BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang Z, Liu D, Chen X, He D, Yu P, Liu B, Wu B, Hu J, Song B. Deep Convolutional Neural Network Based on Computed Tomography Images for the Preoperative Diagnosis of Occult Peritoneal Metastasis in Advanced Gastric Cancer. Front Oncol 2020;10:601869. [PMID: 33224893 DOI: 10.3389/fonc.2020.601869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Kang SH, Min SH, Kim JW, Lee E, Park SW, Lee S, Oh HJ, Park YS, Lee YJ, Kim JW, Ahn SH, Suh YS, Lee KW, Lee HS, Kim HH. Safety and Efficacy of Intraperitoneal Paclitaxel Plus Intravenous Fluorouracil, Leucovorin, and Oxaliplatin (FOLFOX) for Gastric Cancer with Peritoneal Metastasis. Ann Surg Oncol 2022. [PMID: 35322307 DOI: 10.1245/s10434-022-11582-5] [Reference Citation Analysis]
2 Chen Y, Xi W, Yao W, Wang L, Xu Z, Wels M, Yuan F, Yan C, Zhang H. Dual-Energy Computed Tomography-Based Radiomics to Predict Peritoneal Metastasis in Gastric Cancer. Front Oncol 2021;11:659981. [PMID: 34055627 DOI: 10.3389/fonc.2021.659981] [Reference Citation Analysis]
3 Jiang Y, Zhang Z, Yuan Q, Wang W, Wang H, Li T, Huang W, Xie J, Chen C, Sun Z, Yu J, Xu Y, Poultsides GA, Xing L, Zhou Z, Li G, Li R. Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. The Lancet Digital Health 2022;4:e340-50. [DOI: 10.1016/s2589-7500(22)00040-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Klein S, Duda DG. Machine Learning for Future Subtyping of the Tumor Microenvironment of Gastro-Esophageal Adenocarcinomas. Cancers (Basel) 2021;13:4919. [PMID: 34638408 DOI: 10.3390/cancers13194919] [Reference Citation Analysis]
5 Hopkins BS, Murthy NK, Texakalidis P, Karras CL, Mansell M, Jahromi BS, Potts MB, Dahdaleh NS. Mass Deployment of Deep Neural Network: Real-Time Proof of Concept With Screening of Intracranial Hemorrhage Using an Open Data Set. Neurosurgery 2022. [PMID: 35132970 DOI: 10.1227/NEU.0000000000001841] [Reference Citation Analysis]
6 Huang C, Chen W, Liu B, Yu R, Chen X, Tang F, Liu J, Lu W. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging. Front Immunol 2022;13:897959. [DOI: 10.3389/fimmu.2022.897959] [Reference Citation Analysis]
7 Erne F, Dehncke D, Herath SC, Springer F, Pfeifer N, Eggeling R, Küper MA. Deep Learning in the Detection of Rare Fractures - Development of a "Deep Learning Convolutional Network" Model for Detecting Acetabular Fractures. Z Orthop Unfall 2021. [PMID: 34311473 DOI: 10.1055/a-1511-8595] [Reference Citation Analysis]
8 Liu D, Zhang W, Hu F, Yu P, Zhang X, Yin H, Yang L, Fang X, Song B, Wu B, Hu J, Huang Z. A Bounding Box-Based Radiomics Model for Detecting Occult Peritoneal Metastasis in Advanced Gastric Cancer: A Multicenter Study. Front Oncol 2021;11:777760. [PMID: 34926287 DOI: 10.3389/fonc.2021.777760] [Reference Citation Analysis]
9 Huang J, Chen Y, Zhang Y, Xie J, Liang Y, Yuan W, Zhou T, Gao R, Wen R, Xia Y, Long L. Comparison of clinical-computed tomography model with 2D and 3D radiomics models to predict occult peritoneal metastases in advanced gastric cancer. Abdom Radiol (NY) 2022;47:66-75. [PMID: 34636930 DOI: 10.1007/s00261-021-03287-2] [Reference Citation Analysis]