BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu H, Meng X, Chen H, Han X, Fan J, Gao W, Du L, Chen Y, Wang Y, Liu X, Zhang L, Ma G, Yang J. Correlation Between Mammographic Radiomics Features and the Level of Tumor-Infiltrating Lymphocytes in Patients With Triple-Negative Breast Cancer. Front Oncol 2020;10:412. [PMID: 32351879 DOI: 10.3389/fonc.2020.00412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Zhang L, Qi L, Yi X, Li M, Zhou M, Chen D, Xiao Q, Wang C, Pang Y, Xu J, Deng H, Liu L, Guan X. Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms. J Oncol 2021;2021:8615450. [PMID: 34671399 DOI: 10.1155/2021/8615450] [Reference Citation Analysis]
2 Badiu DC, Zgura A, Gales L, Iliescu L, Anghel R, Haineala B. Modulation of Immune System - Strategy in the Treatment of Breast Cancer. In Vivo 2021;35:2889-94. [PMID: 34410983 DOI: 10.21873/invivo.12578] [Reference Citation Analysis]
3 Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol 2021;28:97-115. [PMID: 33937530 DOI: 10.1016/j.ctro.2021.03.006] [Reference Citation Analysis]
4 Chen X, Sheikh K, Nakajima E, Lin CT, Lee J, Hu C, Hales RK, Forde PM, Naidoo J, Voong KR. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021. [PMID: 34251728 DOI: 10.1002/onco.13900] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Yu H, Meng X, Chen H, Liu J, Gao W, Du L, Chen Y, Wang Y, Liu X, Liu B, Fan J, Ma G. Predicting the Level of Tumor-Infiltrating Lymphocytes in Patients With Breast Cancer: Usefulness of Mammographic Radiomics Features. Front Oncol 2021;11:628577. [PMID: 33777776 DOI: 10.3389/fonc.2021.628577] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Wang X, Xie T, Luo J, Zhou Z, Yu X, Guo X. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res 2022;24. [DOI: 10.1186/s13058-022-01516-0] [Reference Citation Analysis]
7 Gertych A, Shiao SL. Why do we need better omics in the breast cancer care? EBioMedicine 2021;72:103598. [PMID: 34563921 DOI: 10.1016/j.ebiom.2021.103598] [Reference Citation Analysis]
8 Cheng X, Xia L, Sun S. A pre-operative MRI-based brain metastasis risk-prediction model for triple-negative breast cancer. Gland Surg 2021;10:2715-23. [PMID: 34733721 DOI: 10.21037/gs-21-537] [Reference Citation Analysis]
9 Wu J, Ding W, Wang Y, Liu S, Zhang X, Yang Q, Cai W, Yu X, Liu F, Kong D, Zhong H, Yu J, Liang P. Radiomics analysis of ultrasound to predict recurrence of hepatocellular carcinoma after microwave ablation. International Journal of Hyperthermia 2022;39:595-604. [DOI: 10.1080/02656736.2022.2062463] [Reference Citation Analysis]