BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Erlendsson S, Teilum K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 2020;7:615565. [PMID: 33521057 DOI: 10.3389/fmolb.2020.615565] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Bila H, Paloja K, Caroprese V, Kononenko A, Bastings MM. Multivalent Pattern Recognition through Control of Nano-Spacing in Low-Valency Super-Selective Materials. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c08529] [Reference Citation Analysis]
2 Spinney RE, Lee L, Morris RG. Geometrical patterning of receptor sites controls kinetics via many-body effects in bivalent systems. Phys Rev Research 2022;4:L042028. [DOI: 10.1103/physrevresearch.4.l042028] [Reference Citation Analysis]
3 Ebrahimi F, Noaparast Z, Abedi SM, Hosseinimehr SJ. Homodimer 99mTc-HYNIC-E(SSSLTVPWY)2 peptide improved HER2-overexpressed tumor targeting and imaging. Med Oncol 2022;39:204. [PMID: 36175805 DOI: 10.1007/s12032-022-01798-6] [Reference Citation Analysis]
4 Dreier JE, Prestel A, Martins JM, Brøndum SS, Nielsen O, Garbers AE, Suga H, Boomsma W, Rogers JM, Hartmann-Petersen R, Kragelund BB. A context-dependent and disordered ubiquitin-binding motif. Cell Mol Life Sci 2022;79:484. [PMID: 35974206 DOI: 10.1007/s00018-022-04486-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Pone EJ, Hernandez-Davies JE, Jan S, Silzel E, Felgner PL, Davies DH. Multimericity Amplifies the Synergy of BCR and TLR4 for B Cell Activation and Antibody Class Switching. Front Immunol 2022;13:882502. [PMID: 35663959 DOI: 10.3389/fimmu.2022.882502] [Reference Citation Analysis]
6 Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022;:4021-8. [PMID: 35485934 DOI: 10.1021/acs.jpclett.2c00621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022;13:856961. [PMID: 35281913 DOI: 10.3389/fphar.2022.856961] [Reference Citation Analysis]
8 Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci 2022;23:2928. [PMID: 35328351 DOI: 10.3390/ijms23062928] [Reference Citation Analysis]
9 Pak AJ, Yu A, Ke Z, Briggs JAG, Voth GA. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core. Nat Commun 2022;13:1002. [PMID: 35194049 DOI: 10.1038/s41467-022-28654-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
10 Gutgsell AR, Gunnarsson A, Forssén P, Gordon E, Fornstedt T, Geschwindner S. Biosensor-Enabled Deconvolution of the Avidity-Induced Affinity Enhancement for the SARS-CoV-2 Spike Protein and ACE2 Interaction. Anal Chem 2021. [PMID: 34964599 DOI: 10.1021/acs.analchem.1c04372] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
11 Hollenstein DM, Licheva M, Konradi N, Schweida D, Mancilla H, Mari M, Reggiori F, Kraft C. Spatial control of avidity regulates initiation and progression of selective autophagy. Nat Commun 2021;12:7194. [PMID: 34893607 DOI: 10.1038/s41467-021-27420-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Dillen A, Mohrbacher A, Lammertyn J. A Versatile One-Step Competitive Fiber Optic Surface Plasmon Resonance Bioassay Enabled by DNA Nanotechnology. ACS Sens 2021;6:3677-84. [PMID: 34633181 DOI: 10.1021/acssensors.1c01447] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Atomistic Simulations and In Silico Mutational Profiling of Protein Stability and Binding in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms. ACS Omega 2021;6:26354-71. [PMID: 34660995 DOI: 10.1021/acsomega.1c03558] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
14 Addonizio CJ, Gates BD, Webber MJ. Supramolecular "Click Chemistry" for Targeting in the Body. Bioconjug Chem 2021;32:1935-46. [PMID: 34415139 DOI: 10.1021/acs.bioconjchem.1c00326] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
15 Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces. Front Microbiol 2021;12:686793. [PMID: 34305846 DOI: 10.3389/fmicb.2021.686793] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
16 Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Atomistic Simulations and Deep Mutational Scanning of Protein Stability and Binding Interactions in the SARS-CoV-2 Spike Protein Complexes with Nanobodies: Molecular Determinants of Mutational Escape Mechanisms.. [DOI: 10.1101/2021.07.07.451538] [Reference Citation Analysis]
17 Teilum K, Olsen JG, Kragelund BB. On the specificity of protein-protein interactions in the context of disorder. Biochem J 2021;478:2035-50. [PMID: 34101805 DOI: 10.1042/BCJ20200828] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]