crfs.2022.08.017] [Reference Citation Analysis]
65 Xu N, Zhu Q, Zhu J, Jia J, Wei X, Wang Y. Novel Latex Microsphere Immunochromatographic Assay for Rapid Detection of Cadmium Ion in Asparagus. Foods 2021;11:78. [PMID: 35010203 DOI: 10.3390/foods11010078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
66 Shellaiah M, Sun KW. Diamond-Based Electrodes for Detection of Metal Ions and Anions. Nanomaterials (Basel) 2021;12:64. [PMID: 35010014 DOI: 10.3390/nano12010064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
67 Gao F, Liu C, Yao Y, Lei C, Li S, Yuan L, Song H, Yang Y, Wan J, Yu C. Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosens Bioelectron 2021;199:113892. [PMID: 34933225 DOI: 10.1016/j.bios.2021.113892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
68 Serebrennikova KV, Byzova NA, Zherdev AV, Khlebtsov NG, Khlebtsov BN, Biketov SF, Dzantiev BB. Lateral Flow Immunoassay of SARS-CoV-2 Antigen with SERS-Based Registration: Development and Comparison with Traditional Immunoassays. Biosensors (Basel) 2021;11:510. [PMID: 34940267 DOI: 10.3390/bios11120510] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
69 Mujtaba DF, Mahapatra NR. Lateral Flow Test Interpretation with Residual Networks. 2021 International Conference on Computational Science and Computational Intelligence (CSCI) 2021. [DOI: 10.1109/csci54926.2021.00261] [Reference Citation Analysis]
70 Wu Y, Sun J, Huang X, Lai W, Xiong Y. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 2021;118:658-78. [DOI: 10.1016/j.tifs.2021.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
71 Ahsan H. Monoplex and multiplex immunoassays: approval, advancements, and alternatives. Comp Clin Path 2022;31:333-45. [PMID: 34840549 DOI: 10.1007/s00580-021-03302-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
72 Rahbar M, Zou S, Baharfar M, Liu G. A Customized Microfluidic Paper-Based Platform for Colorimetric Immunosensing: Demonstrated via hCG Assay for Pregnancy Test. Biosensors (Basel) 2021;11:474. [PMID: 34940231 DOI: 10.3390/bios11120474] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
73 Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. Sensors (Basel) 2021;21:7614. [PMID: 34833687 DOI: 10.3390/s21227614] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
74 Bian L, Liang J, Zhao H, Ye K, Li Z, Liu T, Peng J, Wu Y, Lin G. Rapid Monitoring of Vancomycin Concentration in Serum Using Europium (III) Chelate Nanoparticle-Based Lateral Flow Immunoassay. Front Chem 2021;9:763686. [PMID: 34733823 DOI: 10.3389/fchem.2021.763686] [Reference Citation Analysis]
75 Machado I, Goikoetxea G, Alday E, Jiménez T, Arias-Moreno X, Hernandez FJ, Hernandez LI. Ultra-Sensitive and Specific Detection of S. aureus Bacterial Cultures Using an Oligonucleotide Probe Integrated in a Lateral Flow-Based Device. Diagnostics (Basel) 2021;11:2022. [PMID: 34829369 DOI: 10.3390/diagnostics11112022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Sadeghi P, Sohrabi H, Hejazi M, Jahanban-Esfahlan A, Baradaran B, Tohidast M, Majidi MR, Mokhtarzadeh A, Tavangar SM, de la Guardia M. Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021;145:116460. [PMID: 34697511 DOI: 10.1016/j.trac.2021.116460] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
77 Taranova NA, Byzova NA, Pridvorova SM, Zherdev AV, Dzantiev BB. Comparative Assessment of Different Gold Nanoflowers as Labels for Lateral Flow Immunosensors. Sensors (Basel) 2021;21:7098. [PMID: 34770405 DOI: 10.3390/s21217098] [Reference Citation Analysis]
78 von Stockert AR, Luongo A, Langhans M, Brandstetter T, Rühe J, Meckel T, Biesalski M. Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. Sensors (Basel) 2021;21:6348. [PMID: 34640668 DOI: 10.3390/s21196348] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Li Y, Xie H, Wang J, Li X, Xiao Z, Xu Z, Lei H, Shen X. Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods 2021;10:2041. [PMID: 34574151 DOI: 10.3390/foods10092041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]