BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors (Basel) 2019;19:E3850. [PMID: 31489912 DOI: 10.3390/s19183850] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Kamal Eddin FB, Fen YW, Liew JYC, Fauzi NIM, Daniyal WMEMM, Abdullah H. Development of plasmonic-based sensor for highly sensitive and selective detection of dopamine. Optics & Laser Technology 2023;161:109221. [DOI: 10.1016/j.optlastec.2023.109221] [Reference Citation Analysis]
2 Mahdiani M, Rouhani S, Zahedi P. Synthesis, Solvatochromism and Fluorescence Quenching Studies of Naphthalene Diimide Dye by Nanographene Oxide.. [DOI: 10.21203/rs.3.rs-2428740/v1] [Reference Citation Analysis]
3 Cui P, Xue Y. Edge carboxylation-induced charge separation dynamics of graphene quantum dot/cellulose nanocomposites. Carbohydrate Polymers 2023;299:120190. [DOI: 10.1016/j.carbpol.2022.120190] [Reference Citation Analysis]
4 Saud A, Saleem H, Munira N, Shahab AA, Rahman Siddiqui H, Zaidi SJ. Sustainable Preparation of Graphene Quantum Dots for Metal Ion Sensing Application. Nanomaterials (Basel) 2022;13. [PMID: 36616057 DOI: 10.3390/nano13010148] [Reference Citation Analysis]
5 Shellaiah M, Sun K. Review on Anti-Aggregation-Enabled Colorimetric Sensing Applications of Gold and Silver Nanoparticles. Chemosensors 2022;10:536. [DOI: 10.3390/chemosensors10120536] [Reference Citation Analysis]
6 Kurniawan D, Sharma N, Rahardja MR, Cheng Y, Chen Y, Wu G, Yeh Y, Yeh P, Ostrikov KK, Chiang W. Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c15251] [Reference Citation Analysis]
7 Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. Materials 2022;15:7804. [DOI: 10.3390/ma15217804] [Reference Citation Analysis]
8 Kurniawan D, Weng R, Chen Y, Rahardja MR, Nanaricka ZC, Chiang W. Recent Advances in the Graphene Quantum Dot-Based Biological and Environmental Sensors. Sensors and Actuators Reports 2022. [DOI: 10.1016/j.snr.2022.100130] [Reference Citation Analysis]
9 Sadrabadi EA, Khosravi F, Benvidi A, Shiralizadeh Dezfuli A, Khashayar P, Khashayar P, Azimzadeh M. Alprazolam Detection Using an Electrochemical Nanobiosensor Based on AuNUs/Fe-Ni@rGO Nanocomposite. Biosensors 2022;12:945. [DOI: 10.3390/bios12110945] [Reference Citation Analysis]
10 Halicka K, Meloni F, Czok M, Spychalska K, Baluta S, Malecha K, Pilo MI, Cabaj J. New Trends in Fluorescent Nanomaterials-Based Bio/Chemical Sensors for Neurohormones Detection─A Review. ACS Omega. [DOI: 10.1021/acsomega.2c04134] [Reference Citation Analysis]
11 Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry Reviews 2022;466:214611. [DOI: 10.1016/j.ccr.2022.214611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
12 Dorontic S, Bonasera A, Scopelliti M, Markovic O, Bajuk Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanovic S. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. Nanomaterials (Basel) 2022;12:2714. [PMID: 35957147 DOI: 10.3390/nano12152714] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Eddin FBK, Fen YW, Sadrolhosseini AR, Liew JYC, Daniyal ‬MEMM. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics. [DOI: 10.1007/s11468-022-01680-1] [Reference Citation Analysis]
14 Uniyal S, Choudhary K, Sachdev S, Kumar S. Recent Advances in K-SPR Sensors for the Detection of Biomolecules and Microorganisms: A Review. IEEE Sensors J 2022;22:11415-26. [DOI: 10.1109/jsen.2022.3172115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Revesz IA, Hickey SM, Sweetman MJ. Metal ion sensing with graphene quantum dots: detection of harmful contaminants and biorelevant species. J Mater Chem B 2022;10:4346-62. [PMID: 35616384 DOI: 10.1039/d2tb00408a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Fauzi NIM, Fen YW, Abdullah J, Kamarudin MA, Omar NAS, Eddin FBK, Ramdzan NSM, Daniyal WMEMM. Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. Photonics 2022;9:300. [DOI: 10.3390/photonics9050300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
17 Park JH, Cho YW, Kim TH. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors (Basel) 2022;12:180. [PMID: 35323450 DOI: 10.3390/bios12030180] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
18 Rana M, Devlal K. Thioglycolic Acid Capped CdTe Quantum Dots as Sensors for the Detection of Hazardous Heavy Metal Ion Cu2+ in Water. MAPAN 2022;37:41-46. [DOI: 10.1007/s12647-021-00479-5] [Reference Citation Analysis]
19 Veeraselvam A, Mohammed GNA, Savarimuthu K, Vijayaraman PD. An Ultra-Thin Multiband Refractive Index-Based Carcinoma Sensor Using THz Radiation. IEEE Sensors J 2022;22:2045-52. [DOI: 10.1109/jsen.2021.3134663] [Reference Citation Analysis]
20 Eslahi N, Lotfi R, Zandi N, Mazaheri M, Soleimani F, Simchi A. Graphene-based polymer nanocomposites in biomedical applications. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00016-9] [Reference Citation Analysis]
21 Zhou H, Yang C, Liao M, Li M, Diao N, Wu S, Wang J. Exploring the mechanism of CdTe quantum dots as fluorescent probe to detect Hg(II) ion from the perspectives of fluorescence polarization and light scattering. Chemical Physics Letters 2022. [DOI: 10.1016/j.cplett.2022.139415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Adarakatti PS, Sureshkumar K, Ramakrishnappa T. Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. Carbon Nanomaterials-Based Sensors 2022. [DOI: 10.1016/b978-0-323-91174-0.00010-x] [Reference Citation Analysis]
23 Gómez IJ, Sulleiro MV, Dolečková A, Pizúrová N, Medalová J, Bednařík A, Preisler J, Nečas D, Zajíčková L. Structure elucidation of multicolor emissive graphene quantum dots towards cell guidance. Mater Chem Front 2022;6:145-54. [DOI: 10.1039/d1qm01126j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Chen W, Gao J, Tian J, Zhang J. In Situ Femtosecond-Laser-Induced Fluorophores on Surface of Polyvinyl Alcohol for H2O/Co2+ Sensing and Data Security. Sensors (Basel) 2021;21:7755. [PMID: 34833830 DOI: 10.3390/s21227755] [Reference Citation Analysis]
25 Hashim HS, Fen YW, Omar NAS, Fauzi NIM, Daniyal WMEMM. Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement 2021;184:109855. [DOI: 10.1016/j.measurement.2021.109855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 Abdollahiyan P, Hasanzadeh M, Seidi F, Pashazadeh-panahi P. An innovative colorimetric platform for the low-cost and selective identification of Cu(II), Fe(III), and Hg(II) using GQDs-DPA supported amino acids by microfluidic paper-based (µPADs) device: Multicolor plasmonic patterns. Journal of Environmental Chemical Engineering 2021;9:106197. [DOI: 10.1016/j.jece.2021.106197] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
28 Ramdzan NSM, Fen YW, Liew JYC, Omar NAS, Anas NAA, Daniyal WMEMM, Fauzi NIM. Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. Photonics 2021;8:419. [DOI: 10.3390/photonics8100419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ramdzan NSM, Fen YW, Omar NAS, Anas NAA, Liew JYC, Daniyal WMEMM, Hashim HS. Detection of mercury ion using surface plasmon resonance spectroscopy based on nanocrystalline cellulose/poly(3,4-ethylenedioxythiophene) thin film. Measurement 2021;182:109728. [DOI: 10.1016/j.measurement.2021.109728] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
30 Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Mahdi MA. Design and Optimization of Surface Plasmon Resonance Spectroscopy for Optical Constant Characterization and Potential Sensing Application: Theoretical and Experimental Approaches. Photonics 2021;8:361. [DOI: 10.3390/photonics8090361] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
31 Rosddi NNM, Fen YW, Omar NAS, Anas NAA, Hashim HS, Ramdzan NSM, Fauzi NIM, Anuar MF, Daniyal WMEMM. Glucose detection by gold modified carboxyl-functionalized graphene quantum dots-based surface plasmon resonance. Optik 2021;239:166779. [DOI: 10.1016/j.ijleo.2021.166779] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
32 Nazri NAA, Azeman NH, Luo Y, A Bakar AA. Carbon quantum dots for optical sensor applications: A review. Optics & Laser Technology 2021;139:106928. [DOI: 10.1016/j.optlastec.2021.106928] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
33 Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021;96:2392-424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. Sensors (Basel) 2021;21:3856. [PMID: 34204853 DOI: 10.3390/s21113856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
35 Zhang M, Wang K, Zeng S, Xu Y, Nie W, Chen P, Zhou Y. Visible light-induced antibacterial effect of MoS2: Effect of the synthesis methods. Chemical Engineering Journal 2021;411:128517. [DOI: 10.1016/j.cej.2021.128517] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
36 Omar NAS, Fen YW, Ramli I, Azmi UZM, Hashim HS, Abdullah J, Mahdi MA. Cellulose and Vanadium Plasmonic Sensor to Measure Ni2+ Ions. Applied Sciences 2021;11:2963. [DOI: 10.3390/app11072963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Omar NAS, Fen YW, Ramli I, Sadrolhosseini AR, Abdullah J, Yusof NA, Kamil YM, Mahdi MA. An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies. Polymers (Basel) 2021;13:762. [PMID: 33671059 DOI: 10.3390/polym13050762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, Yusof NA. X-ray Photoelectron Spectroscopy Analysis of Chitosan-Graphene Oxide-Based Composite Thin Films for Potential Optical Sensing Applications. Polymers (Basel) 2021;13:478. [PMID: 33540931 DOI: 10.3390/polym13030478] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
39 Huynh TV, Anh NTN, Darmanto W, Doong R. Erbium-doped graphene quantum dots with up- and down-conversion luminescence for effective detection of ferric ions in water and human serum. Sensors and Actuators B: Chemical 2021;328:129056. [DOI: 10.1016/j.snb.2020.129056] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
40 Jegannathan P, Yousefi AT, Kadri NA, Basirun WJ. Sustainable GQDs for potential application in engineering using corn powder as green precursor. Fullerenes, Nanotubes and Carbon Nanostructures 2020;28:919-924. [DOI: 10.1080/1536383x.2020.1785433] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
41 Chiu NF, Wang YH, Chen CY. Clinical Application for Screening Down's Syndrome by Using Carboxylated Graphene Oxide-Based Surface Plasmon Resonance Aptasensors. Int J Nanomedicine 2020;15:8131-49. [PMID: 33144830 DOI: 10.2147/IJN.S270938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
42 Gao D, Wang L, Su X, Pan Y, Li S, Han X, Wang Y. Modulation of fluorescence radiation for ZnCdS/CdSe quantum dots by graphene at room temperature. Applied Surface Science 2020;526:146598. [DOI: 10.1016/j.apsusc.2020.146598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Jovanović S, Dorontić S, Jovanović D, Ciasca G, Budimir M, Bonasera A, Scopelliti M, Marković O, Todorović Marković B. Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. Ceramics International 2020;46:23611-22. [DOI: 10.1016/j.ceramint.2020.06.133] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
44 Rosddi NNM, Fen YW, Anas NAA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals 2020;10:875. [DOI: 10.3390/cryst10100875] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
45 Anas NAA, Fen YW, Yusof NA, Omar NAS, Daniyal WMEMM, Ramdzan NSM. Highly sensitive surface plasmon resonance optical detection of ferric ion using CTAB/hydroxylated graphene quantum dots thin film. Journal of Applied Physics 2020;128:083105. [DOI: 10.1063/5.0018106] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
46 Fauzi NIM, Fen YW, Omar NAS, Saleviter S, Daniyal WMEMM, Hashim HS, Nasrullah M. Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation. Polymers (Basel) 2020;12:E1497. [PMID: 32635555 DOI: 10.3390/polym12071497] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
47 Anas NAA, Fen YW, Yusof NA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Investigating the Properties of Cetyltrimethylammonium Bromide/Hydroxylated Graphene Quantum Dots Thin Film for Potential Optical Detection of Heavy Metal Ions. Materials (Basel) 2020;13:E2591. [PMID: 32517196 DOI: 10.3390/ma13112591] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
48 Hernaez M. Applications of Graphene-Based Materials in Sensors. Sensors (Basel) 2020;20:E3196. [PMID: 32512876 DOI: 10.3390/s20113196] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
49 Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules 2020;25:E2548. [PMID: 32486124 DOI: 10.3390/molecules25112548] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
50 Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. Opt Express 2020;28:9738. [DOI: 10.1364/oe.387027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
51 Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Smart, Tunable CQDs with Antioxidant Properties for Biomedical Applications-Ecofriendly Synthesis and Characterization. Molecules 2020;25:E736. [PMID: 32046279 DOI: 10.3390/molecules25030736] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
52 Facure MHM, Schneider R, Mercante LA, Correa DS. A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environ Sci : Nano 2020;7:3710-34. [DOI: 10.1039/d0en00787k] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
53 Zhao L, Wang Y, Li Y. Antioxidant Activity of Graphene Quantum Dots Prepared in Different Electrolyte Environments. Nanomaterials (Basel) 2019;9:E1708. [PMID: 31795321 DOI: 10.3390/nano9121708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]