BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Omar NAS, Fen YW, Saleviter S, Daniyal WMEMM, Anas NAA, Ramdzan NSM, Roshidi MDA. Development of a Graphene-Based Surface Plasmon Resonance Optical Sensor Chip for Potential Biomedical Application. Materials (Basel) 2019;12:E1928. [PMID: 31207960 DOI: 10.3390/ma12121928] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Z, Liu J, Yin P, Ge Y, Al‐hartomy OA, Al‐ghamdi A, Wageh S, Tang Y, Zhang H. 2D Xenes: Optical and Optoelectronic Properties and Applications in Photonic Devices. Adv Funct Materials. [DOI: 10.1002/adfm.202206507] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Laraba SR, Luo W, Rezzoug A, Zahra QUA, Zhang S, Wu B, Chen W, Xiao L, Yang Y, Wei J, Li Y. Graphene-based composites for biomedical applications. Green Chemistry Letters and Reviews 2022;15:724-748. [DOI: 10.1080/17518253.2022.2128698] [Reference Citation Analysis]
3 Eddin FBK, Fen YW, Sadrolhosseini AR, Liew JYC, Daniyal ‬MEMM. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics. [DOI: 10.1007/s11468-022-01680-1] [Reference Citation Analysis]
4 Eddin FBK, Fen YW, Fauzi NIM, Daniyal WMEMM, Omar NAS, Anuar MF, Hashim HS, Sadrolhosseini AR, Abdullah H. Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. Nanomaterials (Basel) 2022;12:1799. [PMID: 35683655 DOI: 10.3390/nano12111799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Fauzi NIM, Fen YW, Abdullah J, Kamarudin MA, Omar NAS, Eddin FBK, Ramdzan NSM, Daniyal WMEMM. Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. Photonics 2022;9:300. [DOI: 10.3390/photonics9050300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Park JH, Cho YW, Kim TH. Recent Advances in Surface Plasmon Resonance Sensors for Sensitive Optical Detection of Pathogens. Biosensors (Basel) 2022;12:180. [PMID: 35323450 DOI: 10.3390/bios12030180] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
7 Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 2022;197:113767. [PMID: 34768064 DOI: 10.1016/j.bios.2021.113767] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
8 Sharma J, Sharma S, Ajay, Krishan Sharma L. Role of graphene in biomedical applications. Materials Today: Proceedings 2022;63:542-546. [DOI: 10.1016/j.matpr.2022.03.662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xu H, Song Y, Zhu P, Zhao W, Liu T, Wang Q, Zhao T. Alcohol Sensor Based on Surface Plasmon Resonance of ZnO Nanoflowers/Au Structure. Materials (Basel) 2021;15:189. [PMID: 35009335 DOI: 10.3390/ma15010189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
11 Hashim HS, Fen YW, Omar NAS, Fauzi NIM, Daniyal WMEMM. Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement 2021;184:109855. [DOI: 10.1016/j.measurement.2021.109855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
12 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ramdzan NSM, Fen YW, Liew JYC, Omar NAS, Anas NAA, Daniyal WMEMM, Fauzi NIM. Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. Photonics 2021;8:419. [DOI: 10.3390/photonics8100419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Mahdi MA. Design and Optimization of Surface Plasmon Resonance Spectroscopy for Optical Constant Characterization and Potential Sensing Application: Theoretical and Experimental Approaches. Photonics 2021;8:361. [DOI: 10.3390/photonics8090361] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
15 Báez DF, Brito TP, Espinoza LC, Méndez-torres AM, Sierpe R, Sierra-rosales P, Venegas CJ, Yáñez C, Bollo S. Graphene-based sensors for small molecule determination in real samples. Microchemical Journal 2021;167:106303. [DOI: 10.1016/j.microc.2021.106303] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Rosddi NNM, Fen YW, Omar NAS, Anas NAA, Hashim HS, Ramdzan NSM, Fauzi NIM, Anuar MF, Daniyal WMEMM. Glucose detection by gold modified carboxyl-functionalized graphene quantum dots-based surface plasmon resonance. Optik 2021;239:166779. [DOI: 10.1016/j.ijleo.2021.166779] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chang CC. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors (Basel) 2021;11:233. [PMID: 34356703 DOI: 10.3390/bios11070233] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
18 Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. Sensors (Basel) 2021;21:3856. [PMID: 34204853 DOI: 10.3390/s21113856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. Sensors (Basel) 2021;21:3781. [PMID: 34072572 DOI: 10.3390/s21113781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Écija-Arenas Á, Kirchner EM, Hirsch T, Fernández-Romero JM. Development of an aptamer-based SPR-biosensor for the determination of kanamycin residues in foods. Anal Chim Acta 2021;1169:338631. [PMID: 34088369 DOI: 10.1016/j.aca.2021.338631] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
21 Li X, Wang L, Cheng G, Hou X, Yan D, Qiu G, Guo S, Zhou W, Li J. Terahertz spoof surface plasmon sensing based on dielectric metagrating coupling. APL Materials 2021;9:051118. [DOI: 10.1063/5.0048491] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Quintero-rodriguez LJ, Gonzalez-mondragon LA, Warnes-lora JR, Tshibangu-mbuebue B, Zaldivar-huerta IE. Brief review on Surface Plasmon Resonance biosensors development for Biomedical applications. 2021 IEEE Mexican Humanitarian Technology Conference (MHTC) 2021. [DOI: 10.1109/mhtc52069.2021.9419926] [Reference Citation Analysis]
23 Omar NAS, Fen YW, Ramli I, Azmi UZM, Hashim HS, Abdullah J, Mahdi MA. Cellulose and Vanadium Plasmonic Sensor to Measure Ni2+ Ions. Applied Sciences 2021;11:2963. [DOI: 10.3390/app11072963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021;355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
25 Omar NAS, Fen YW, Ramli I, Sadrolhosseini AR, Abdullah J, Yusof NA, Kamil YM, Mahdi MA. An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies. Polymers (Basel) 2021;13:762. [PMID: 33671059 DOI: 10.3390/polym13050762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials (Basel) 2021;11:404. [PMID: 33562559 DOI: 10.3390/nano11020404] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
27 Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, Yusof NA. X-ray Photoelectron Spectroscopy Analysis of Chitosan-Graphene Oxide-Based Composite Thin Films for Potential Optical Sensing Applications. Polymers (Basel) 2021;13:478. [PMID: 33540931 DOI: 10.3390/polym13030478] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
28 Lee S, Song H, Ahn H, Kim S, Choi JR, Kim K. Fiber-Optic Localized Surface Plasmon Resonance Sensors Based on Nanomaterials. Sensors (Basel) 2021;21:819. [PMID: 33530416 DOI: 10.3390/s21030819] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
29 Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens 2020;5:3739-69. [PMID: 33226779 DOI: 10.1021/acssensors.0c01961] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
30 Zhao R, Lu G, Yin H, Liang J, Zeng D, Xiao H, Parise M. Terahertz Sensor Study Based on Spoof Surface Plasmon Polaritons. International Journal of Antennas and Propagation 2020;2020:1-13. [DOI: 10.1155/2020/2504626] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
31 Daniyal WMEMM, Fen YW, Abdullah J, Hashim HS, Fauzi N‘M, Chanlek N, Mahdi MA. X-ray photoelectron study on gold/nanocrystalline cellulose-graphene oxide thin film as surface plasmon resonance active layer for metal ion detection. Thin Solid Films 2020;713:138340. [DOI: 10.1016/j.tsf.2020.138340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
32 El-mahalawy AM, Wassel AR. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: A comparative study. Optics & Laser Technology 2020;131:106395. [DOI: 10.1016/j.optlastec.2020.106395] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
33 Rosddi NNM, Fen YW, Anas NAA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals 2020;10:875. [DOI: 10.3390/cryst10100875] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
34 Junaid M, Khir MHM, Witjaksono G, Tansu N, Saheed MSM, Kumar P, Ullah Z, Yar A, Usman F. Boron-Doped Reduced Graphene Oxide with Tunable Bandgap and Enhanced Surface Plasmon Resonance. Molecules 2020;25:E3646. [PMID: 32796504 DOI: 10.3390/molecules25163646] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
35 Fauzi NIM, Fen YW, Omar NAS, Saleviter S, Daniyal WMEMM, Hashim HS, Nasrullah M. Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation. Polymers (Basel) 2020;12:E1497. [PMID: 32635555 DOI: 10.3390/polym12071497] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
36 Kamal Eddin FB, Fen YW. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020;25:E2769. [PMID: 32549390 DOI: 10.3390/molecules25122769] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
37 Hashim HS, Fen YW, Omar NAS, Daniyal WMEMM, Saleviter S, Abdullah J. Structural, optical and potential sensing properties of tyrosinase immobilized graphene oxide thin film on gold surface. Optik 2020;212:164786. [DOI: 10.1016/j.ijleo.2020.164786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
38 Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S. Development of Biopolymer and Conducting Polymer-Based Optical Sensors for Heavy Metal Ion Detection. Molecules 2020;25:E2548. [PMID: 32486124 DOI: 10.3390/molecules25112548] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
39 Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. Opt Express 2020;28:9738. [DOI: 10.1364/oe.387027] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
40 Omar NAS, Fen YW, Saleviter S, Kamil YM, Daniyal WMEMM, Abdullah J, Mahdi MA. Experimental evaluation on surface plasmon resonance sensor performance based on sensitive hyperbranched polymer nanocomposite thin films. Sensors and Actuators A: Physical 2020;303:111830. [DOI: 10.1016/j.sna.2020.111830] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
41 Khan NI, Song E. Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines (Basel) 2020;11:E220. [PMID: 32093323 DOI: 10.3390/mi11020220] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 15.3] [Reference Citation Analysis]
42 Kamal Eddin FB, Wing Fen Y. Recent Advances in Electrochemical and Optical Sensing of Dopamine. Sensors (Basel) 2020;20:E1039. [PMID: 32075167 DOI: 10.3390/s20041039] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]