BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 2020;10:2374. [PMID: 32047209 DOI: 10.1038/s41598-020-59388-3] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 21.3] [Reference Citation Analysis]
Number Citing Articles
1 Tukur F, Bagra B, Jayapalan A, Liu M, Tukur P, Wei J. Plasmon–Exciton Coupling Effect in Nanostructured Arrays for Optical Signal Amplification and SARS-CoV-2 DNA Sensing. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c05063] [Reference Citation Analysis]
2 Zhang JXJ. Plasmonic MEMS in Biosensing and Imaging. Synthesis Lectures on Materials and Optics 2023. [DOI: 10.1007/978-3-031-23137-7_5] [Reference Citation Analysis]
3 Al-bataineh QM, Telfah M, Abu-zurayk R, Benchaabane A, Tavares CJ, Telfah A. Nano-SnO2/polyaniline composite films for surface plasmon resonance. Materials Chemistry and Physics 2023;293:126816. [DOI: 10.1016/j.matchemphys.2022.126816] [Reference Citation Analysis]
4 Sehit E, Altintas Z. Biosensors for virus detection. Advanced Sensor Technology 2023. [DOI: 10.1016/b978-0-323-90222-9.00001-7] [Reference Citation Analysis]
5 Li X, Wang J, Geng J, Xiao L, Wang H. Emerging Landscape of SARS-CoV-2 Variants and Detection Technologies. Mol Diagn Ther 2022;:1-19. [PMID: 36577887 DOI: 10.1007/s40291-022-00631-0] [Reference Citation Analysis]
6 Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors (Basel) 2022;13. [PMID: 36671875 DOI: 10.3390/bios13010040] [Reference Citation Analysis]
7 Al-Bataineh QM, Shpacovitch V, Sadiq D, Telfah A, Hergenröder R. Surface Plasmon Resonance Sensitivity Enhancement Based on Protonated Polyaniline Films Doped by Aluminum Nitrate. Biosensors (Basel) 2022;12. [PMID: 36551089 DOI: 10.3390/bios12121122] [Reference Citation Analysis]
8 Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM. Plasmonic Refractive Index Sensor Enhanced with Chitosan/Au Bilayer Thin Film for Dopamine Detection. Biosensors (Basel) 2022;12. [PMID: 36551091 DOI: 10.3390/bios12121124] [Reference Citation Analysis]
9 Fauzi NIM, Fen YW, Eddin FBK, Daniyal WMEMM. Structural and Optical Properties of Graphene Quantum Dots-Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. Nanomaterials (Basel) 2022;12. [PMID: 36432389 DOI: 10.3390/nano12224105] [Reference Citation Analysis]
10 Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022;23:10838. [PMID: 36142748 DOI: 10.3390/ijms231810838] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Lu X, Damborský P, Munief W, Ka-yan Law J, Chen X, Katrlík J, Pachauri V, Ingebrandt S. Electrical SPR biosensor with thermal annealed graphene oxide: Concept of highly sensitive biomolecule detection. Biosensors and Bioelectronics: X 2022;11:100152. [DOI: 10.1016/j.biosx.2022.100152] [Reference Citation Analysis]
12 Das CM, Kong KV, Yong KT. Diagnostic plasmonic sensors: opportunities and challenges. Chem Commun (Camb) 2022;58:9573-85. [PMID: 35975603 DOI: 10.1039/d2cc03431j] [Reference Citation Analysis]
13 Novikova A, Katiyi A, Halstuch A, Karabchevsky A. Green-Graphene Protective Overlayer on Optical Microfibers: Prolongs the Device Lifetime. Nanomaterials 2022;12:2915. [DOI: 10.3390/nano12172915] [Reference Citation Analysis]
14 Du C, Wang Z, Chen J, Martin A, Raturi D, Thuo M. Role of Nanoscale Roughness and Polarity in Odd–Even Effect of Self‐Assembled Monolayers. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202205251] [Reference Citation Analysis]
15 Eddin FBK, Fen YW, Sadrolhosseini AR, Liew JYC, Daniyal ‬MEMM. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics. [DOI: 10.1007/s11468-022-01680-1] [Reference Citation Analysis]
16 Pirzada M, Altintas Z. Nanomaterials for virus sensing and tracking. Chem Soc Rev 2022. [PMID: 35735186 DOI: 10.1039/d1cs01150b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bai C, Niu Q, Yang G, Zhang G, Yang Y. Surface-enhanced Raman spectroscopy substrate based on silver/titanium dioxide nanocomposites and demonstration on rhodamine 6G and severe acute respiratory syndrome coronavirus 2 spike-1 protein. Spectroscopy Letters. [DOI: 10.1080/00387010.2022.2085751] [Reference Citation Analysis]
18 Du C, Wang Z, Chen J, Martin A, Raturi D, Thuo M. Role of Nanoscale Roughness and Polarity in Odd–Even Effect of Self‐Assembled Monolayers. Angewandte Chemie. [DOI: 10.1002/ange.202205251] [Reference Citation Analysis]
19 Eddin FBK, Fen YW, Fauzi NIM, Daniyal WMEMM, Omar NAS, Anuar MF, Hashim HS, Sadrolhosseini AR, Abdullah H. Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. Nanomaterials (Basel) 2022;12:1799. [PMID: 35683655 DOI: 10.3390/nano12111799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Hegde SS, Bhat BR. Dengue detection: Advances and challenges in diagnostic technology. Biosensors and Bioelectronics: X 2022;10:100100. [DOI: 10.1016/j.biosx.2021.100100] [Reference Citation Analysis]
21 Fauzi NIM, Fen YW, Abdullah J, Kamarudin MA, Omar NAS, Eddin FBK, Ramdzan NSM, Daniyal WMEMM. Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. Photonics 2022;9:300. [DOI: 10.3390/photonics9050300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Hamza ME, Othman MA, Swillam MA. Plasmonic Biosensors: Review. Biology 2022;11:621. [DOI: 10.3390/biology11050621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Jin C, Wu Z, Molinski J, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100263] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022;12:8059-94. [PMID: 35424750 DOI: 10.1039/d1ra07988c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lim HJ, Jin H, Chua B, Son A. Clustered Detection of Eleven Phthalic Acid Esters by Fluorescence of Graphene Quantum Dots Displaced from Gold Nanoparticles. ACS Appl Mater Interfaces 2022. [PMID: 35029109 DOI: 10.1021/acsami.1c21756] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Wang W, Zhai W, Chen Y, He Q, Zhang H. Two-dimensional material-based virus detection. Sci China Chem 2022;:1-17. [PMID: 35035391 DOI: 10.1007/s11426-021-1150-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Anjana R, Jayaraj M. Nanophotonic biosensors for disease diagnosis. Nanomaterials for Sensing and Optoelectronic Applications 2022. [DOI: 10.1016/b978-0-12-824008-3.00001-1] [Reference Citation Analysis]
28 Anusha JR, Arasu MV, Al-dhabi NA, Raj CJ. Nanomaterials in Electrochemical Biosensors and Their Applications. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_16] [Reference Citation Analysis]
29 Shukla N, Chetri P, Boruah R, Gogoi A, Ahmed GA. Surface Plasmon Resonance Biosensors Based on Kretschmann Configuration: Basic Instrumentation and Applications. Lecture Notes in Nanoscale Science and Technology 2022. [DOI: 10.1007/978-3-030-99491-4_6] [Reference Citation Analysis]
30 Patle RY, Meshram JS. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. React Chem Eng 2021;7:9-40. [DOI: 10.1039/d1re00074h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Jamaluddin ND, Mazlan NF, Tan LL, Yusof NYM, Khalid B. G-quadruplex microspheres-based optical RNA biosensor for arthropod-borne virus pathogen detection: A proof-of-concept with dengue serotype 2. Int J Biol Macromol 2021;199:1-9. [PMID: 34922999 DOI: 10.1016/j.ijbiomac.2021.12.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Alhazmi HA, Ahsan W, Mangla B, Javed S, Hassan MZ, Asmari M, Al Bratty M, Najmi A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnology Reviews 2022;11:96-116. [DOI: 10.1515/ntrev-2022-0009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
33 Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021;11:2083. [PMID: 34829430 DOI: 10.3390/diagnostics11112083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Mahmood HZ, Jilani A, Farooq S, Javed Y, Jamil Y, Iqbal J, Ullah S, Wageh S. Plasmon-Based Label-Free Biosensor Using Gold Nanosphere for Dengue Detection. Crystals 2021;11:1340. [DOI: 10.3390/cryst11111340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Hashim HS, Fen YW, Omar NAS, Fauzi NIM, Daniyal WMEMM. Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement 2021;184:109855. [DOI: 10.1016/j.measurement.2021.109855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
36 Sharma S, Kumar A. Design of a Biosensor for the Detection of Dengue Virus Using 1D Photonic Crystals. Plasmonics. [DOI: 10.1007/s11468-021-01555-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
37 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
38 Nasrin F, Tsuruga K, Utomo DIS, Chowdhury AD, Park EY. Design and Analysis of a Single System of Impedimetric Biosensors for the Detection of Mosquito-Borne Viruses. Biosensors (Basel) 2021;11:376. [PMID: 34677332 DOI: 10.3390/bios11100376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Omar NAS, Irmawati R, Fen YW, Abdullah J, Daud NFM, Daniyal WMEMM, Mahdi MA. A sensing approach for manganese ion detection by carbon dots nanocomposite thin film-based surface plasmon resonance sensor. Optik 2021;243:167435. [DOI: 10.1016/j.ijleo.2021.167435] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Ramdzan NSM, Fen YW, Liew JYC, Omar NAS, Anas NAA, Daniyal WMEMM, Fauzi NIM. Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. Photonics 2021;8:419. [DOI: 10.3390/photonics8100419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Vázquez-Guardado A, Mehta F, Jimenez B, Biswas A, Ray K, Baksh A, Lee S, Saraf N, Seal S, Chanda D. DNA-Modified Plasmonic Sensor for the Direct Detection of Virus Biomarkers from the Blood. Nano Lett 2021;21:7505-11. [PMID: 34496209 DOI: 10.1021/acs.nanolett.1c01609] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
42 Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Reaktionsverfolgung von Festphasensynthesen in selbstassemblierenden Monolagen mit oberflächenverstärkter Raman‐Spektroskopie. Angew Chem 2021;133:18126-18134. [DOI: 10.1002/ange.202102319] [Reference Citation Analysis]
43 Scherrer D, Vogel D, Drechsler U, Olziersky A, Sparr C, Mayor M, Lörtscher E. Monitoring Solid-Phase Reactions in Self-Assembled Monolayers by Surface-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021;60:17981-8. [PMID: 34048139 DOI: 10.1002/anie.202102319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Hassan MM, Sium FS, Islam F, Choudhury SM. A review on plasmonic and metamaterial based biosensing platforms for virus detection. Sensing and Bio-Sensing Research 2021;33:100429. [DOI: 10.1016/j.sbsr.2021.100429] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
45 Báez DF, Brito TP, Espinoza LC, Méndez-torres AM, Sierpe R, Sierra-rosales P, Venegas CJ, Yáñez C, Bollo S. Graphene-based sensors for small molecule determination in real samples. Microchemical Journal 2021;167:106303. [DOI: 10.1016/j.microc.2021.106303] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Olejnik B, Kozioł A, Brzozowska E, Ferens-Sieczkowska M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev Mol Diagn 2021;:1-13. [PMID: 34289786 DOI: 10.1080/14737159.2021.1957833] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, Darabi MA, Zhu Y, Lee J, Diltemiz SE, Montazerian H, Sangabathuni S, Tavafoghi M, Jucaud V, Sun W, Kim HJ, Ahadian S, Khademhosseini A. Micro and Nanoscale Technologies for Diagnosis of Viral Infections. Small 2021;:e2100692. [PMID: 34310048 DOI: 10.1002/smll.202100692] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM. Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. Spectrochim Acta A Mol Biomol Spectrosc 2021;263:120202. [PMID: 34333400 DOI: 10.1016/j.saa.2021.120202] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
49 Sengupta J, Adhikari A, Hussain CM. Graphene-based analytical lab-on-chip devices for detection of viruses: A review. Carbon Trends 2021;4:100072. [DOI: 10.1016/j.cartre.2021.100072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
50 Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. Biosensors (Basel) 2021;11:206. [PMID: 34201849 DOI: 10.3390/bios11070206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. Sensors (Basel) 2021;21:3856. [PMID: 34204853 DOI: 10.3390/s21113856] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
52 Liyanage T, Qamar AZ, Slaughter G. Application of Nanomaterials for Chemical and Biological Sensors: A Review. IEEE Sensors J 2021;21:12407-25. [DOI: 10.1109/jsen.2020.3032952] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
53 Chopra A, Mohanta GC, Das B, Bhatnagar R, Pal SS. Tuning the Sensitivity of a Fiber-Optic Plasmonic Sensor: An Interplay Among Gold Thickness, Tapering Ratio and Surface Roughness. IEEE Sensors J 2021;21:12153-61. [DOI: 10.1109/jsen.2021.3066250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Omar NAS, Fen YW, Ramli I, Azmi UZM, Hashim HS, Abdullah J, Mahdi MA. Cellulose and Vanadium Plasmonic Sensor to Measure Ni2+ Ions. Applied Sciences 2021;11:2963. [DOI: 10.3390/app11072963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Usman F, Ojur Dennis J, Meriaudeau F, Cheng Seong K, Yousif Ahmed A, Abubakar Abdulkadir B, Abbas Adam A, Saidu A. Investigation of Adsorption behaviour of Acetone Vapour towards a Surface Plasmon Resonance Sensing Layer using Adsorption Isotherm Models. IOP Conf Ser : Mater Sci Eng 2021;1092:012054. [DOI: 10.1088/1757-899x/1092/1/012054] [Reference Citation Analysis]
56 Omar NAS, Fen YW, Ramli I, Sadrolhosseini AR, Abdullah J, Yusof NA, Kamil YM, Mahdi MA. An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies. Polymers (Basel) 2021;13:762. [PMID: 33671059 DOI: 10.3390/polym13050762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors (Basel) 2021;21:1109. [PMID: 33562639 DOI: 10.3390/s21041109] [Cited by in Crossref: 191] [Cited by in F6Publishing: 221] [Article Influence: 95.5] [Reference Citation Analysis]
58 Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, Yusof NA. X-ray Photoelectron Spectroscopy Analysis of Chitosan-Graphene Oxide-Based Composite Thin Films for Potential Optical Sensing Applications. Polymers (Basel) 2021;13:478. [PMID: 33540931 DOI: 10.3390/polym13030478] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
59 Erdem Ö, Derin E, Sagdic K, Yilmaz EG, Inci F. Smart materials-integrated sensor technologies for COVID-19 diagnosis. Emergent Mater 2021;:1-17. [PMID: 33495747 DOI: 10.1007/s42247-020-00150-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
60 Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 2021;4:70. [PMID: 33452375 DOI: 10.1038/s42003-020-01615-8] [Cited by in Crossref: 157] [Cited by in F6Publishing: 143] [Article Influence: 78.5] [Reference Citation Analysis]
61 Feng W, Lei Y, Wu X, Yuan J, Chen J, Xu D, Zhang X, Zhang S, Liu P, Zhang L, Weng B. Tuning the interfacial electronic structure via Au clusters for boosting photocatalytic H 2 evolution. J Mater Chem A 2021;9:1759-69. [DOI: 10.1039/d0ta09217g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
62 Gasco S, Muñoz-Fernández MÁ. A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. Int J Mol Sci 2020;22:E35. [PMID: 33375140 DOI: 10.3390/ijms22010035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
63 Ehtesabi H. Application of carbon nanomaterials in human virus detection. Journal of Science: Advanced Materials and Devices 2020;5:436-50. [DOI: 10.1016/j.jsamd.2020.09.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
64 Jamalipour Soufi G, Iravani S. Nanomaterials against pathogenic viruses: greener and sustainable approaches. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2020.1852252] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
65 Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Ferrell TL, Aldaghri O, Sulieman A. Investigation of Acetone Vapour Sensing Properties of a Ternary Composite of Doped Polyaniline, Reduced Graphene Oxide and Chitosan Using Surface Plasmon Resonance Biosensor. Polymers (Basel) 2020;12:E2750. [PMID: 33233844 DOI: 10.3390/polym12112750] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
66 Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Fen YW, Sadrolhosseini AR, Ferrell TL, Alsadig A, Sulieman A. Acetone Vapor-Sensing Properties of Chitosan-Polyethylene Glycol Using Surface Plasmon Resonance Technique. Polymers (Basel) 2020;12:E2586. [PMID: 33158093 DOI: 10.3390/polym12112586] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
67 Daniyal WMEMM, Fen YW, Abdullah J, Hashim HS, Fauzi N‘M, Chanlek N, Mahdi MA. X-ray photoelectron study on gold/nanocrystalline cellulose-graphene oxide thin film as surface plasmon resonance active layer for metal ion detection. Thin Solid Films 2020;713:138340. [DOI: 10.1016/j.tsf.2020.138340] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
68 Chiu NF, Wang YH, Chen CY. Clinical Application for Screening Down's Syndrome by Using Carboxylated Graphene Oxide-Based Surface Plasmon Resonance Aptasensors. Int J Nanomedicine 2020;15:8131-49. [PMID: 33144830 DOI: 10.2147/IJN.S270938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
69 Song C, Zhang J, Liu Y, Guo X, Guo Y, Jiang X, Wang L. Highly sensitive SERS assay of DENV gene via a cascade signal amplification strategy of localized catalytic hairpin assembly and hybridization chain reaction. Sens Actuators B Chem 2020;325:128970. [PMID: 33012990 DOI: 10.1016/j.snb.2020.128970] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
70 Demeke Teklemariam A, Samaddar M, Alharbi MG, Al-Hindi RR, Bhunia AK. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Mol Cell Probes 2020;54:101662. [PMID: 32911064 DOI: 10.1016/j.mcp.2020.101662] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
71 Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: From separation to detection. TrAC Trends in Analytical Chemistry 2020;128:115915. [DOI: 10.1016/j.trac.2020.115915] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
72 Kamal Eddin FB, Fen YW. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020;25:E2769. [PMID: 32549390 DOI: 10.3390/molecules25122769] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
73 Singh R, Kumar S. Applications of graphene-based sensors for biomedical industries. Analytical Applications of Graphene for Comprehensive Analytical Chemistry 2020. [DOI: 10.1016/bs.coac.2020.08.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]