1
|
Wu B, Yan W, Lu Y, Xiao Y. Diagnostic values of CD27, CD20 and MPO in pediatric ulcerative colitis. Gene 2025; 952:149415. [PMID: 40089083 DOI: 10.1016/j.gene.2025.149415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis (UC), is a chronic inflammatory disorder with a rising incidence in pediatric populations. Immune factors play important roles in the pathogenesis of UC. This study aimed to explore the relationships of intestinal immune molecules CD27, CD20 and myeloperoxidase (MPO) with pediatric UC and their diagnostic values. In this study, gene expression data of 206 new-onset UC children and 20 non-IBD controls obtained from the NCBI Gene Expression Omnibus public database and immunohistochemistry analysis were used to evaluate CD27, CD20 and MPO expression in diseased intestinal tissues of UC children. And the diagnostic potentials of them for UC were analyzed using receiver operating characteristic curve and area under the curve (AUC). We found that CD27, CD20 and MPO mRNA and protein expressions were increased in the diseased intestinal tissues of UC children. CD27, CD20 and MPO showed good diagnostic potential for UC in children, with an AUC of 0.95 for CD27, 0.79 for CD20 and 0.92 for MPO, and combination of them had better diagnostic performance with an AUC of 0.98. Besides, they were associated with immune-related biological processes and pathways, and correlated with genes related to immune factors, intestinal epithelial barrier function, and intestinal fibrosis. In conclusion, our findings demonstrated that CD27, CD20 and MPO were increased in diseased intestinal tissues of UC children, and had good diagnostic performance for UC in children.
Collapse
Affiliation(s)
- Bo Wu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
2
|
Navarro-Ledesma S. Frozen Shoulder as a Metabolic and Immune Disorder: Potential Roles of Leptin Resistance, JAK-STAT Dysregulation, and Fibrosis. J Clin Med 2025; 14:1780. [PMID: 40095902 PMCID: PMC11901274 DOI: 10.3390/jcm14051780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Frozen shoulder (FS) is a complex and multifactorial condition characterized by persistent inflammation, fibrosis, and metabolic dysregulation. Despite extensive research, the underlying drivers of FS remain poorly understood. Recent findings indicate the coexistence of pro-inflammatory and fibrosis-resolving macrophages within affected tissues, suggesting a dysregulated immune response influenced by metabolic and neuroendocrine factors. This review proposes that leptin resistance, a hallmark of metabolic syndrome and chronic inflammation, may play a central role in FS pathogenesis by impairing macrophage polarization, perpetuating inflammation, and disrupting fibrosis resolution. The JAK-STAT signaling pathway, critically modulated by leptin resistance, may further contribute to immune dysregulation by sustaining inflammatory macrophage activation and interfering with tissue remodeling. Additionally, FS shares pathogenic features with fibrotic diseases driven by TGF-β signaling, mitochondrial dysfunction, and circadian disruption, further linking systemic metabolic dysfunction to localized fibrotic pathology. Beyond immune and metabolic regulation, alterations in gut microbiota, bacterial translocation, and chronic psychosocial stress may further exacerbate systemic inflammation and neuroendocrine imbalances, intensifying JAK-STAT dysregulation and leptin resistance. By examining the intricate interplay between metabolism, immune function, and fibrotic remodeling, this review highlights targeting leptin sensitivity, JAK-STAT modulation, and mitochondrial restoration as novel therapeutic strategies for FS treatment. Future research should explore these interconnections to develop integrative interventions that address both the metabolic and immune dysregulation underlying FS, ultimately improving clinical outcomes.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain
| |
Collapse
|
3
|
Li T, Li Q, Liu S, Cao J, Mei J, Gong J, Chen J, Wang X, Zhang R, Li X, Wang Q, Zhang H, Wang B, Cao H, Yang H, Fung SY. Targeted V-type peptide-decorated nanoparticles prevent colitis by inhibiting endosomal TLR signaling and modulating intestinal macrophage polarization. Biomaterials 2025; 314:122843. [PMID: 39321686 DOI: 10.1016/j.biomaterials.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Inflammatory bowel disease (IBD) has become a serious and challenging health problem globally without curative medical treatments. Mounting evidence suggests that intestinal macrophages and their phenotypes are key players in the pathogenesis of IBD. Modulating the phenotypes and functions of intestinal macrophages through targeted interventions could be a promising approach to manage detrimental gut inflammation in IBD. In this study, we rationally design and fabricate a novel class of V-type peptide-decorated nanoparticles, VP-NP, with potent anti-inflammatory activity. Such a design allows two functional motifs FFD in a single peptide molecule to enhance the bioactivity of the nanoparticles. As expected, VP-NP exhibits a strong inhibitory activity on endosomal Toll-like receptor (TLR) signaling. Surprisingly, VP-NP can inhibit M1 polarization while facilitating M2 polarization in mouse bone marrow-derived macrophages through regulating the key transcription factors NF-κB, STAT1 and PPAR-γ. Mechanistically, VP-NP is internalized by macrophages in the endosomes, where it blocks endosomal acidification to inhibit endosomal TLR signaling; the transcriptomic analysis reveals that VP-NP potently down-regulates many genes in TLR, NF-κB, JAK-STAT, and cytokine/chemokine signaling pathways associated with inflammatory responses. In a colitis mouse model, the intraperitoneally administered VP-NP effectively alleviates the disease activities by decreasing colon inflammation and injuries, pro-inflammatory cytokine production, and myeloid cell infiltration in the gut. Furthermore, VP-NP primarily targets intestinal macrophages and alters their phenotypes from inflammatory M1-type toward the anti-inflammatory M2-type. This study provides a new nanotherapeutic strategy to specifically regulate macrophage activation and phenotypes through a dual mechanism to control gut inflammation, which may augment current clinical treatments for IBD.
Collapse
Affiliation(s)
- Tongxuan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Qianqian Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Sixia Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiazhu Cao
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jian Mei
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiameng Gong
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Jiugeng Chen
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Xiaomeng Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Qian Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Hefan Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hong Yang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Intensive Care Unit of the Second Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China.
| | - Shan-Yu Fung
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Science, Department of Gastroenterology and Hepatology, General Hospital, International Joint Laboratory of Ocular Diseases, Ministry of Education, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Wang X, Pan L, Niu D, Zhou J, Shen M, Zeng Z, Gong W, Yang E, Tang Y, Cheng G, Sun C. Jingfang Granules alleviates the lipid peroxidation induced ferroptosis in rheumatoid arthritis rats by regulating gut microbiota and metabolism of short chain fatty acids. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119160. [PMID: 39608616 DOI: 10.1016/j.jep.2024.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, bone and cartilage damage, musculoskeletal pain, swelling, and stiffness. Inflammation is one of the key factors that induce RA. Jingfang Granule (JFG) is a traditional Chinese medicine (TCM) with significant anti-inflammatory effects. Clinical studies have confirmed that JFG can be used to treat RA, but the mechanism is still vague. PURPOSE This study was designed to evaluate the protective function and the mechanism of JFG on rats with RA. STUDY DESIGN AND METHODS Complete Freud's Adjuvant (CFA) was used to establish a rat RA model, and JFG or Diclofenac Sodium (Dic) was orally administered. Foot swelling and hematoxylin eosin (H&E) staining were used to test the therapeutic effect of JFG on RA treatment, while ELISA kits were used to detect serum cytokines. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) were used to evaluate oxidative stress levels. The integration of label-free proteomics, fecal short chain fatty acid (SCFA) targeted metabolomics, peripheral blood SCFA, medium and long chain fatty acid targeted metabolomics, and 16S rDNA sequencing of gut microbiota were used to screen the mechanism. Western blot technology was used to validate the results of multiple omics studies. Serum D-Lactic acid, lipopolysaccharide specific IgA antibody (LPS IgA), diamine oxidase (DAO), and colon Claudin 5 and ZO-1 were used to evaluate the intestinal barrier. RESULTS The results confirmed that JFG effectively protected rats from RA injury, which was confirmed by improved foot swelling and synovial pathology. At the same time, JFG reduced the levels of TNF-α, IL-1β, and IL-6 in serum by inhibiting the NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway in synovial tissue. Multiple omics studies indicated that JFG increased the abundance of gut microbiota and regulated the number of gut bacteria, thereby increased the levels of Acetic acid, Propionic acid, and Butyric acid in the gut and serum of RA rats, which activated AMPK to regulate fatty acid metabolism and fatty acid biosynthesis, thereby inhibited lipid oxidative stress induced ferroptosis to improve tissue damage caused by RA. Meanwhile, JFG improved the intestinal barrier by upregulating the expresses of Claudin 5 and ZO-1, which was confirmed by low concentrations of D-Lactic acid, LPS-SIgA and DAO in serum. CONCLUSIONS This study confirmed that JFG improved the disturbance of fatty acid metabolism by modulating gut microbiota and the production of fecal SCFAs to activate AMPK, and then inhibited ferroptosis caused by lipid oxidative stress in synovium tissue and prevented AR injury. This study proposes for the first time to investigate the mechanism of JFG treatment for RA from the perspective of the "Gut-joint" axis, and provides a promising approach for the treatment of RA.
Collapse
Affiliation(s)
- Xiuwen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Wenqiao Gong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Enhua Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Yunfeng Tang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guoliang Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Chenghong Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| |
Collapse
|
5
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
6
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
7
|
Domínguez-Pino M, Mellado S, Cuesta CM, Grillo-Risco R, García-García F, Pascual M. Metagenomics Reveals Sex-Based Differences in Murine Fecal Microbiota Profiles Induced by Chronic Alcohol Consumption. Int J Mol Sci 2024; 25:12534. [PMID: 39684246 DOI: 10.3390/ijms252312534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic ethanol exposure induces an inflammatory response within the intestinal tract, compromising mucosal and epithelial integrity and leading to dysbiosis of the gut microbiome. However, the specific roles of the gut microbiota in mediating ethanol-induced effects, as well as their interactions with the immune system, remain poorly characterized. This study aimed to evaluate sex-based differences in fecal microbiota profiles induced by chronic alcohol consumption and to assess whether TLR4 is involved in these effects. We analyzed the 16S rRNA gene sequencing of fecal samples from male and female wild-type (WT) and TLR4-knockout (TLR4-KO) mice with and without chronic ethanol exposure over a three-month period. Our findings provide evidence, for the first time, that male mice are more susceptible to the effects of ethanol on the fecal microbiota, since ethanol exposure induced greater alterations in the Gram-negative and -positive bacteria with immunogenic capacity in the WT male mice than in the female mice. We also demonstrate that the absence of immune receptor TLR4 leads to different microbiota in both sexes, showing anti-inflammatory and protective properties for intestinal barrier function and resulting in a phenotype more resistant to ethanol's effects. These findings may open new avenues for understanding the relationship between gut microbiota profiles and inflammation in the digestive system induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Manuel Domínguez-Pino
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Carlos M Cuesta
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Rubén Grillo-Risco
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
8
|
Russo C, Surdo S, Valle MS, Malaguarnera L. The Gut Microbiota Involvement in the Panorama of Muscular Dystrophy Pathogenesis. Int J Mol Sci 2024; 25:11310. [PMID: 39457092 PMCID: PMC11508360 DOI: 10.3390/ijms252011310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Muscular dystrophies (MDs) are genetically heterogeneous diseases characterized by primary skeletal muscle atrophy. The collapse of muscle structure and irreversible degeneration of tissues promote the occurrence of comorbidities, including cardiomyopathy and respiratory failure. Mitochondrial dysfunction leads to inflammation, fibrosis, and adipogenic cellular infiltrates that exacerbate the symptomatology of MD patients. Gastrointestinal disorders and metabolic anomalies are common in MD patients and may be determined by the interaction between the intestine and its microbiota. Therefore, the gut-muscle axis is one of the actors involved in the spread of inflammatory signals to all muscles. In this review, we aim to examine in depth how intestinal dysbiosis can modulate the metabolic state, the immune response, and mitochondrial biogenesis in the course and progression of the most investigated MDs such as Duchenne Muscular Dystrophy (DMD) and Myotonic Dystrophy (MD1), to better identify gut microbiota metabolites working as therapeutic adjuvants to improve symptoms of MD.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
9
|
Ashique S, Mishra N, Garg A, Kumar N, Khan Z, Mohanto S, Chellappan DK, Farid A, Taghizadeh-Hesary F. A Critical Review on the Role of Probiotics in Lung Cancer Biology and Prognosis. Arch Bronconeumol 2024; 60 Suppl 2:S46-S58. [PMID: 38755052 DOI: 10.1016/j.arbres.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, MP 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Khaksari M, Pourali M, Rezaei Talabon S, Gholizadeh Navashenaq J, Bashiri H, Amiresmaili S. Protective effects of 17-β-estradiol on liver injury: The role of TLR4 signaling pathway and inflammatory response. Cytokine 2024; 181:156686. [PMID: 38991382 DOI: 10.1016/j.cyto.2024.156686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Liver injury, a major global health issue, stems from various causes such as alcohol consumption, nonalcoholic steatohepatitis, obesity, diabetes, metabolic syndrome, hepatitis, and certain medications. The liver's unique susceptibility to ischemia and hypoxia, coupled with the critical role of the gut-liver axis in inflammation, underscores the need for effective therapeutic interventions. The study highlights E2's interaction with estrogen receptors (ERs) and its modulation of the Toll-like receptor 4 (TLR4) signaling pathway as key mechanisms in mitigating liver injury. Activation of TLR4 leads to the release of pro-inflammatory cytokines and chemokines, exacerbating liver inflammation and injury. E2 down-regulates TLR4 expression, reduces oxidative stress, and inhibits pro-inflammatory cytokines, thereby protecting the liver. Both classic (ERα and ERβ) and non-classic [G protein-coupled estrogen receptor (GPER)] receptors are influenced by E2. ERα is particularly crucial for liver regeneration, preventing liver failure by promoting hepatocyte proliferation. Furthermore, E2 exerts anti-inflammatory, antioxidant, and anti-apoptotic effects by inhibiting cytokines such as IL-6, IL-1β, TNF-α, and IL-17, and by reducing lipid peroxidation and free radical damage. The article calls for further clinical research to validate these findings and to develop estrogen-based treatments for liver injuries. Overall, the research emphasizes the significant potential of E2 as a therapeutic agent for liver injuries. It advocates for extensive clinical studies to validate E2 hepatoprotective properties and develop effective estrogen-based treatments.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Neuroscince and Endocrinology and Metabolism Research Centers, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Ira
| | | |
Collapse
|
12
|
Liu L, He G, Yu R, Lin B, Lin L, Wei R, Zhu Z, Xu Y. Causal relationships between gut microbiome and obstructive sleep apnea: a bi-directional Mendelian randomization. Front Microbiol 2024; 15:1410624. [PMID: 39309525 PMCID: PMC11414551 DOI: 10.3389/fmicb.2024.1410624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have identified a clinical association between gut microbiota and Obstructive sleep apnea (OSA), but the potential causal relationship between the two has not been determined. Therefore, we aim to utilize Mendelian randomization (MR) to investigate the potential causal effects of gut microbiota on OSA and the impact of OSA on altering the composition of gut microbiota. Methods Bi-directional MR and replicated validation were utilized. Summary-level genetic data of gut microbiota were derived from the MiBioGen consortium and the Dutch Microbiome Project (DMP). Summary statistics of OSA were drawn from FinnGen Consortium and Million Veteran Program (MVP). Inverse-variance-weighted (IVW), weighted median, MR-Egger, Simple Mode, and Weighted Mode methods were used to evaluate the potential causal link between gut microbiota and OSA. Results We identified potential causal associations between 23 gut microbiota and OSA. Among them, genus Eubacterium xylanophilum group (OR = 0.86; p = 0.00013), Bifidobacterium longum (OR = 0.90; p = 0.0090), Parabacteroides merdae (OR = 0.85; p = 0.00016) retained a strong negative association with OSA after the Bonferroni correction. Reverse MR analyses indicated that OSA was associated with 20 gut microbiota, among them, a strong inverse association between OSA and genus Anaerostipes (beta = -0.35; p = 0.00032) was identified after Bonferroni correction. Conclusion Our study implicates the potential bi-directional causal effects of the gut microbiota on OSA, potentially providing new insights into the prevention and treatment of OSA through specific gut microbiota.
Collapse
Affiliation(s)
- Liangfeng Liu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Guanwen He
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rong Yu
- Department of Pediatrics, Jiaocheng District Maternal and Child Health Hospital, Ningde, Fujian, China
| | - Bingbang Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Liangqing Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rifu Wei
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Yangbin Xu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Balasundaram D, Veerasamy V, Sylvia Singarayar M, Neethirajan V, Ananth Devanesan A, Thilagar S. Therapeutic potential of probiotics in gut microbial homeostasis and Rheumatoid arthritis. Int Immunopharmacol 2024; 137:112501. [PMID: 38885604 DOI: 10.1016/j.intimp.2024.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and joint damage. Existing treatment options primarily focus on managing symptoms and slowing disease progression, often with side effects and limitations. The gut microbiome, a vast community of microorganisms present in the gastrointestinal tract, plays a crucial role in health and disease. Recent research suggests a bidirectional relationship between the gut microbiome and RA, highlighting its potential as a therapeutic option. This review focuses on the interaction between the gut microbiome and RA development, by discussing how dysbiosis, an imbalance in gut bacteria, can contribute to RA through multiple mechanisms such as molecular mimicry, leaky gut, and metabolic dysregulation. Probiotics, live microorganisms with health benefits, are emerging as promising tools for managing RA. They can prevent the negative effects of dysbiosis by displacing harmful bacteria, producing anti-inflammatory metabolites like short-chain fatty acids (SCFA), Directly influencing immune cells, and modifying host metabolism. animal and clinical studies demonstrate the potential of probiotics in improving RA symptoms and disease outcomes. However, further research is needed to optimize probiotic strains, dosages, and treatment protocols for personalized and effective management of RA. This review summarizes the current understanding of the gut microbiome and its role in RA and discusses future research directions. In addition to the established role of gut dysbiosis in RA, emerging strategies like fecal microbiota transplantation, prebiotics, and postbiotics offer exciting possibilities. However, individual variations in gut composition necessitate personalized treatment plans. Long-term effects and clear regulations need to be established. Future research focusing on metagenomic analysis, combination therapies, and mechanistic understanding will unlock the full potential of gut microbiome modulation for effective RA management.
Collapse
Affiliation(s)
| | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | | | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
14
|
Luo P, Gao D, Zhang Q. Genetic causal relationship between gut microbiota and basal cell carcinoma: A two-sample mendelian randomization study. Skin Res Technol 2024; 30:e13804. [PMID: 38895789 PMCID: PMC11187847 DOI: 10.1111/srt.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.
Collapse
Affiliation(s)
- Pan Luo
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dejin Gao
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingguo Zhang
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Pedrosa LDF, Fabi JP. Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Crit Rev Food Sci Nutr 2024; 64:6177-6197. [PMID: 36606552 DOI: 10.1080/10408398.2022.2164245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is the third most incident and second most lethal type of cancer worldwide. Lifestyle and dietary patterns are the key factors for higher disease development risk. The dietary fiber intake from fruits and vegetables, mainly formed by food hydrocolloids, can help to lower the incidence of this type of neoplasia. Different food polysaccharides have applications in anti-tumoral therapy, such as coadjuvant to mainstream drugs, carriage-like properties, or direct influence on tumoral cells. Some classes include inulin, β-glucans, pectins, fucoidans, alginates, mucilages, and gums. Therefore, it is fundamental to discuss colorectal cancer mechanisms and the roles played by different polysaccharides in intestinal health. Genetic, environmental, and immunological modulation of mutated pathways regarding colorectal cancer has been explored before. Microbial diversity, byproduct formation (primarily short-chain fatty acids), inflammatory profile control, and tumoral mutated pathways regulation are thoroughly explored mechanisms by which dietary fiber sources influence a healthy gut ambiance.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
16
|
Wang J, Xue H, Yi X, Kim H, Hao Y, Jin LH. InR and Pi3K maintain intestinal homeostasis through STAT/EGFR and Notch signaling in enteroblasts. J Cell Biochem 2024; 125:e30545. [PMID: 38436545 DOI: 10.1002/jcb.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.
Collapse
Affiliation(s)
- Jiewei Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongmei Xue
- Department of Children's Emergency Medicine, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyu Yi
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim ll Sung University, Pyongyang, North Korea
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Valiveti CK, Kumar B, Singh AD, Biradar SK, Ahmad R, Singh AB, Tummala H. Stable Dietary Ora-Curcumin Formulation Protects from Experimental Colitis and Colorectal Cancer. Cells 2024; 13:957. [PMID: 38891089 PMCID: PMC11172195 DOI: 10.3390/cells13110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gut disorder that also elevates the risk of colorectal cancer (CRC). The global incidence and severity of IBD are rising, yet existing therapies often lead to severe side effects. Curcumin offers potent anti-inflammatory and chemotherapeutic properties. However, its clinical translation is hindered by rapid metabolism, as well as poor water solubility and stability, which limits its bioavailability. To address these challenges, we developed OC-S, a water-soluble and colon-targeted curcumin formulation that protects against colitis in mice. The current study advances OC-S as a dietary supplement by establishing its stability and compatibility with various commercial dietary products. Further, OC-S exhibited specific binding to inflamed colon tissue, potentially aiding in targeted drug retention at the inflammation site in colitis with diarrhea symptoms. We further investigated its efficacy in vivo and in vitro using a murine model of colitis and tumoroids from APCmin mice. OC-S significantly reduced colitis severity and pro-inflammatory cytokine expression compared with curcumin, even at very low doses (5 mg/kg/day). It also demonstrated higher anti-proliferative activity in CRC cells and colon cancer tumoroids vs. curcumin. Overall, this study demonstrated that OC-S effectively targets and retains water-soluble curcumin at the inflamed colon sites, while showing promise in addressing both colitis and colorectal cancer, which potentially paves the way for OC-S to advance into clinical development as a dietary product for both IBD and CRC.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (S.K.B.)
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.K.); (A.D.S.); (R.A.)
| | - Anuj D. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.K.); (A.D.S.); (R.A.)
| | - Sham K. Biradar
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (S.K.B.)
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.K.); (A.D.S.); (R.A.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.K.); (A.D.S.); (R.A.)
- Veterans Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (S.K.B.)
| |
Collapse
|
18
|
Li J, Zhang X, Luan F, Duan J, Zou J, Sun J, Shi Y, Guo D, Wang C, Wang X. Therapeutic Potential of Essential Oils Against Ulcerative Colitis: A Review. J Inflamm Res 2024; 17:3527-3549. [PMID: 38836243 PMCID: PMC11149639 DOI: 10.2147/jir.s461466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-sp ecific inflammatory disease of the colorectal mucosa. Researchers have associated UC onset with familial genetics, lifestyle behavior, inflammatory immune factors, intestinal microbiota, and the integrity of the intestinal mucosal barrier. The primary therapeutic interventions for UC consist of pharmacological management to control inflammation and promote mucosal healing and surgical interventions. The available drugs effectively control and decelerate the progression of UC in most patients; nonetheless, their long-term administration can exert adverse effects and influence the therapeutic effect. Plant essential oils (EOs) refer to a group of hydrophobic aromatic volatile substances. EOs have garnered considerable attention in both domestic and international research because of their anti-inflammatory, antibacterial, and antioxidant properties. They include peppermint, peppercorns, rosemary, and lavender, among others. Researchers have investigated the role of EOs in medicine and have elucidated their potential to mitigate the detrimental effects of UC through their anti-inflammatory, antioxidant, antidepressant, and anti-insomnia properties as well as their ability to regulate the intestinal flora. Furthermore, EOs exert minimal toxic adverse effects, further enhancing their appeal for therapeutic applications. However, these speculations are based on theoretical experiments, thereby warranting more clinical studies to confirm their effectiveness and safety. In this article, we aim to provide an overview of the advancements in utilizing natural medicine EOs for UC prevention and treatment. We will explore the potential pathogenesis of UC and examine the role of EOs therapy in basic research, quality stability, and management specification of inadequate EOs for UC treatment. We intend to offer novel insights into the use of EOs in UC prevention and management.
Collapse
Affiliation(s)
- Jinkai Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Fei Luan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiawei Duan
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Changli Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Li Z, He H, Chen M, Ni M, Guo C, Wan Z, Zhou J, Wang Z, Wang Y, Cai H, Li M, Sun H, Xu H. Novel mechanism of Clostridium butyricum alleviated coprophagy prevention-induced intestinal inflammation in rabbit. Int Immunopharmacol 2024; 130:111773. [PMID: 38430808 DOI: 10.1016/j.intimp.2024.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
As bacteria synthesize nutrients primarily in the cecum, coprophagy is indispensable for supplying rabbits with essential nutrients. Recent research has demonstrated its pivotal role in maintaining intestinal microbiota homeostasis and immune regulation in rabbits, although the specific mechanism remains unknown. Here, we used coprophagy prevention (CP) to investigate the effects of coprophagy on the cecum homeostasis and microbiota in New Zealand white rabbits. Furthermore, whether supplementation of Clostridium butyricum (C. butyricum) may alleviate the cecum inflammation and apoptosis caused by CP was also explored. Four groups were randomly assigned: control (Con), sham-coprophagy prevention (SCP), coprophagy prevention (CP), and CP and C. butyricum addition (CPCB). Compared to Con and SCP, CP augmented cecum inflammation and apoptosis, as well as bacterial adhesion to the cecal epithelial mucosa, while decreasing the expression of tight junction proteins (ZO-1, occluding, and claudin-1). The relative abundance of short-chain fatty acids (SCFAs)-producing bacteria was significantly decreased in the CP group. Inversely, there was an increase in the Firmicutes/Bacteroidetes ratio and the relative abundance of Christensenellaceae_R-7_group. Additionally, CP increased the levels of Flagellin, IFN-γ, TNF-a, and IL-1β in cecum contents and promoted the expression of TLR5/MyD88/NF-κB pathway in cecum tissues. However, the CPCB group showed significant improvements in all parameters compared to the CP group. Dietary C. butyricum supplementation significantly increased the production of SCFAs, particularly butyric acid, triggering anti-inflammatory, tissue repairing, and barrier-protective responses. Notably, CPCB effectively mitigated CP-induced apoptosis and inflammation. In summary, CP disrupts the cecum epithelial barrier and induces inflammation in New Zealand white rabbits, but these effects can be alleviated by C. butyricum supplementation. This process appears to be largely associated with the TLR5/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mengke Ni
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Zhiyi Wan
- College of Biological Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Beijing 100193, PR China
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, PR China
| | - Zhitong Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yaling Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - HuiZeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
20
|
Agbalalah T, Bur D, Nwonu EJ, Rowaiye AB. Gut Microbiota: Potential Therapeutic Target for Sickle Cell Disease Pain and Complications. Anemia 2024; 2024:5431000. [PMID: 38533265 PMCID: PMC10965282 DOI: 10.1155/2024/5431000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Aim Sickle cell disease has witnessed a 41.4% surge from 2000 to 2021, significantly affecting morbidity and mortality rates, particularly in children from regions with elevated under-5 mortality rates. Gut microbiota dysbiosis is increasingly recognised in SCD, exacerbating complications, particularly chronic pain, marked by significant alterations of proinflammatory bacteria abundance. This review explores the therapeutic potential of Akkermansia muciniphila and Roseburia spp. in alleviating SCD-related complications, emphasising their roles in maintaining gut barrier integrity, reducing inflammation, and modulating immune responses. Method A literature search up to November 2023 using PubMed, MEDLINE, and Google Scholar databases explored SCD pathophysiology, gut microbiota composition, Akkermansia muciniphila and Roseburia spp. abundance, pain and gut dysbiosis in SCD, and butyrate therapy. Result A. muciniphila and Roseburia spp. supplementation shows promise in alleviating chronic pain by addressing gut dysbiosis, offering new avenues for sustainable SCD management. This approach holds the potential for reducing reliance on reactive treatments and improving overall quality of life. This research underscores the pivotal role of the gut microbiome in SCD, advocating for personalised treatment approaches. Conclusion Further exploration and clinical trials are needed to harness the full potential of these gut bacteria for individuals affected by this challenging condition.
Collapse
Affiliation(s)
- Tarimoboere Agbalalah
- Department of Anatomy, Faculty of Basic Medical Sciences, Baze University, Abuja, Nigeria
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Doofan Bur
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | | | | |
Collapse
|
21
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
22
|
Najjary S, Kros JM, Stricker BH, Ruiter R, Shuai Y, Kraaij R, Van Steen K, van der Spek P, Van Eijck CHJ, Ikram MA, Ahmad S. Association of blood cell-based inflammatory markers with gut microbiota and cancer incidence in the Rotterdam study. Cancer Med 2024; 13:e6860. [PMID: 38366800 PMCID: PMC10904974 DOI: 10.1002/cam4.6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024] Open
Abstract
The immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study. We found a significant association (false discovery rate [FDR] ≤0.05) between lymphocytes and three gut microbial taxa, namely the family Streptococcaceae, genus Streptococcus, and order Lactobacillales. In addition, we identified 95 gut microbial taxa that were associated with inflammatory markers (p < 0.05). Analyzing the cancer data, we observed a significant association between higher systemic immune-inflammation index (SII) levels at baseline (hazard ratio (HR): 1.65 [95% confidence interval (CI); 1.10-2.46, p ≤ 0.05]) and a higher count of lymphocytes (HR: 1.38 [95% CI: 1.15-1.65, p ≤ 0.05]) and granulocytes (HR: 1.69 [95% CI: 1.40-2.03, p ≤ 0.05]) with increased risk of lung cancer after adjusting for age, sex, body mass index (BMI), and study cohort. This association was lost for SII and lymphocytes after additional adjustment for smoking (SII = HR:1.46 [95% CI: 0.96-2.22, p = 0.07] and lymphocytes = HR: 1.19 [95% CI: 0.97-1.46, p = 0.08]). In the stratified analysis, higher count of lymphocyte and granulocytes at baseline were associated with an increased risk of lung cancer in smokers after adjusting for age, sex, BMI, and study cohort (HR: 1.33 [95% CI: 1.09-1.62, p ≤0.05] and HR: 1.57 [95% CI: 1.28-1.92, p ≤0.05], respectively). Our study revealed a positive association between gut microbiota, higher SII levels, and higher lymphocyte and granulocyte counts, with an increased risk of developing lung cancer.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Johan M. Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | - Bruno H. Stricker
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Rikje Ruiter
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Yu Shuai
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Robert Kraaij
- Department of Internal MedicineErasmus University Medical CenterRotterdamthe Netherlands
| | - Kristel Van Steen
- Department of Human Genetics, Laboratory for Systems MedicineCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Peter van der Spek
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno‐Pathology LaboratoryErasmus University Medical CenterRotterdamthe Netherlands
| | | | - M. Arfan Ikram
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| | - Shahzad Ahmad
- Department of EpidemiologyErasmus University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
23
|
Mohamed AA, al-Ramadi BK, Fernandez-Cabezudo MJ. Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions. Int J Mol Sci 2024; 25:1747. [PMID: 38339023 PMCID: PMC10855551 DOI: 10.3390/ijms25031747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.
Collapse
Affiliation(s)
- Alaa A. Mohamed
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
24
|
Tang X, Fang M, Cheng R, Niu J, Huang X, Xu K, Wang G, Sun Y, Liao Z, Zhang Z, Mwangi J, Lu Q, Wang A, Lv L, Liu C, Miao Y, Lai R. Transferrin Is Up-Regulated by Microbes and Acts as a Negative Regulator of Immunity to Induce Intestinal Immunotolerance. RESEARCH (WASHINGTON, D.C.) 2024; 7:0301. [PMID: 38274126 PMCID: PMC10809841 DOI: 10.34133/research.0301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Cross-talks (e.g., host-driven iron withdrawal and microbial iron uptake between host gastrointestinal tract and commensal microbes) regulate immunotolerance and intestinal homeostasis. However, underlying mechanisms that regulate the cross-talks remain poorly understood. Here, we show that bacterial products up-regulate iron-transporter transferrin and transferrin acts as an immunosuppressor by interacting with cluster of differentiation 14 (CD14) to inhibit pattern recognition receptor (PRR) signaling and induce host immunotolerance. Decreased intestinal transferrin is found in germ-free mice and human patients with ulcerative colitis, which are characterized by impaired intestinal immunotolerance. Intestinal transferrin and host immunotolerance are returned to normal when germ-free mice get normal microbial commensalism, suggesting an association between microbial commensalism, transferrin, and host immunotolerance. Mouse colitis models show that transferrin shortage impairs host's tolerogenic responses, while its supplementation promotes immunotolerance. Designed peptide blocking transferrin-CD14 interaction inhibits immunosuppressive effects of transferrin. In monkeys with idiopathic chronic diarrhea, transferrin shows comparable or even better therapeutic effects than hydrocortisone. Our findings reveal that by up-regulating host transferrin to silence PRR signaling, commensal bacteria counteract immune activation induced by themselves to shape host immunity and contribute for intestinal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Tang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- School of Basic Medicine,
Qingdao University, Qingdao 266071, Shandong, China
| | - Mingqian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Ruomei Cheng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Junkun Niu
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Kuanhong Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences,
University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gan Wang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Yang Sun
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Zhiyi Liao
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Zhiye Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
- Kunming College of Life Science,
University of Chinese Academy of Sciences, Kunming 650204, Yunnan, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong, China
| | - Longbao Lv
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Chao Liu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University,
Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and Sino-African Joint Research Center, New Cornerstone Science Institute, Kunming Institute of Zoology,
the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, China
| |
Collapse
|
25
|
Hassan HA, Mohamed Abdelhamid A, Samy W, Osama Mohammed H, Mortada Mahmoud S, Fawzy Abdel Mageed A, Abbas NAT. Ameliorative effects of androstenediol against acetic acid-induced colitis in male wistar rats via inhibiting TLR4-mediated PI3K/Akt and NF-κB pathways through estrogen receptor β activation. Int Immunopharmacol 2024; 127:111414. [PMID: 38141404 DOI: 10.1016/j.intimp.2023.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
5-androstenediol (ADIOL) functions as a selective estrogen receptor β (ERβ) ligand with a protective effect against many diseases. So, we conducted a novel insight into its role in acetic acid (AA)-induced colitis and investigated its effect on TLR4-Mediated PI3K/Akt and NF-κB Pathways and the potential role of ERβ as contributing mechanisms. METHODS Rats were randomized into 5 Groups; Control, Colitis, Colitis + mesalazine (MLZ), Colitis + ADIOL, and Colitis + ADIOL + PHTPP (ER-β antagonist). The colitis was induced through a rectal enema of acetic acid (AA) on the 8th day. At the end of treatment, colons were collected for macroscopic assessment. Tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), nuclear factor kappa b (NF-κB), toll-like receptor (TLR4), and phosphorylated Protein kinase B (pAKT) were measured. Besides, Gene expression of interleukin-1beta (IL-1β), metalloproteases 9 (Mmp9), inositol 3 phosphate kinase (PI3K), Neutrophil gelatinase-associated lipocalin (NGAL), ERβ and NLRP6 were assessed. Histopathological and immunohistochemical studies were also investigated. RESULTS Compared to the untreated AA group, the disease activity index (DAI) and macroscopic assessment indicators significantly decreased with ADIOL injections. Indeed, ADIOL significantly decreased colonic tissue levels of MDA, TLR4, pAKT, and NF-κB immunostainig while increased SOD activity and β catenin immunostainig. ADIOL mitigated the high genetic expressions of IL1β, NGAL, MMP9, and PI3K while increased ERβ and NLRP6 gene expression. Also, the pathological changes detected in AA groups were markedly ameliorated with ADIOL. The specific ERβ antagonist, PHTPP, largely diminished these protective effects of ADIOL. CONCLUSION ADIOL could be beneficial against AA-induced colitis mostly through activating ERβ.
Collapse
Affiliation(s)
- Heba A Hassan
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Pharmacology Department, Faculty of Medicine, Mutah University, Mutah, Al-karak 61710, Jordan.
| | - Amira Mohamed Abdelhamid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Walaa Samy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Heba Osama Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Samar Mortada Mahmoud
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amal Fawzy Abdel Mageed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine -Zagazig University, Zagazig 45519, Egypt.
| | - Noha A T Abbas
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
26
|
Molinaro M, Torrente Y, Villa C, Farini A. Advancing Biomarker Discovery and Therapeutic Targets in Duchenne Muscular Dystrophy: A Comprehensive Review. Int J Mol Sci 2024; 25:631. [PMID: 38203802 PMCID: PMC10778889 DOI: 10.3390/ijms25010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Mounting evidence underscores the intricate interplay between the immune system and skeletal muscles in Duchenne muscular dystrophy (DMD), as well as during regular muscle regeneration. While immune cell infiltration into skeletal muscles stands out as a prominent feature in the disease pathophysiology, a myriad of secondary defects involving metabolic and inflammatory pathways persist, with the key players yet to be fully elucidated. Steroids, currently the sole effective therapy for delaying onset and symptom control, come with adverse side effects, limiting their widespread use. Preliminary evidence spotlighting the distinctive features of T cell profiling in DMD prompts the immuno-characterization of circulating cells. A molecular analysis of their transcriptome and secretome holds the promise of identifying a subpopulation of cells suitable as disease biomarkers. Furthermore, it provides a gateway to unraveling new pathological pathways and pinpointing potential therapeutic targets. Simultaneously, the last decade has witnessed the emergence of novel approaches. The development and equilibrium of both innate and adaptive immune systems are intricately linked to the gut microbiota. Modulating microbiota-derived metabolites could potentially exacerbate muscle damage through immune system activation. Concurrently, genome sequencing has conferred clinical utility for rare disease diagnosis since innovative methodologies have been deployed to interpret the functional consequences of genomic variations. Despite numerous genes falling short as clinical targets for MD, the exploration of Tdark genes holds promise for unearthing novel and uncharted therapeutic insights. In the quest to expedite the translation of fundamental knowledge into clinical applications, the identification of novel biomarkers and disease targets is paramount. This initiative not only advances our understanding but also paves the way for the design of innovative therapeutic strategies, contributing to enhanced care for individuals grappling with these incapacitating diseases.
Collapse
Affiliation(s)
- Monica Molinaro
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy;
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy; (M.M.); (Y.T.)
| |
Collapse
|
27
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
28
|
Morańska K, Englert-Golon M, Durda-Masny M, Sajdak S, Grabowska M, Szwed A. Why Does Your Uterus Become Malignant? The Impact of the Microbiome on Endometrial Carcinogenesis. Life (Basel) 2023; 13:2269. [PMID: 38137870 PMCID: PMC10744771 DOI: 10.3390/life13122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation cycle, pregnancy maintenance, and immune system support. However, bacteria in the uterus could stimulate inflammation, which when chronic results in malignancy. An altered gut microbiota initiates an inflammatory response through microorganism-associated molecular patterns, which leads to intensified steroidogenesis in the ovaries and cancers. Moreover, intestinal bacteria secreting the enzyme β-glucuronidase may increase the level of circulating estrogen and, as a result, be influential in gynecological cancers. Both the uterine and the gut microbiota play a pivotal role in immune modulation, which is why there is a demand for further investigation from both the diagnostic and the therapeutic perspectives.
Collapse
Affiliation(s)
- Katarzyna Morańska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Monika Englert-Golon
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Magdalena Durda-Masny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| | - Stefan Sajdak
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marlena Grabowska
- Department of Gynaecology Obstetrics and Gynaecological Oncology, Division of Gynecological Surgery, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Anita Szwed
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland (A.S.)
| |
Collapse
|
29
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|
30
|
Giambra V, Pagliari D, Rio P, Totti B, Di Nunzio C, Bosi A, Giaroni C, Gasbarrini A, Gambassi G, Cianci R. Gut Microbiota, Inflammatory Bowel Disease, and Cancer: The Role of Guardians of Innate Immunity. Cells 2023; 12:2654. [PMID: 37998389 PMCID: PMC10669933 DOI: 10.3390/cells12222654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by a persistent low-grade inflammation that leads to an increased risk of colorectal cancer (CRC) development. Several factors are implicated in this pathogenetic pathway, such as innate and adaptive immunity, gut microbiota, environment, and xenobiotics. At the gut mucosa level, a complex interplay between the immune system and gut microbiota occurs; a disequilibrium between these two factors leads to an alteration in the gut permeability, called 'leaky gut'. Subsequently, an activation of several inflammatory pathways and an alteration of gut microbiota composition with a proliferation of pro-inflammatory bacteria, known as 'pathobionts', take place, leading to a further increase in inflammation. This narrative review provides an overview on the principal Pattern Recognition Receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), focusing on their recognition mechanisms, signaling pathways, and contributions to immune responses. We also report the genetic polymorphisms of TLRs and dysregulation of NLR signaling pathways that can influence immune regulation and contribute to the development and progression of inflammatory disease and cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Danilo Pagliari
- Medical Officer of the Carabinieri Corps, Health Service of the Carabinieri General Headquarters, 00197 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Beatrice Totti
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Chiara Di Nunzio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.); (B.T.); (C.D.N.)
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, via H Dunant 5, 21100 Varese, Italy; (A.B.); (C.G.)
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (P.R.); (A.G.); (G.G.)
| |
Collapse
|
31
|
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
32
|
Ren F, Jin Q, Jin Q, Qian Y, Ren X, Liu T, Zhan Y. Genetic evidence supporting the causal role of gut microbiota in chronic kidney disease and chronic systemic inflammation in CKD: a bilateral two-sample Mendelian randomization study. Front Immunol 2023; 14:1287698. [PMID: 38022507 PMCID: PMC10652796 DOI: 10.3389/fimmu.2023.1287698] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The association of gut microbiota (GM) and chronic kidney disease (CKD), and the relevancy of GM and chronic systemic inflammation in CKD, were revealed on the basis of researches on gut-kidney axis in previous studies. However, their causal relationships are still unclear. Objective To uncover the causal relationships between GM and CKD, as well as all known GM from eligible statistics and chronic systemic inflammation in CKD, we performed two-sample Mendelian randomization (MR) analysis. Materials and methods We acquired the latest and most comprehensive summary statistics of genome-wide association study (GWAS) from the published materials of GWAS involving GM, CKD, estimated glomerular filtration rate (eGFR), c-reactive protein (CRP) and urine albumin creatine ratio (UACR). Subsequently, two-sample MR analysis using the inverse-variance weighted (IVW) method was used to determine the causality of exposure and outcome. Based on it, additional analysis and sensitivity analysis verified the significant results, and the possibility of reverse causality was also assessed by reverse MR analysis during this study. Results At the locus-wide significance threshold, IVW method and additional analysis suggested that the protective factors for CKD included family Lachnospiraceae (P=0.049), genus Eubacterium eligens group (P=0.002), genus Intestinimonas (P=0.009), genus Streptococcu (P=0.003) and order Desulfovibrionales (P=0.001). Simultaneously, results showed that genus LachnospiraceaeUCG010 (P=0.029) was a risk factor for CKD. Higher abundance of genus Desulfovibrio (P=0.048) was correlated with higher eGFR; higher abundance of genus Parasutterella (P=0.018) was correlated with higher UACR; higher abundance of class Negativicutes (P=0.003), genus Eisenbergiella (P=0.021), order Selenomonadales (P=0.003) were correlated with higher CRP levels; higher abundance of class Mollicutes (0.024), family Prevotellaceae (P=0.030), phylum Tenericutes (P=0.024) were correlated with lower levels of CRP. No significant pleiotropy or heterogeneity was found in the results of sensitivity analysis, and no significant causality was found in reverse MR analysis. Conclusion This study highlighted associations within gut-kidney axis, and the causal relationships between GM and CKD, as well as GM and chronic systemic inflammation in CKD were also revealed. Meanwhile, we expanded specific causal gut microbiota through comprehensive searches. With further studies for causal gut microbiota, they may have the potential to be new biomarkers for targeted prevention of CKD and chronic systemic inflammation in CKD.
Collapse
Affiliation(s)
- Feihong Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiubai Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiyun Qian
- Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xuelei Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Garg S, Sharma N, Bharmjeet, Das A. Unraveling the intricate relationship: Influence of microbiome on the host immune system in carcinogenesis. Cancer Rep (Hoboken) 2023; 6:e1892. [PMID: 37706437 PMCID: PMC10644337 DOI: 10.1002/cnr2.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cancer is an outcome of various disrupted or dysregulated metabolic processes like apoptosis, growth, and self-cell transformation. Human anatomy harbors trillions of microbes, and these microbes actively influence all kinds of human metabolic activities, including the human immune response. The immune system which inherently acts as a sentinel against microbes, curiously tolerates and even maintains a distinct normal microflora in our body. This emphasizes the evolutionarily significant role of microbiota in shaping our adaptive immune system and even potentiating its function in chronic ailments like cancers. Microbes interact with the host immune cells and play a part in cancer progression or regression by modulating immune cells, producing immunosuppressants, virulence factors, and genotoxins. RECENT FINDINGS An expanding plethora of studies suggest and support the evidence of microbiome impacting cancer etiology. Several studies also indicate that the microbiome can supplement various cancer therapies, increasing their efficacy. The present review discusses the relationship between bacterial and viral microbiota with cancer, discussing different carcinogenic mechanisms influenced by prokaryotes with special emphasis on their immunomodulatory axis. It also elucidates the potential of the microbiome in transforming the efficacy of immunotherapeutic treatments. CONCLUSION This review offers a thorough overview of the complex interaction between the human immune system and the microbiome and its impact on the development of cancer. The microbiome affects the immune responses as well as progression of tumor transformation, hence microbiome-based therapies can vastly improve the effectiveness of cancer immunotherapies. Individual variations of the microbiome and its dynamic variability in every individual impacts the immune modulation and cancer progression. Therefore, further research is required to understand these underlying processes in detail, so as to design better microbiome-immune system axis in the treatment of cancer.
Collapse
Affiliation(s)
- Saksham Garg
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Nikita Sharma
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Bharmjeet
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Asmita Das
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| |
Collapse
|
34
|
Vlk AM, Prantner D, Shirey KA, Perkins DJ, Buzza MS, Thumbigere-Math V, Keegan AD, Vogel SN. M2a macrophages facilitate resolution of chemically-induced colitis in TLR4-SNP mice. mBio 2023; 14:e0120823. [PMID: 37768050 PMCID: PMC10653841 DOI: 10.1128/mbio.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, impacts millions of individuals worldwide and severely impairs the quality of life for patients. Dysregulation of innate immune signaling pathways reduces barrier function and exacerbates disease progression. Macrophage (Mφ) signaling pathways are potential targets for IBD therapies. While multiple treatments are available for IBD, (i) not all patients respond, (ii) responses may diminish over time, and (iii) treatments often have undesirable side effects. Genetic studies have shown that the inheritance of two co-segregating SNPs expressed in the innate immune receptor, TLR4, is associated with human IBD. Mice expressing homologous SNPs ("TLR4-SNP" mice) exhibited more severe colitis than WT mice in a DSS-induced colonic inflammation/repair model. We identified a critical role for M2a "tissue repair" Mφ in the resolution of colitis. Our findings provide insight into potential development of novel therapies targeting Mφ signaling pathways that aim to alleviate the debilitating symptoms experienced by individuals with IBD.
Collapse
Affiliation(s)
- Alexandra M. Vlk
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Marguerite S. Buzza
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vivek Thumbigere-Math
- Division of Periodontics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Achsah D. Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Hu Y, He Z, Zhang J, Zhang C, Wang Y, Zhang W, Zhang F, Zhang W, Gu F, Hu W. Effect of Piper nigrum essential oil in dextran sulfate sodium (DSS)-induced colitis and its potential mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155024. [PMID: 37597364 DOI: 10.1016/j.phymed.2023.155024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Piper nigrum essential oil (PnEO) possesses pleasant aroma, unique flavor, and various bioactivities; however, its role against colitis remains unclear. PURPOSE In this study, we investigated the role of PnEO in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS Initially, we identified and quantified the components of PnEO by gas chromatography-mass spectrometry (GC-MS). Subsequently, we investigated the protective role of PnEO (50 and 200 mg/kg) in DSS-induced colitis in mice by evaluating disease activity index (DAI) scores and colon length, and performing histological analyses. Eyeball blood was collected and cytokines were determined using ELISA kits. The anti-inflammatory mechanisms of PnEO were analyzed by western blot (WB) and immunohistochemistry (IHC). The intestinal barrier function was evaluated according to tight junction (TJ) protein mRNA levels. We used 16S rRNA gene sequencing to analyze the intestinal microflora of mouse cecal contents. RESULTS Supplementation with PnEO (50 and 200 mg/kg) increased colon length and improved colon histopathology. PnEO regulated inflammatory responses by downregulating TLR4/MAPKs activation, thereby reducing the release of cytokines and mediators. Moreover, it also protected the intestinal barrier through enhancing the expression of claudin-1, claudin-3, occludin, ZO-1, and mucin 2. 16S rRNA gene sequencing revealed that PnEO (200 mg/kg) decreased the abundance of Akkermansia in the gut microbiome. CONCLUSION PnEO treatment (50 and 200 mg/kg) relieved DSS-induced colitis by inhibiting TLR4/MAPK pathway and protecting intestinal barrier, and high-dose PnEO exhibited better effects. Moreover, PnEO (200 mg/kg) regulated key compositions of the gut microbiome, which indicated that it had therapeutic potential for sustaining gut health to lower the risk of colitis.
Collapse
Affiliation(s)
- Yeye Hu
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China; Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ziliang He
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ji Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chaohua Zhang
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China
| | - Yanting Wang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Weiming Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Fenglin Gu
- Spice and Beverage Research Institute, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 572025, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
36
|
De Ciucis CG, Fruscione F, De Paolis L, Mecocci S, Zinellu S, Guardone L, Franzoni G, Cappelli K, Razzuoli E. Toll-like Receptors and Cytokine Modulation by Goat Milk Extracellular Vesicles in a Model of Intestinal Inflammation. Int J Mol Sci 2023; 24:11096. [PMID: 37446274 DOI: 10.3390/ijms241311096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.
Collapse
Affiliation(s)
- Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
37
|
Potes D, Benavides ID, Rivera-Franco N, Portilla CA, Ramirez O, Castillo A, López-Medina E. Effect of Antibiotics and Gut Microbiota on the Development of Sepsis in Children with Hematopoietic Stem Cell Transplants. J PEDIAT INF DIS-GER 2023; 18:186-192. [DOI: 10.1055/s-0043-57249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Objective To describe the association between antibiotic use, gut microbiota composition, and the development of sepsis in pediatric patients undergoing hematopoietic stem cell transplantation (HSCT) to treat acute lymphoblastic leukemia.
Methods A cohort of pediatric patients was followed up between days −30 (pre-HSCT) and +30 (post-HSCT), and sequential stool samples were collected for analysis of the taxonomic composition of bacterial communities by comparing the sequences of the 16s ribosomal RNA gene. Clinically, patients were divided into those with or without sepsis according to their clinical and laboratory data. Gut microbiota was categorized as potentially pathogenic or commensal and was described according to antibiotic use in patients with and without sepsis.
Results A cohort of eight patients provided 34 stool samples at different time points during their pre- and post-HSCT periods. There was a greater diversity in the microbial composition in patients who did not develop sepsis. In contrast, patients who developed sepsis had low microbiota diversity, a slight dominance of the genus Bacteroides and order Enterobacterales, and a low abundance of the genus Akkermansia. The use of antibiotics was associated with a low relative abundance of commensal bacteria, a high relative abundance of potentially pathogenic microbiota, and a risk of sepsis.
Conclusion Our results suggest that gut microbiota sequencing in pediatric HSCT recipients could predict the clinical course and guide direct interventions to improve patient outcomes. Accordingly, short-spectrum, tailored antibiotic therapy could be provided to patients with fever pre- and post-HSCT to prevent dysbiosis and reduce the risk of sepsis.
Collapse
Affiliation(s)
- Daniela Potes
- TAO-Lab/CiBioFi Laboratory, Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali, Colombia
| | - Iván Darío Benavides
- Department of Pediatrics, Universidad del Valle, Cali, Colombia
- Bone Marrow Transplant Unit, Clínica Imbanaco Grupo Quironsalud, Cali, Colombia
| | - Nelson Rivera-Franco
- TAO-Lab/CiBioFi Laboratory, Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali, Colombia
| | - Carlos A. Portilla
- Department of Pediatrics, Universidad del Valle, Cali, Colombia
- Bone Marrow Transplant Unit, Clínica Imbanaco Grupo Quironsalud, Cali, Colombia
- Fundación POHEMA, Cali, Colombia
| | - Oscar Ramirez
- Bone Marrow Transplant Unit, Clínica Imbanaco Grupo Quironsalud, Cali, Colombia
- Fundación POHEMA, Cali, Colombia
| | - Andrés Castillo
- TAO-Lab/CiBioFi Laboratory, Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali, Colombia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Eduardo López-Medina
- Department of Pediatrics, Universidad del Valle, Cali, Colombia
- Bone Marrow Transplant Unit, Clínica Imbanaco Grupo Quironsalud, Cali, Colombia
- Centro de Estudios en Infectología Pediátrica, Cali, Colombia
| |
Collapse
|
38
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
39
|
Tripathy A, Swain N, Padhan P, Raghav SK, Gupta B. Lactobacillus rhamnosus reduces CD8 +T cell mediated inflammation in patients with rheumatoid arthritis. Immunobiology 2023; 228:152415. [PMID: 37356231 DOI: 10.1016/j.imbio.2023.152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND The T cells, components of adaptive immunity participate in immune pathology of the autoimmune inflammatory disorder called rheumatoid arthritis (RA). The presence of TLRs on the surface of the CD8+ T cells and their ability to recognize bacterial moieties adds to the inflammatory burden in case of RA. It has been reported that the gut microbiome is necessary for the crucial shift in the balance between proinflammatory and anti-inflammatory cytokines. The altered gut microbiome and the presence of TLRs emphasizes on the microbiome driven inflammatory responses in case of RA. METHODS Eighty-nine RA patients participated in this study. Clinical variations like disease duration, number of actively inflamed joints, number and type of bone deformities, CRP, RF, Anti-CCP, ESR, DAS 28 score were recorded for each patient. Co-culture of CD8+T cells and bacteria has been performed with proper culture condition. TLRs and inflammatory mediators' expression level were checked by both qPCR and flow cytometry analysis. RESULTS We observed in the suppression of pro-inflammatory molecules like Granzyme B and IFNƳ and expression of TLR2 in CD8 + T cells upon treatment with Lactobacillus rhamnosus (L. rhamnosus). Moreover, L. rhamnosus activated CD8+T cells such that they could induce FOXP3 expression in CD4+T cells thereby skewing T cell population towards a regulatory phenotype. On the contrary, TLR4 engagement on CD8+T cell by Escherichia coli (E.coli) increased in inflammatory responses following ERK activation. CONCLUSIONS Thus, we conclude that L. rhamnosus can effectively suppress CD8+T cell mediated inflammation by a simultaneous decrease of Th1 cells that may potentiate better treatment modalities for RA.
Collapse
Affiliation(s)
- Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sunil K Raghav
- Immuno-Genomics and Systems Biology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
40
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
41
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
42
|
Pinjari OF, Jones GH, Vecera CM, Smith K, Barrera A, Machado-Vieira R. The Role of the Gut Microbiome in Bipolar Disorder and its Common Comorbidities. Front Neuroendocrinol 2023:101078. [PMID: 37220806 DOI: 10.1016/j.yfrne.2023.101078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with significant psychosocial and medical disease burden. Much difficulty has been encountered in developing novel therapeutics and objective biomarkers for clinical use in this population. In that regard, gut-microbial homeostasis appears to modulate several key pathways relevant to a variety of psychiatric, metabolic, and inflammatory disorders. Microbial impact on immune, endocrine, endocannabinoid, kynurenine, and other pathways are discussed throughout this review. Emphasis is placed on this system's relevance to current pharmacology, diet, and comorbid illness in bipolar disorder. Despite the high level of optimism promoted in many reviews on this topic, substantial obstacles exist before any microbiome-related findings can provide meaningful clinical utility. Beyond a comprehensive overview of pathophysiology, this review hopes to highlight several key areas where progress is needed. As well, novel microbiome-associated suggestions are presented for future research.
Collapse
Affiliation(s)
- Omar F Pinjari
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| | - Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Kacy Smith
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Anita Barrera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth).
| | - Rodrigo Machado-Vieira
- Wayne Scott (J-IV) Unit of Correctional Managed Care, University of Texas Medical Branch.
| |
Collapse
|
43
|
Wang Y, Ren K, Tan J, Mao Y. Alginate oligosaccharide alleviates aging-related intestinal mucosal barrier dysfunction by blocking FGF1-mediated TLR4/NF-κB p65 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154806. [PMID: 37236046 DOI: 10.1016/j.phymed.2023.154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Keyu Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Junying Tan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266000, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
44
|
Luo M, Cai J, Luo S, Hong X, Xu L, Lin H, Chen X, Fu W. Causal effects of gut microbiota on the risk of chronic kidney disease: a Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1142140. [PMID: 37065213 PMCID: PMC10102584 DOI: 10.3389/fcimb.2023.1142140] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundPrevious studies have reported that gut microbiota is associated with an increased risk of chronic kidney disease (CKD) progression. However, whether gut microbiota has a causal effect on the development of CKD has not been revealed. Thus, we aimed to analyze the potential causal effect of gut microbiota on the risk of CKD using mendelian randomization (MR) study.Materials and MethodsIndependent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa (N = 18340) were identified as instrumental variables. Two-sample MR was performed to evaluate the causal effect of gut microbiota on CKD (N = 480698), including inverse-variance-weighted (IVW) method, weighted median method, MR-Egger, mode-based estimation and MR-PRESSO. The robustness of the estimation was tested by a series of sensitivity analyses including Cochran’s Q test, MR-Egger intercept analysis, leave-one-out analysis and funnel plot. Statistical powers were also calculated.ResultsThe genetically predicted higher abundance of order Desulfovibrionales was causally associated with an increased risk of CKD (odds ratio = 1.15, 95% confidence interval: 1.05-1.26; p = 0.0026). Besides, we also detected potential causalities between nine other taxa (Eubacterium eligens group, Desulfovibrionaceae, Ruminococcaceae UCG-002, Deltaproteobacteria, Lachnospiraceae UCG-010, Senegalimassilia, Peptostreptococcaceae, Alcaligenaceae and Ruminococcus torques group) and CKD (p < 0.05). No heterogeneity or pleiotropy was detected for significant estimates.ConclusionWe found that Desulfovibrionales and nine other taxa are associated with CKD, thus confirming that gut microbiota plays an important role in the pathogenesis of CKD. Our work also provides new potential indicators and targets for screening and prevention of CKD.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Cai
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shulu Luo
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaosi Hong
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingxin Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honghong Lin
- Department of Pediatric Orthopedics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Xiong Chen
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- *Correspondence: Xiong Chen, ; Wen Fu,
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
- *Correspondence: Xiong Chen, ; Wen Fu,
| |
Collapse
|
45
|
Tunç U, Çelebi AC, Ekren BY, Yıldırım Y, Kepez Yıldız B, Okullu SÖ, Sezerman OU. Corneal bacterial microbiome in patients with keratoconus using next-generation sequencing-based 16S rRNA gene analysis. Exp Eye Res 2023; 228:109402. [PMID: 36736649 DOI: 10.1016/j.exer.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the corneal bacterial microbiome in patients with keratoconus using next-generation sequencing and develop a new perspective on the pathogenesis of the disease. METHODS This prospective observational study included 10 patients with keratoconus who underwent corneal crosslinking procedure and 10 healthy controls who underwent photorefractive keratectomy. Patients included in the study were aged 18 years or older. The demographic and clinical characteristics of participants were recorded. Corneal epithelial samples were collected between March 2021 and June 2021. Isolated bacterial DNA from corneal epithelial samples was analyzed using 16 S ribosomal RNA gene analysis. The relative abundance rates at the phylum and genus levels were calculated. Alpha diversity parameters were assessed. RESULTS Eleven phyla and 521 genera of bacteria were identified in all participants. At the phylum level, Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were most abundant in both groups. There were no statistical differences between the two groups except Bacteriodetes (p < 0.05). At the genus level, the relative abundance rates of twenty bacteria were significantly different between keratoconus and healthy corneas (p < 0.05). Aquabacterium was the most abundant genus in patients with keratoconus, while Shigella was the most abundant genus in healthy controls. Alpha diversity parameters were lower in patients with keratoconus, although the difference did not reach statistical significance (p > 0.05). CONCLUSIONS Our preliminary study revealed that there are similarities and differences in the corneal microbiome between keratoconus and healthy individuals. Further research is required on the relationship between the abnormal corneal microbiome composition and the pathogenesis of keratoconus.
Collapse
Affiliation(s)
- Uğur Tunç
- Department of Ophthalmology, Eyupsultan State Hospital, Istanbul, Turkey; Beyoglu Eye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Ar Cenk Çelebi
- Department of Ophthalmology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Berkay Yekta Ekren
- Department of Bioinformatics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Yusuf Yıldırım
- Beyoglu Eye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Burçin Kepez Yıldız
- Beyoglu Eye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sinem Öktem Okullu
- Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Atasehir, Istanbul, Turkey
| | - Osman Uğur Sezerman
- Department of Bioinformatics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Atasehir, Istanbul, Turkey
| |
Collapse
|
46
|
Nomura M. Association of the gut microbiome with cancer immunotherapy. Int J Clin Oncol 2023; 28:347-353. [PMID: 35568746 DOI: 10.1007/s10147-022-02180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Immune checkpoint inhibitors, programmed cell death-1- and cytotoxic T-lymphocyte-associated protein 4-based immunotherapy have remarkably improved survival with durable response for patients with multiple cancer type. The accurate predictors of response and toxicity to immunotherapy are still unclear and have been focused on the gut microbiome. The gut microbiome, which refers to the microorganisms and their genes, affects the host immunity both locally and systemically. Modulation of the gut microbiota alters the immune systems and affects the efficacy of immune checkpoint inhibitor. In this review, we investigate the evidence on the role of the microbiome in cancer patients and discuss the impact of microbiome on the efficacy of immune checkpoint inhibitors in cancer.
Collapse
Affiliation(s)
- Motoo Nomura
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
47
|
Microbiota-dependent presence of murine enteric glial cells requires myeloid differentiation primary response protein 88 signaling. J Biosci 2023. [DOI: 10.1007/s12038-023-00325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
48
|
Mei K, Chen Z, Wang Q, Luo Y, Huang Y, Wang B, Gu R. The role of intestinal immune cells and matrix metalloproteinases in inflammatory bowel disease. Front Immunol 2023; 13:1067950. [PMID: 36733384 PMCID: PMC9888429 DOI: 10.3389/fimmu.2022.1067950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become globally intractable. MMPs play a key role in many inflammatory diseases. However, little is known about the role of MMPs in IBD. In this study, IBD expression profiles were screened from public Gene Expression Omnibus datasets. Functional enrichment analysis revealed that IBD-related specific functions were associated with immune pathways. Five MMPS-related disease markers, namely MMP-9, CD160, PTGDS, SLC26A8, and TLR5, were selected by machine learning and the correlation between each marker and immune cells was evaluated. We then induced colitis in C57 mice using sodium dextran sulfate and validated model construction through HE staining of the mouse colon. WB and immunofluorescence experiments confirmed that the expression levels of MMP-9, PTGDS, SLC26A8, and CD160 in colitis were significantly increased, whereas that of TLR5 were decreased. Flow cytometry analysis revealed that MMPs regulate intestinal inflammation and immunity mainly through CD8 in colitis. Our findings reveal that MMPs play a crucial role in the pathogenesis of IBD and are related to the infiltration of immune cells, suggesting that MMPs may promote the development of IBD by activating immune infiltration and the immune response. This study provides insights for further studies on the occurrence and development of IBD.
Collapse
Affiliation(s)
- Kun Mei
- Nanjing University of Chinese Medicine, Nanjing, China,Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zilu Chen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Luo
- Department of Oncology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu, China,Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Renjun Gu, ; Bin Wang, ; Yan Huang,
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China,*Correspondence: Renjun Gu, ; Bin Wang, ; Yan Huang,
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, China,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China,Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China,*Correspondence: Renjun Gu, ; Bin Wang, ; Yan Huang,
| |
Collapse
|
49
|
The Local Activation of Toll-like Receptor 7 (TLR7) Modulates Colonic Epithelial Barrier Function in Rats. Int J Mol Sci 2023; 24:ijms24021254. [PMID: 36674770 PMCID: PMC9865626 DOI: 10.3390/ijms24021254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptors (TLRs)-mediated host-bacterial interactions participate in the microbial regulation of gastrointestinal functions, including the epithelial barrier function (EBF). We evaluated the effects of TLR7 stimulation on the colonic EBF in rats. TLR7 was stimulated with the selective agonist imiquimod (100/300 µg/rat, intracolonic), with or without the intracolonic administration of dimethyl sulfoxide (DMSO). Colonic EBF was assessed in vitro (electrophysiology and permeability to macromolecules, Ussing chamber) and in vivo (passage of macromolecules to blood and urine). Changes in the expression (RT-qPCR) and distribution (immunohistochemistry) of tight junction-related proteins were determined. Expression of proglucagon, precursor of the barrier-enhancer factor glucagon-like peptide 2 (GLP-2) was also assessed (RT-qPCR). Intracolonic imiquimod enhanced the EBF in vitro, reducing the epithelial conductance and the passage of macromolecules, thus indicating a pro-barrier effect of TLR7. However, the combination of TLR7 stimulation and DMSO had a detrimental effect on the EBF, which manifested as an increased passage of macromolecules. DMSO alone had no effect. The modulation of the EBF (imiquimod alone or with DMSO) was not associated with changes in gene expression or the epithelial distribution of the main tight junction-related proteins (occludin, tricellulin, claudin-2, claudin-3, junctional adhesion molecule 1 and Zonula occludens-1). No changes in the proglucagon expression were observed. These results show that TLR7 stimulation leads to the modulation of the colonic EBF, having beneficial or detrimental effects depending upon the state of the epithelium. The underlying mechanisms remain elusive, but seem independent of the modulation of the main tight junction-related proteins or the barrier-enhancer factor GLP-2.
Collapse
|
50
|
Sheikhzadeh N, Ahmadifar E, Soltani M, Tayefi-Nasrabadi H, Mousavi S, Naiel MAE. Brown Seaweed ( Padina australis) Extract can Promote Performance, Innate Immune Responses, Digestive Enzyme Activities, Intestinal Gene Expression and Resistance against Aeromonas hydrophila in Common Carp ( Cyprinus carpio). Animals (Basel) 2022; 12:ani12233389. [PMID: 36496911 PMCID: PMC9738903 DOI: 10.3390/ani12233389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Eight-week oral administration of Padina australis ethyl acetate extract at 100, 200, and 400 mg/kg diets was assessed on the growth performance, tight junction proteins, intestinal immunity, and disease resistance to Aeromonas hydrophila in common carp (Cyprinus carpio). A total of 300 healthy common carp weighing around 14.8 ± 0.03 g were randomly assigned into four equal groups within 12 glass aquariums, each in three replicates (25 fish/tank), for the feeding trial experiment. The first group served as the control group and was fed an un-supplemented diet, whilst the other three groups were offered diets containing graded amounts of Padina australis ethyl acetate extract at 100, 200, and 400 mg/kg, respectively. The growth indices, including final weight, length, weight gain rate, specific growth rate, and feed conversion ratio, were meaningfully improved in fish fed with the algae at 200 and 400 mg/kg compared to the control fish (p < 0.05). Similarly, digestive enzyme activities and serum immune parameters were significantly higher in all treatments, especially 200 and 400 mg/kg fed groups, compared to the control (p < 0.05). In parallel, significant upregulation of genes related to integrity and the immune system was shown in the intestine of these treatment groups compared to control fish (p < 0.05). When fish were challenged with A. hydrophila, the cumulative survival percentages were 53.3% (p = 0.215), 70.0 % (p = 0.009), and 76.7% (p = 0.002) in fish fed 100, 200, and 400 mg/kg diets, respectively, compared to 36.7% survival in control fish (p = 0.134). These data show that the eight-week dietary administration of P. australis extract to common carp can enhance growth performance, digestive enzyme activity, immune response, and disease resistance to A. hydrophila infection.
Collapse
Affiliation(s)
- Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-14766, Iran
- Correspondence: (N.S.); (M.A.E.N.)
| | - Ehsan Ahmadifar
- Department of of Fisheries, Faculty of Natural Resources, University of Zabol, Zabol 98613-35856, Iran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 14155-6453, Iran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Hossein Tayefi-Nasrabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-14766, Iran
| | - Shalaleh Mousavi
- Department of Food Hygiene and Aquatic Animals, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 51666-14766, Iran
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (N.S.); (M.A.E.N.)
| |
Collapse
|