BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hustoft HK, Brandtzaeg OK, Rogeberg M, Misaghian D, Torsetnes SB, Greibrokk T, Reubsaet L, Wilson SR, Lundanes E. Integrated enzyme reactor and high resolving chromatography in "sub-chip" dimensions for sensitive protein mass spectrometry. Sci Rep 2013;3:3511. [PMID: 24336509 DOI: 10.1038/srep03511] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
Number Citing Articles
1 Yuan H, Zhang L, Zhang Y. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion. J Chromatogr A 2014;1371:48-57. [PMID: 25456586 DOI: 10.1016/j.chroma.2014.10.067] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
2 Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A 2017;1498:8-21. [PMID: 28069168 DOI: 10.1016/j.chroma.2017.01.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 9.8] [Reference Citation Analysis]
3 Hustoft HK, Vehus T, Brandtzaeg OK, Krauss S, Greibrokk T, Wilson SR, Lundanes E. Open tubular lab-on-column/mass spectrometry for targeted proteomics of nanogram sample amounts. PLoS One 2014;9:e106881. [PMID: 25222838 DOI: 10.1371/journal.pone.0106881] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
4 Rossetti C, Świtnicka-Plak MA, Grønhaug Halvorsen T, Cormack PA, Sellergren B, Reubsaet L. Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers. Sci Rep 2017;7:44298. [PMID: 28303910 DOI: 10.1038/srep44298] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
5 Hakala TA, Bialas F, Toprakcioglu Z, Bräuer B, Baumann KN, Levin A, Bernardes GJL, Becker CFW, Knowles TPJ. Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS Appl Mater Interfaces 2020;12:32951-60. [PMID: 32589387 DOI: 10.1021/acsami.0c09226] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
6 Tubaon RM, Haddad PR, Quirino JP. Sample Clean‐up Strategies for ESI Mass Spectrometry Applications in Bottom‐up Proteomics: Trends from 2012 to 2016. Proteomics 2017;17:1700011. [DOI: 10.1002/pmic.201700011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
7 Wilson SR, Olsen C, Lundanes E. Nano liquid chromatography columns. Analyst 2019;144:7090-104. [DOI: 10.1039/c9an01473j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
8 Shah V, Lassman ME, Chen Y, Zhou H, Laterza OF. Achieving efficient digestion faster with Flash Digest: potential alternative to multi-step detergent assisted in-solution digestion in quantitative proteomics experiments. Rapid Commun Mass Spectrom 2017;31:193-9. [PMID: 27794205 DOI: 10.1002/rcm.7778] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
9 Yi L, Piehowski PD, Shi T, Smith RD, Qian WJ. Advances in microscale separations towards nanoproteomics applications. J Chromatogr A 2017;1523:40-8. [PMID: 28765000 DOI: 10.1016/j.chroma.2017.07.055] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
10 Naldi M, Černigoj U, Štrancar A, Bartolini M. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis. Talanta 2017;167:143-57. [DOI: 10.1016/j.talanta.2017.02.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
11 Regnier FE, Kim J. Accelerating trypsin digestion: the immobilized enzyme reactor. Bioanalysis 2014;6:2685-98. [DOI: 10.4155/bio.14.216] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
12 Piehowski PD, Zhao R, Moore RJ, Clair G, Ansong C. Quantitative Proteomic Analysis of Mass Limited Tissue Samples for Spatially Resolved Tissue Profiling. Methods Mol Biol 2018;1788:269-77. [PMID: 28980276 DOI: 10.1007/7651_2017_78] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
13 Wilson SR, Vehus T, Berg HS, Lundanes E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis 2015;7:1799-815. [DOI: 10.4155/bio.15.92] [Cited by in Crossref: 69] [Cited by in F6Publishing: 57] [Article Influence: 9.9] [Reference Citation Analysis]
14 Knob R, Kulsing C, Boysen RI, Macka M, Hearn MT. Surface-area expansion with monolithic open tubular columns. TrAC Trends in Analytical Chemistry 2015;67:16-25. [DOI: 10.1016/j.trac.2014.12.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.9] [Reference Citation Analysis]
15 Shen X, Sun L. Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics. Proteomics 2018;18:e1700432. [PMID: 29577644 DOI: 10.1002/pmic.201700432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
16 Levernæs MCS, Brandtzaeg OK, Amundsen SF, Reubsaet L, Lundanes E, Halvorsen TG, Wilson SR. Selective Fishing for Peptides with Antibody-Immobilized Acrylate Monoliths, Coupled Online with NanoLC-MS. Anal Chem 2018;90:13860-6. [DOI: 10.1021/acs.analchem.8b00935] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
17 Skjærvø Ø, Halvorsen TG, Reubsaet L. Smart blood spots for whole blood protein analysis. Analyst 2018;143:3184-90. [DOI: 10.1039/c8an00317c] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
18 Skjærvø Ø, Brandtzaeg OK, Lausund KB, Pabst O, Martinsen ØG, Lundanes E, Wilson SR. Exploring bioimpendance instrumentation for the characterization of open tubular liquid chromatography columns. Journal of Chromatography A 2018;1534:195-200. [DOI: 10.1016/j.chroma.2017.12.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Skjærvø Ø, Rosting C, Halvorsen TG, Reubsaet L. Instant on-paper protein digestion during blood spot sampling. Analyst 2017;142:3837-47. [DOI: 10.1039/c7an01075c] [Cited by in Crossref: 7] [Article Influence: 1.4] [Reference Citation Analysis]
20 Lazar IM, Deng J, Smith N. Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor. J Vis Exp 2016;:e53564. [PMID: 27078683 DOI: 10.3791/53564] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Vehus T, Roberg-Larsen H, Waaler J, Aslaksen S, Krauss S, Wilson SR, Lundanes E. Versatile, sensitive liquid chromatography mass spectrometry - Implementation of 10 μm OT columns suitable for small molecules, peptides and proteins. Sci Rep 2016;6:37507. [PMID: 27897190 DOI: 10.1038/srep37507] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
22 Deng J, Lazar IM. Proteolytic Digestion and TiO2 Phosphopeptide Enrichment Microreactor for Fast MS Identification of Proteins. J Am Soc Mass Spectrom 2016;27:686-98. [PMID: 26883530 DOI: 10.1007/s13361-015-1332-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
23 Li R, Shao Y, Yu Y, Wang X, Guo G. Pico-HPLC system integrating an equal inner diameter femtopipette into a 900 nm I.D. porous layer open tubular column. Chem Commun 2017;53:4104-7. [DOI: 10.1039/c7cc00799j] [Cited by in Crossref: 16] [Article Influence: 3.2] [Reference Citation Analysis]
24 Li R, Wang Y, Peng M, Wang X, Guo G. Preparation and Application of Porous Layer Open Tubular Capillary Columns with Narrow Bore in Liquid Chromatography. Chinese Journal of Analytical Chemistry 2017;45:1865-73. [DOI: 10.1016/s1872-2040(17)61057-0] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
25 Naldi M, Tramarin A, Bartolini M. Immobilized enzyme-based analytical tools in the -omics era: Recent advances. Journal of Pharmaceutical and Biomedical Analysis 2018;160:222-37. [DOI: 10.1016/j.jpba.2018.07.051] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
26 Olsen C, Skottvoll FS, Brandtzaeg OK, Schnaars C, Rongved P, Lundanes E, Wilson SR. Investigating Monoliths (Vinyl Azlactone-co-Ethylene Dimethacrylate) as a Support for Enzymes and Drugs, for Proteomics and Drug-Target Studies. Front Chem 2019;7:835. [PMID: 31850321 DOI: 10.3389/fchem.2019.00835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR. Multichannel Open Tubular Enzyme Reactor Online Coupled with Mass Spectrometry for Detecting Ricin. Anal Chem 2017;89:8667-73. [PMID: 28783436 DOI: 10.1021/acs.analchem.7b02590] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
28 Moore S, Hess S, Jorgenson J. Characterization of an immobilized enzyme reactor for on-line protein digestion. J Chromatogr A 2016;1476:1-8. [PMID: 27876348 DOI: 10.1016/j.chroma.2016.11.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
29 Lam SC, Sanz Rodriguez E, Haddad PR, Paull B. Recent advances in open tubular capillary liquid chromatography. Analyst 2019;144:3464-82. [DOI: 10.1039/c9an00329k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 8.3] [Reference Citation Analysis]