BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bourguignon LYW, Earle C, Shiina M. Activation of Matrix Hyaluronan-Mediated CD44 Signaling, Epigenetic Regulation and Chemoresistance in Head and Neck Cancer Stem Cells. Int J Mol Sci 2017;18:E1849. [PMID: 28837080 DOI: 10.3390/ijms18091849] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Jolly MK, Preca BT, Tripathi SC, Jia D, George JT, Hanash SM, Brabletz T, Stemmler MP, Maurer J, Levine H. Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2018;2:031908. [PMID: 31069317 DOI: 10.1063/1.5024874] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
2 Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020;13:312-25. [PMID: 32840233 DOI: 10.15283/ijsc20097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel) 2019;11:E616. [PMID: 31052565 DOI: 10.3390/cancers11050616] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
4 Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021;12:1455-66. [PMID: 33531990 DOI: 10.7150/jca.51604] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
5 Wang X, Ghareeb WM, Zhang Y, Yu Q, Lu X, Huang Y, Huang S, Sun Y, Chi P. Hypermethylated and downregulated MEIS2 are involved in stemness properties and oxaliplatin‐based chemotherapy resistance of colorectal cancer. J Cell Physiol 2019;234:18180-91. [DOI: 10.1002/jcp.28451] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
6 Wang X, Cheng K, Zhang G, Jia Z, Yu Y, Guo J, Hua Y, Guo F, Li X, Zou W, Sun H, Dong J, Yang Z. Enrichment of CD44 in Exosomes From Breast Cancer Cells Treated With Doxorubicin Promotes Chemoresistance. Front Oncol 2020;10:960. [PMID: 32760666 DOI: 10.3389/fonc.2020.00960] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
7 Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021;9:1245. [PMID: 34572431 DOI: 10.3390/biomedicines9091245] [Reference Citation Analysis]
8 Kou L, Sun R, Xiao S, Zheng Y, Chen Z, Cai A, Zheng H, Yao Q, Ganapathy V, Chen R. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. ACS Appl Mater Interfaces 2019;11:26722-30. [DOI: 10.1021/acsami.9b09784] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
9 Tolg C, Liu M, Cousteils K, Telmer P, Alam K, Ma J, Mendina L, McCarthy JB, Morris VL, Turley EA. Cell-specific expression of the transcriptional regulator RHAMM provides a timing mechanism that controls appropriate wound re-epithelialization. J Biol Chem 2020;295:5427-48. [PMID: 32165498 DOI: 10.1074/jbc.RA119.010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Gielata M, Karpińska K, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry. Sci Rep 2022;12:12673. [PMID: 35879327 DOI: 10.1038/s41598-022-16802-2] [Reference Citation Analysis]
11 Izumikawa T, Itano N. Metabolic Reprogramming and Hyaluronan Production in Cancer Stem Cells. Trends in Glycoscience and Glycotechnology 2018;30:E147-54. [DOI: 10.4052/tigg.1713.1e] [Reference Citation Analysis]
12 Patel S, Patel A, Nair A, Shah K, Shah K, Tanavde V, Rawal R. Salinomycin mediated therapeutic targeting of circulating stem like cell population in oral cancer. J Biomol Struct Dyn 2021;:1-13. [PMID: 34308783 DOI: 10.1080/07391102.2021.1957018] [Reference Citation Analysis]
13 McCarthy JB, El-Ashry D, Turley EA. Hyaluronan, Cancer-Associated Fibroblasts and the Tumor Microenvironment in Malignant Progression. Front Cell Dev Biol 2018;6:48. [PMID: 29868579 DOI: 10.3389/fcell.2018.00048] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 12.8] [Reference Citation Analysis]
14 Su Z, Liu D, Chen L, Zhang J, Ru L, Chen Z, Gao Z, Wang X. CD44-Targeted Magnetic Nanoparticles Kill Head And Neck Squamous Cell Carcinoma Stem Cells In An Alternating Magnetic Field. Int J Nanomedicine 2019;14:7549-60. [PMID: 31571863 DOI: 10.2147/IJN.S215087] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
15 Bourguignon LY, Earle C, Shiina M. Hyaluronan-CD44 interaction promotes HPV 16 E6 oncogene-mediated oropharyngeal cell carcinoma survival and chemoresistance. Matrix Biology 2019;78-79:180-200. [DOI: 10.1016/j.matbio.2018.07.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
16 Skandalis SS, Karalis TT, Chatzopoulos A, Karamanos NK. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 2019;63:109377. [PMID: 31362044 DOI: 10.1016/j.cellsig.2019.109377] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
17 Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019;8:E840. [PMID: 31530793 DOI: 10.3390/cells8080840] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 23.0] [Reference Citation Analysis]
18 Price ZK, Lokman NA, Ricciardelli C. Differing Roles of Hyaluronan Molecular Weight on Cancer Cell Behavior and Chemotherapy Resistance. Cancers (Basel) 2018;10:E482. [PMID: 30513961 DOI: 10.3390/cancers10120482] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
19 D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020;10:1122. [PMID: 32793478 DOI: 10.3389/fonc.2020.01122] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
20 Wei J, Hu M, Huang K, Lin S, Du H. Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020;21:E5983. [PMID: 32825245 DOI: 10.3390/ijms21175983] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
21 Zhou S, Hassan A, Kungyal T, Tabariès S, Luna JLRG, Siegel PM, Philip A. CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers 2022;14:3672. [DOI: 10.3390/cancers14153672] [Reference Citation Analysis]
22 Li J, You S, Zhang S, Hu Q, Wang F, Chi X, Zhao W, Xie C, Zhang C, Yu Y, Liu J, Zhao Y, Liu P, Zhang Y, Wei X, Li Q, Wang X, Yin Z. Elevated N-methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Mol Oncol 2019;13:1993-2009. [PMID: 31294922 DOI: 10.1002/1878-0261.12544] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
23 Toole BP. The CD147-HYALURONAN Axis in Cancer. Anat Rec (Hoboken) 2020;303:1573-83. [PMID: 31090215 DOI: 10.1002/ar.24147] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
24 Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol 2019;35:407-21. [PMID: 30680600 DOI: 10.1007/s10565-019-09461-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
25 Fejza A, Camicia L, Poletto E, Carobolante G, Mongiat M, Andreuzzi E. ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021;13:2759. [PMID: 34199373 DOI: 10.3390/cancers13112759] [Reference Citation Analysis]
26 Su D. Up-regulation of MiR-145-5p promotes the growth and migration in LPS-treated HUVECs through inducing macrophage polarization to M2. J Recept Signal Transduct Res 2021;41:434-41. [PMID: 32998623 DOI: 10.1080/10799893.2020.1818095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Fan FS, Yang CF. Synchronous peritoneal carcinomatosis from a buccal squamous cell carcinoma: a case report focusing on possible metastatic mechanisms and novel therapeutic modalities. Ecancermedicalscience 2019;13:954. [PMID: 31645882 DOI: 10.3332/ecancer.2019.954] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Kolliopoulos C, Chatzopoulos A, Skandalis SS, Heldin CH, Heldin P. TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers (Basel) 2021;13:1021. [PMID: 33804427 DOI: 10.3390/cancers13051021] [Reference Citation Analysis]
29 Chen XL, Hong LL, Wang KL, Liu X, Wang JL, Lei L, Xu ZY, Cheng XD, Ling ZQ. Deregulation of CSMD1 targeted by microRNA-10b drives gastric cancer progression through the NF-κB pathway. Int J Biol Sci 2019;15:2075-86. [PMID: 31592231 DOI: 10.7150/ijbs.23802] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
30 Placencio-Hickok VR, Lauzon M, Moshayedi N, Guan M, Kim S, Nissen N, Lo S, Pandol S, Larson BK, Gong J, Hendifar AE, Osipov A. Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology 2021:S1424-3903(21)00579-2. [PMID: 34657790 DOI: 10.1016/j.pan.2021.09.015] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Bezuidenhout N, Shoshan M. A Shifty Target: Tumor-Initiating Cells and Their Metabolism. Int J Mol Sci 2019;20:E5370. [PMID: 31661927 DOI: 10.3390/ijms20215370] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
32 Xue K, Wang YN, Zhao X, Zhang HX, Yu D, Jin CS. Synergistic effect of meta-tetra(hydroxyphenyl)chlorin-based photodynamic therapy followed by cisplatin on malignant Hep-2 cells. Onco Targets Ther 2019;12:5525-36. [PMID: 31371990 DOI: 10.2147/OTT.S198422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
33 Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022;:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Chokchaitaweesuk C, Kobayashi T, Izumikawa T, Itano N. Enhanced hexosamine metabolism drives metabolic and signaling networks involving hyaluronan production and O-GlcNAcylation to exacerbate breast cancer. Cell Death Dis 2019;10:803. [PMID: 31645543 DOI: 10.1038/s41419-019-2034-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
35 Aseervatham J. Cytoskeletal Remodeling in Cancer. Biology (Basel) 2020;9:E385. [PMID: 33171868 DOI: 10.3390/biology9110385] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
36 Sun Z, Li D, Wu H, Hou B. Tumour stem cell markers CD133 and CD44 are useful prognostic factors after surgical resection of pancreatic neuroendocrine tumours. Oncol Lett 2020;20:341. [PMID: 33123252 DOI: 10.3892/ol.2020.12204] [Reference Citation Analysis]
37 Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, Ganguly K, Lakshmanan I, Cox JL, Mallya K, Kaur S, Batra SK. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer 2020;19:37. [PMID: 32098629 DOI: 10.1186/s12943-020-01156-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
38 Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021;11:1850. [PMID: 34944493 DOI: 10.3390/biom11121850] [Reference Citation Analysis]
39 Moon JH, Rho YS, Lee SH, Koo BS, Lee HJ, Do SI, Cho JH, Eun YG, Park MW, Shin HA, Lim YC. Role of integrin β1 as a biomarker of stemness in head and neck squamous cell carcinoma. Oral Oncology 2019;96:34-41. [DOI: 10.1016/j.oraloncology.2019.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
40 Kashyap T, Pramanik KK, Nath N, Mishra P, Singh AK, Nagini S, Rana A, Mishra R. Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol 2018;86:234-43. [PMID: 30409306 DOI: 10.1016/j.oraloncology.2018.09.028] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
41 Zhang S, Yang Z, Qi F. Aldehyde dehydrogenase-positive melanoma stem cells in tumorigenesis, drug resistance and anti-neoplastic immunotherapy. Mol Biol Rep 2020;47:1435-43. [PMID: 31838656 DOI: 10.1007/s11033-019-05227-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]