BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017;18:E1886. [PMID: 28858227 DOI: 10.3390/ijms18091886] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Abe K, Ueki A, Urakawa Y, Kitago M, Yoshihama T, Nanki Y, Kitagawa Y, Aoki D, Kosaki K, Hirasawa A. Familial pancreatic cancer with PALB2 and NBN pathogenic variants: a case report. Hered Cancer Clin Pract 2021;19:5. [PMID: 33413558 DOI: 10.1186/s13053-020-00160-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Pereira-Veiga T, Martínez-Fernández M, Abuin C, Piñeiro R, Cebey V, Cueva J, Palacios P, Blanco C, Muinelo-Romay L, Abalo A, Costa C, López-López R. CTCs Expression Profiling for Advanced Breast Cancer Monitoring. Cancers (Basel) 2019;11:E1941. [PMID: 31817194 DOI: 10.3390/cancers11121941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
3 Wu J, Dong G, Liu T, Zhang S, Sun L, Liang W. LncRNA SNHG17 promotes tumor progression and predicts poor survival in human renal cell carcinoma via sponging miR-328-3p. Aging (Albany NY) 2021;13:21232-50. [PMID: 34497156 DOI: 10.18632/aging.203440] [Reference Citation Analysis]
4 Karachaliou N, Bracht JWP, Fernandez Bruno M, Drozdowskyj A, Gimenez Capitan A, Moran T, Carcereny E, Cobo M, Domine M, Chaib I, Ramirez JL, Camps C, Provencio M, Vergnenegre A, Lopez-Vivanco G, Majem M, Massuti B, Rosell R. Association of PALB2 Messenger RNA Expression with Platinum-Docetaxel Efficacy in Advanced Non-Small Cell Lung Cancer. J Thorac Oncol 2019;14:304-10. [PMID: 30472259 DOI: 10.1016/j.jtho.2018.10.168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
5 Velázquez C, Esteban-Cardeñosa EM, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Durán M, Infante M. A PALB2 truncating mutation: Implication in cancer prevention and therapy of Hereditary Breast and Ovarian Cancer. Breast 2019;43:91-6. [PMID: 30521987 DOI: 10.1016/j.breast.2018.11.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Abdel-Ghany S, Raslan S, Tombuloglu H, Shamseddin A, Cevik E, Said OA, Madyan EF, Senel M, Bozkurt A, Rehman S, Sabit H. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech 2020;10:407. [PMID: 32904337 DOI: 10.1007/s13205-020-02391-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
7 Schwartzberg LS, Kiedrowski LA. Olaparib in hormone receptor-positive, HER2-negative metastatic breast cancer with a somatic BRCA2 mutation. Ther Adv Med Oncol 2021;13:17588359211006962. [PMID: 33868464 DOI: 10.1177/17588359211006962] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tomasova K, Cumova A, Seborova K, Horak J, Koucka K, Vodickova L, Vaclavikova R, Vodicka P. DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020;12:E1713. [PMID: 32605254 DOI: 10.3390/cancers12071713] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Zyner KG, Mulhearn DS, Adhikari S, Martínez Cuesta S, Di Antonio M, Erard N, Hannon GJ, Tannahill D, Balasubramanian S. Genetic interactions of G-quadruplexes in humans. Elife 2019;8:e46793. [PMID: 31287417 DOI: 10.7554/eLife.46793] [Cited by in Crossref: 42] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
10 Padella A, Fontana MC, Marconi G, Fonzi E, Petracci E, Ferrari A, Baldazzi C, Papayannidis C, Ghelli Luserna Di Rorá A, Testoni N, Castellani G, Haferlach T, Martinelli G, Simonetti G. Loss of PALB2 predicts poor prognosis in acute myeloid leukemia and suggests novel therapeutic strategies targeting the DNA repair pathway. Blood Cancer J 2021;11:7. [PMID: 33414401 DOI: 10.1038/s41408-020-00396-x] [Reference Citation Analysis]
11 Nepomuceno TC, Carvalho MA, Rodrigue A, Simard J, Masson JY, Monteiro ANA. PALB2 Variants: Protein Domains and Cancer Susceptibility. Trends Cancer 2021;7:188-97. [PMID: 33139182 DOI: 10.1016/j.trecan.2020.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kumar HV, Elancheran M, Dhamotharan S, Indrani JC. Novel PALB2 deleterious mutations in breast cancer patients from South Indian population. Gene Reports 2019;17:100492. [DOI: 10.1016/j.genrep.2019.100492] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Carreño M, Pena-Couso L, Mercadillo F, Perea J, Urioste M. Investigation on the Role of PALB2 Gene in CDH1-Negative Patients With Hereditary Diffuse Gastric Cancer. Clin Transl Gastroenterol 2020;11:e00280. [PMID: 33512806 DOI: 10.14309/ctg.0000000000000280] [Reference Citation Analysis]
14 Philley JV, Hertweck KL, Kannan A, Brown-Elliott BA, Wallace RJ Jr, Kurdowska A, Ndetan H, Singh KP, Miller EJ, Griffith DE, Dasgupta S. Sputum Detection of Predisposing Genetic Mutations in Women with Pulmonary Nontuberculous Mycobacterial Disease. Sci Rep 2018;8:11336. [PMID: 30054559 DOI: 10.1038/s41598-018-29471-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Halder R, Shroff RT. What is the role of PARP inhibitors in pancreatic cancer? Expert Rev Anticancer Ther 2020;20:913-8. [PMID: 32865047 DOI: 10.1080/14737140.2020.1816174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Pan W, Lu K, Wang W, Yao J, Hou Y. PALB2 as a potential prognostic biomarker for colorectal cancer. Comput Biol Chem 2020;87:107289. [PMID: 32497983 DOI: 10.1016/j.compbiolchem.2020.107289] [Reference Citation Analysis]
17 Fang CB, Wu HT, Zhang ML, Liu J, Zhang GJ. Fanconi Anemia Pathway: Mechanisms of Breast Cancer Predisposition Development and Potential Therapeutic Targets. Front Cell Dev Biol 2020;8:160. [PMID: 32300589 DOI: 10.3389/fcell.2020.00160] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics 2019;20:370. [PMID: 31266445 DOI: 10.1186/s12859-019-2969-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
19 Sáez GT. DNA Injury and Repair Systems. Int J Mol Sci 2018;19:E1902. [PMID: 29958460 DOI: 10.3390/ijms19071902] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Rajaii F, Aronow ME, Campbell AA, Boahene KDO, Gallia GL, Rodriguez FJ. A Case of Metastatic Giant Cell Tumor of Soft Tissue of the Orbit Associated With PALB2 Variant. JAMA Ophthalmol 2020;138:1322-4. [PMID: 33090178 DOI: 10.1001/jamaophthalmol.2020.4308] [Reference Citation Analysis]
21 Piccinin C, Panchal S, Watkins N, Kim RH. An update on genetic risk assessment and prevention: the role of genetic testing panels in breast cancer. Expert Rev Anticancer Ther 2019;19:787-801. [PMID: 31469018 DOI: 10.1080/14737140.2019.1659730] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018;34:21-43. [PMID: 29731393 DOI: 10.1016/j.ccell.2018.03.022] [Cited by in F6Publishing: 384] [Reference Citation Analysis]
23 Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W Jr, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2019;47:10662-77. [PMID: 31586400 DOI: 10.1093/nar/gkz780] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 19.0] [Reference Citation Analysis]
24 Vizcaino MA, Palsgrove DN, Yuan M, Giannini C, Cabrera-Aldana EE, Pallavajjala A, Burger PC, Rodriguez FJ. Granular cell astrocytoma: an aggressive IDH-wildtype diffuse glioma with molecular genetic features of primary glioblastoma. Brain Pathol 2019;29:193-204. [PMID: 30222900 DOI: 10.1111/bpa.12657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
25 Han J, Yu M, Bai Y, Yu J, Jin F, Li C, Zeng R, Peng J, Li A, Song X, Li H, Wu D, Li L. Elevated CXorf67 Expression in PFA Ependymomas Suppresses DNA Repair and Sensitizes to PARP Inhibitors. Cancer Cell 2020;38:844-856.e7. [PMID: 33186520 DOI: 10.1016/j.ccell.2020.10.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Złowocka-Perłowska E, Dębniak T, Słojewski M, Lemiński A, Soczawa M, van de Wetering T, Trubicka J, Kluźniak W, Wokołorczyk D, Cybulski C, Lubiński J. Recurrent PALB2 mutations and the risk of cancers of bladder or kidney in Polish population. Hered Cancer Clin Pract 2021;19:6. [PMID: 33419454 DOI: 10.1186/s13053-020-00161-y] [Reference Citation Analysis]
27 Guacci A, Cordella A, Rocco T, Giurato G, Nassa G, Rizzo F, Carlomagno C, Pepe S, Tarallo R, Weisz A. Identification of a novel truncating mutation in PALB2 gene by a multigene sequencing panel for mutational screening of breast cancer risk-associated and related genes. J Clin Lab Anal 2018;32:e22418. [PMID: 29484706 DOI: 10.1002/jcla.22418] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Nawar N, Paul A, Mahmood HN, Faisal MI, Hosen MI, Shekhar HU. Structure analysis of deleterious nsSNPs in human PALB2 protein for functional inference. Bioinformation 2021;17:424-38. [PMID: 34092963 DOI: 10.6026/97320630017424] [Reference Citation Analysis]
29 Grundy MK, Buckanovich RJ, Bernstein KA. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer 2020;2:zcaa024. [PMID: 33015624 DOI: 10.1093/narcan/zcaa024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
30 Cortesi L, Piombino C, Toss A. Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors? J Pers Med 2021;11:245. [PMID: 33800556 DOI: 10.3390/jpm11040245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Hu H, Zhu Y, Pu N, Burkhart RA, Burns W, Laheru D, Zheng L, He J, Goggins MG, Yu J. Association of Germline Variants in Human DNA Damage Repair Genes and Response to Adjuvant Chemotherapy in Resected Pancreatic Ductal Adenocarcinoma. J Am Coll Surg 2020;231:527-535.e14. [PMID: 32659497 DOI: 10.1016/j.jamcollsurg.2020.06.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Duran-lozano L, Montalban G, Bonache S, Moles-fernández A, Tenés A, Castroviejo-bermejo M, Carrasco E, López-fernández A, Torres-esquius S, Gadea N, Stjepanovic N, Balmaña J, Gutiérrez-enríquez S, Diez O. Alternative transcript imbalance underlying breast cancer susceptibility in a family carrying PALB2 c.3201+5G>T. Breast Cancer Res Treat 2019;174:543-50. [DOI: 10.1007/s10549-018-05094-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
33 Schwarz B, Friedl AA, Girst S, Dollinger G, Reindl J. Nanoscopic analysis of 53BP1, BRCA1 and Rad51 reveals new insights in temporal progression of DNA-repair and pathway choice. Mutat Res 2019;816-818:111675. [PMID: 31302572 DOI: 10.1016/j.mrfmmm.2019.111675] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
34 da Costa E Silva Carvalho S, Cury NM, Brotto DB, de Araujo LF, Rosa RCA, Texeira LA, Plaça JR, Marques AA, Peronni KC, Ruy PC, Molfetta GA, Moriguti JC, Carraro DM, Palmero EI, Ashton-Prolla P, de Faria Ferraz VE, Silva WA Jr. Germline variants in DNA repair genes associated with hereditary breast and ovarian cancer syndrome: analysis of a 21 gene panel in the Brazilian population. BMC Med Genomics 2020;13:21. [PMID: 32039725 DOI: 10.1186/s12920-019-0652-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
35 Brnich SE, Arteaga EC, Wang Y, Tan X, Berg JS. A Validated Functional Analysis of Partner and Localizer of BRCA2 Missense Variants for Use in Clinical Variant Interpretation. J Mol Diagn 2021;23:847-64. [PMID: 33964450 DOI: 10.1016/j.jmoldx.2021.04.010] [Reference Citation Analysis]
36 Park D, Shakya R, Koivisto C, Pitarresi JR, Szabolcs M, Kladney R, Hadjis A, Mace TA, Ludwig T. Murine models for familial pancreatic cancer: Histopathology, latency and drug sensitivity among cancers of Palb2, Brca1 and Brca2 mutant mouse strains. PLoS One 2019;14:e0226714. [PMID: 31877165 DOI: 10.1371/journal.pone.0226714] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Whelan DR, Rothenberg E. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc Natl Acad Sci U S A 2021;118:e2021963118. [PMID: 33707212 DOI: 10.1073/pnas.2021963118] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Pedro J, Cunha FM, Neto V, Hespanhol V, Martins DF, Guimarães S, Varela A, Carvalho D. Coexistence of DIPNECH and carotid body paraganglioma: is it just a coincidence? Endocrinol Diabetes Metab Case Rep 2020;2020:EDM190141. [PMID: 32408270 DOI: 10.1530/EDM-19-0141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Krushkal J, Negi S, Yee LM, Evans JR, Grkovic T, Palmisano A, Fang J, Sankaran H, McShane LM, Zhao Y, O'Keefe BR. Molecular genomic features associated with in vitro response of the NCI-60 cancer cell line panel to natural products. Mol Oncol 2021;15:381-406. [PMID: 33169510 DOI: 10.1002/1878-0261.12849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Neiger HE, Siegler EL, Shi Y. Breast Cancer Predisposition Genes and Synthetic Lethality. Int J Mol Sci 2021;22:5614. [PMID: 34070674 DOI: 10.3390/ijms22115614] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019;12:38. [PMID: 30975222 DOI: 10.1186/s13045-019-0725-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
42 Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019;88:221-45. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 21.0] [Reference Citation Analysis]