BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tarazona S, Arzalluz-luque A, Conesa A. Undisclosed, unmet and neglected challenges in multi-omics studies. Nat Comput Sci 2021;1:395-402. [DOI: 10.1038/s43588-021-00086-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Sathyanarayanan A, Mueller TT, Ali Moni M, Schueler K, Baune BT, Lio P, Mehta D, Baune BT, Dierssen M, Ebert B, Fabbri C, Fusar-Poli P, Gennarelli M, Harmer C, Howes OD, Janzing JGE, Lio P, Maron E, Mehta D, Minelli A, Nonell L, Pisanu C, Potier MC, Rybakowski F, Serretti A, Sqassina A, Stacey D, van Westrhenen R, Xicota L; European College of Neuropsychopharmacology (ECNP) Pharmacogenomics & Transcriptomics Network. Multi-omics data integration methods and their applications in psychiatric disorders. Eur Neuropsychopharmacol 2023;69:26-46. [PMID: 36706689 DOI: 10.1016/j.euroneuro.2023.01.001] [Reference Citation Analysis]
2 Mallick H, Porwal A, Saha S, Svetnik V, Paul E. An integrated Bayesian framework for multi-omics prediction and classification.. [DOI: 10.1101/2022.11.06.514786] [Reference Citation Analysis]
3 Wang Y, Tang S, Ma R, Zamit I, Wei Y, Pan Y. Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.11.008] [Reference Citation Analysis]
4 Cai Z, Poulos RC, Aref A, Robinson PJ, Reddel RR, Zhong Q. Transformer-based deep learning integrates multi-omic data with cancer pathways.. [DOI: 10.1101/2022.10.27.514141] [Reference Citation Analysis]
5 Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data. Front Mol Biosci 2022;9. [DOI: 10.3389/fmolb.2022.962644] [Reference Citation Analysis]
6 Yang J, Liu Y, Shang J, Chen Q, Chen Q, Ren L, Zhang N, Yu Y, Li Z, Song Y, Yang S, Scherer A, Tong W, Hong H, Shi L, Xiao W, Zheng Y. The Quartet Data Portal: integration of community-wide resources for multiomics quality control.. [DOI: 10.1101/2022.09.26.507202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Povilaitis SC, Chakraborty A, Kirkpatrick LM, Downey RD, Hauger SB, Eberlin LS. Identifying Clinically Relevant Bacteria Directly from Culture and Clinical Samples with a Handheld Mass Spectrometry Probe. Clinical Chemistry 2022. [DOI: 10.1093/clinchem/hvac147] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Ke M, Elshenawy B, Sheldon H, Arora A, Buffa FM. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity. Bioessays 2022;:e2200084. [PMID: 36068142 DOI: 10.1002/bies.202200084] [Reference Citation Analysis]
9 Bhattacharyya R, Henderson N, Baladandayuthapani V. BaySyn: Bayesian Evidence Synthesis for Multi-system Multiomic Integration.. [DOI: 10.1101/2022.08.16.22278812] [Reference Citation Analysis]
10 Kondratyeva L, Alekseenko I, Chernov I, Sverdlov E. Data Incompleteness May form a Hard-to-Overcome Barrier to Decoding Life’s Mechanism. Biology 2022;11:1208. [DOI: 10.3390/biology11081208] [Reference Citation Analysis]
11 Chen YA, Allendes Osorio RS, Mizuguchi K. TargetMine 2022: a new vision into drug target analysis. Bioinformatics 2022;38:4454-6. [PMID: 35894632 DOI: 10.1093/bioinformatics/btac507] [Reference Citation Analysis]
12 Brombacher E, Hackenberg M, Kreutz C, Binder H, Treppner M. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.. [DOI: 10.1101/2022.06.06.494951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Ž, McIntyre L, Gruden K, Tarazona S, Conesa A. PaintOmics 4: new tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res 2022:gkac352. [PMID: 35609982 DOI: 10.1093/nar/gkac352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
15 Hurgobin B, Lewsey MG. Applications of cell- and tissue-specific 'omics to improve plant productivity. Emerg Top Life Sci 2022:ETLS-2021-0286. [PMID: 35293572 DOI: 10.1042/ETLS20210286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Uyar B, Ronen J, Franke V, Gargiulo G, Akalin A. Multi-omics and deep learning provide a multifaceted view of cancer.. [DOI: 10.1101/2021.09.29.462364] [Reference Citation Analysis]