BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials (Basel) 2020;10:E1919. [PMID: 32993001 DOI: 10.3390/nano10101919] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Caizer C. Computational Study Regarding CoxFe3-xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. Nanomaterials (Basel) 2021;11:3294. [PMID: 34947642 DOI: 10.3390/nano11123294] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Darwish MSA, Kim H, Bui MP, Le TA, Lee H, Ryu C, Lee JY, Yoon J. The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications. Nanomaterials (Basel) 2021;11:1096. [PMID: 33922608 DOI: 10.3390/nano11051096] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F. Design and Synthesis of Multi-Functional Superparamagnetic Core-Gold Shell Coated with Chitosan and Folate Nanoparticles for Targeted Antitumor Therapy. Nanomaterials (Basel) 2020;11:E32. [PMID: 33374415 DOI: 10.3390/nano11010032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
4 Nemec S, Kralj S, Wilhelm C, Abou-hassan A, Rols M, Kolosnjaj-tabi J. Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles’ Heating Yield. Applied Sciences 2020;10:7322. [DOI: 10.3390/app10207322] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
5 Day NB, Wixson WC, Shields CW 4th. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021;11:2172-96. [PMID: 34522583 DOI: 10.1016/j.apsb.2021.03.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Moacă EA, Watz CG, Socoliuc V, Racoviceanu R, Păcurariu C, Ianoş R, Cîntă-Pînzaru S, Tudoran LB, Nekvapil F, Iurciuc S, Șoica C, Dehelean CA. Biocompatible Magnetic Colloidal Suspension Used as a Tool for Localized Hyperthermia in Human Breast Adenocarcinoma Cells: Physicochemical Analysis and Complex In Vitro Biological Profile. Nanomaterials (Basel) 2021;11:1189. [PMID: 33946316 DOI: 10.3390/nano11051189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Das R, Kim NP, Attanayake SB, Phan M, Srikanth H. Role of Magnetic Anisotropy on the Hyperthermia Efficiency in Spherical Fe3−xCoxO4 (x = 0–1) Nanoparticles. Applied Sciences 2021;11:930. [DOI: 10.3390/app11030930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
8 Fizesan I, Iacovita C, Pop A, Kiss B, Dudric R, Stiufiuc R, Lucaciu CM, Loghin F. The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles. Pharmaceutics 2021;13:2148. [PMID: 34959431 DOI: 10.3390/pharmaceutics13122148] [Reference Citation Analysis]
9 Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. Nanomaterials (Basel) 2021;11:627. [PMID: 33802441 DOI: 10.3390/nano11030627] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
10 Gerosa M, Grande MD, Busato A, Vurro F, Cisterna B, Forlin E, Gherlinzoni F, Morana G, Gottardi M, Matteazzi P, Speghini A, Marzola P. Nanoparticles exhibiting self-regulating temperature as innovative agents for Magnetic Fluid Hyperthermia. Nanotheranostics 2021;5:333-47. [PMID: 33732604 DOI: 10.7150/ntno.55695] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Fatima H, Charinpanitkul T, Kim KS. Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials (Basel) 2021;11:1203. [PMID: 34062851 DOI: 10.3390/nano11051203] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Palzer J, Eckstein L, Slabu I, Reisen O, Neumann UP, Roeth AA. Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies. Nanomaterials (Basel) 2021;11:3013. [PMID: 34835777 DOI: 10.3390/nano11113013] [Reference Citation Analysis]
13 Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J Control Release 2021;335:437-48. [PMID: 34081996 DOI: 10.1016/j.jconrel.2021.05.042] [Reference Citation Analysis]
14 Chen L, Fujisawa N, Takanohashi M, Najmina M, Uto K, Ebara M. A Smart Hyperthermia Nanofiber-Platform-Enabled Sustained Release of Doxorubicin and 17AAG for Synergistic Cancer Therapy. Int J Mol Sci 2021;22:2542. [PMID: 33802613 DOI: 10.3390/ijms22052542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Shahhoseini E, Nakayama M, Piva TJ, Geso M. Differential Effects of Gold Nanoparticles and Ionizing Radiation on Cell Motility between Primary Human Colonic and Melanocytic Cells and Their Cancerous Counterparts. Int J Mol Sci 2021;22:1418. [PMID: 33572551 DOI: 10.3390/ijms22031418] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Palzer J, Mues B, Goerg R, Aberle M, Rensen SS, Olde Damink SWM, Vaes RDW, Cramer T, Schmitz-Rode T, Neumann UP, Slabu I, Roeth AA. Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids. Int J Nanomedicine 2021;16:2965-81. [PMID: 33935496 DOI: 10.2147/IJN.S288379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Salvador M, Gutiérrez G, Noriega S, Moyano A, Blanco-López MC, Matos M. Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications. Int J Mol Sci 2021;22:E427. [PMID: 33406682 DOI: 10.3390/ijms22010427] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Casanova-Carvajal O, Zeinoun M, Urbano-Bojorge AL, Bacha F, Solera Livi J, Agudo E, Vargas G, Ramos M, Martínez-Murillo R, Serrano-Olmedo JJ. The Use of Silica Microparticles to Improve the Efficiency of Optical Hyperthermia (OH). Int J Mol Sci 2021;22:5091. [PMID: 34065020 DOI: 10.3390/ijms22105091] [Reference Citation Analysis]
19 Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021;13:6175. [PMID: 34944794 DOI: 10.3390/cancers13246175] [Reference Citation Analysis]
20 Salimi M, Sarkar S, Hashemi M, Saber R. Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. Nanomaterials (Basel) 2020;10:E2310. [PMID: 33266461 DOI: 10.3390/nano10112310] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
21 Královec K, Melounková L, Slováková M, Mannová N, Sedlák M, Bartáček J, Havelek R. Disruption of Cell Adhesion and Cytoskeletal Networks by Thiol-Functionalized Silica-Coated Iron Oxide Nanoparticles. Int J Mol Sci 2020;21:E9350. [PMID: 33302486 DOI: 10.3390/ijms21249350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Dahaghin A, Emadiyanrazavi S, Salimibani M, Bahreinizad H, Haghpanahi M, Eivazzadeh-keihan R, Maleki A. A numerical investigation into the magnetic nanoparticles hyperthermia cancer treatment injection strategies. Biocybernetics and Biomedical Engineering 2021;41:516-26. [DOI: 10.1016/j.bbe.2021.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Mues B, Bauer B, Roeth AA, Ortega J, Buhl EM, Radon P, Wiekhorst F, Gries T, Schmitz-Rode T, Slabu I. Nanomagnetic Actuation of Hybrid Stents for Hyperthermia Treatment of Hollow Organ Tumors. Nanomaterials (Basel) 2021;11:618. [PMID: 33801426 DOI: 10.3390/nano11030618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Rotjanasuworapong K, Lerdwijitjarud W, Sirivat A. Synthesis and Characterization of Fe0.8Mn0.2Fe2O4 Ferrite Nanoparticle with High Saturation Magnetization via the Surfactant Assisted Co-Precipitation. Nanomaterials 2021;11:876. [DOI: 10.3390/nano11040876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]