BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L, Rivas L, Álvarez-Diduk R, Nguyen EP, Cinti S, Quesada-González D, Merkoçi A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020;15:3788-816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC Trends in Analytical Chemistry 2022;157:116754. [DOI: 10.1016/j.trac.2022.116754] [Reference Citation Analysis]
2 Duong N, Nguyen-phuoc K, Mai-hoang T, Do KT, Huynh T, Nguyen NT, Tran TL, Tran-van H. Fabrication of lateral flow immunoassay strip for rapid detection of acute hepatopancreatic necrosis disease. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03311-2] [Reference Citation Analysis]
3 Guntawang T, Sittisak T, Srivorakul S, Photichai K, Aiumurai P, Thitaram C, Sthitmatee N, Hsu WL, Sookrung N, Pringproa K. Development of an immunochromatographic strip test for antigen detection of elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus). J Virol Methods 2022;:114627. [PMID: 36191664 DOI: 10.1016/j.jviromet.2022.114627] [Reference Citation Analysis]
4 Garrido E, Climent E, Marcos MD, Sancenón F, Rurack K, Martínez-Máñez R. Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles. Nanoscale 2022;14:13505-13. [PMID: 36102017 DOI: 10.1039/d2nr03325a] [Reference Citation Analysis]
5 Tramarin L, Casquel R, Gil-rostra J, González-martínez MÁ, Herrero-labrador R, Murillo AMM, Laguna MF, Bañuls M, González-elipe AR, Holgado M. Design and Characterization of ITO-Covered Resonant Nanopillars for Dual Optical and Electrochemical Sensing. Chemosensors 2022;10:393. [DOI: 10.3390/chemosensors10100393] [Reference Citation Analysis]
6 Chatterjee S, Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need”. Journal of Immunoassay and Immunochemistry. [DOI: 10.1080/15321819.2022.2122063] [Reference Citation Analysis]
7 Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022. [PMID: 36067039 DOI: 10.1021/acs.chemrev.1c01012] [Reference Citation Analysis]
8 Jaisankar A, Krishnan S, Rangasamy L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal Biochem 2022;655:114874. [PMID: 36027971 DOI: 10.1016/j.ab.2022.114874] [Reference Citation Analysis]
9 Wu Y, Hu Y, Jiang N, Anantharanjit R, Yetisen AK, Cordeiro MF. Quantitative brain-derived neurotrophic factor lateral flow assay for point-of-care detection of glaucoma. Lab Chip 2022. [PMID: 35979801 DOI: 10.1039/d2lc00431c] [Reference Citation Analysis]
10 Singh S, Arshid N, Cinti S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens Bioelectron 2022;216:114635. [PMID: 35988430 DOI: 10.1016/j.bios.2022.114635] [Reference Citation Analysis]
11 Deng H, Cai X, Ji Y, Yan D, Yang F, Liu S, Deji Z, Wang Y, Bian Z, Tang G, Fan Z, Huang Z. Development of a lateral flow immunoassay for rapid quantitation of carbendazim in agricultural products. Microchemical Journal 2022;179:107495. [DOI: 10.1016/j.microc.2022.107495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hu L, Calucho E, Fuentes-Chust C, Parolo C, Idili A, Álvarez-Diduk R, Rivas L, Merkoçi A. Selection and characterisation of bioreceptors to develop nanoparticle-based lateral-flow immunoassays in the context of the SARS-CoV-2 outbreak. Lab Chip 2022. [PMID: 35903978 DOI: 10.1039/d2lc00486k] [Reference Citation Analysis]
13 Wang J, Jiang C, Yuan J, Tong L, Wang Y, Zhuo D, Huang L, Ni W, Zhang J, Huang M, Li D, Su B, Hu J. Hue Recognition Competitive Fluorescent Lateral Flow Immunoassay for Aflatoxin M 1 Detection with Improved Visual and Quantitative Performance. Anal Chem . [DOI: 10.1021/acs.analchem.2c02020] [Reference Citation Analysis]
14 Pölloth B, Röhrig H, Schwarzer S. Why Is There a Red Line? A High School Experiment to Model the Role of Gold Nanoparticles in Lateral Flow Assays for COVID-19. J Chem Educ 2022;99:2579-87. [DOI: 10.1021/acs.jchemed.2c00094] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jara MDL, Alvarez LAC, Guimarães MCC, Antunes PWP, de Oliveira JP. Lateral flow assay applied to pesticides detection: recent trends and progress. Environ Sci Pollut Res Int 2022;29:46487-508. [PMID: 35507227 DOI: 10.1007/s11356-022-20426-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Bao L, Park J, Qin B, Kim B. Anti-SARS-CoV-2 IgM/IgG antibodies detection using a patch sensor containing porous microneedles and a paper-based immunoassay. Sci Rep 2022;12:10693. [PMID: 35778408 DOI: 10.1038/s41598-022-14725-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang C, Wang C, Li J, Tu Z, Gu B, Wang S. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114525] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
18 Khelifa L, Hu Y, Jiang N, Yetisen AK. Lateral flow assays for hormone detection. Lab Chip 2022;22:2451-75. [PMID: 35713489 DOI: 10.1039/d1lc00960e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Idili A, Bonini A, Parolo C, Alvarez‐diduk R, Di Francesco F, Merkoçi A. A Programmable Electrochemical Y‐Shaped DNA Scaffold Sensor for the Single‐Step Detection of Antibodies and Proteins in Untreated Biological Fluids. Adv Funct Materials. [DOI: 10.1002/adfm.202201881] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Thompson P, Bovolato ALDC, Ibáñez-redín G, Brolo AG. Quantification of a COVID-19 Antibody Assay Using a Lateral Flow Test and a Cell Phone. Chemosensors 2022;10:234. [DOI: 10.3390/chemosensors10070234] [Reference Citation Analysis]
21 Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. J Hazard Mater 2022;432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Mirica A, Stan D, Chelcea I, Mihailescu CM, Ofiteru A, Bocancia-mateescu L. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022;10:922772. [DOI: 10.3389/fbioe.2022.922772] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Shen W, Wang C, Zheng S, Jiang B, Li J, Pang Y, Wang C, Hao R, Xiao R. Ultrasensitive multichannel immunochromatographic assay for rapid detection of foodborne bacteria based on two-dimensional film-like SERS labels. J Hazard Mater 2022;437:129347. [PMID: 35753301 DOI: 10.1016/j.jhazmat.2022.129347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
24 Salatiello S, Spinelli M, Cassiano C, Amoresano A, Marini F, Cinti S. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Analytica Chimica Acta 2022;1210:339882. [DOI: 10.1016/j.aca.2022.339882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hao L, Yang W, Xu Y, Cui T, Zhu G, Zeng W, Bian K, Liang H, Zhang P, Zhang B. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022;212:114411. [PMID: 35623251 DOI: 10.1016/j.bios.2022.114411] [Reference Citation Analysis]
26 Jing L, Xie C, Li Q, Yao H, Yang M, Li H, Xia F, Li S. A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine. J Anal Test 2022;6:120-8. [DOI: 10.1007/s41664-022-00228-w] [Reference Citation Analysis]
27 Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022. [PMID: 35561247 DOI: 10.1021/acs.analchem.2c00870] [Reference Citation Analysis]
28 Odiwuor N, Xiong J, Ogolla F, Hong W, Li X, Khan FM, Wang N, Yu J, Wei H. A point-of-care SARS-CoV-2 test based on reverse transcription loop-mediated isothermal amplification without RNA extraction with diagnostic performance same as RT-PCR. Analytica Chimica Acta 2022;1200:339590. [DOI: 10.1016/j.aca.2022.339590] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Pereira C, Parolo C, Idili A, Gomis RR, Rodrigues L, Sales G, Merkoçi A. Paper-based biosensors for cancer diagnostics. Trends in Chemistry 2022. [DOI: 10.1016/j.trechm.2022.03.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. DIRECT2: A novel platform for a CRISPR-Cas12-based assay comprising universal DNA-IgG probe and a direct lateral flow test. Biosens Bioelectron 2022;208:114227. [PMID: 35390717 DOI: 10.1016/j.bios.2022.114227] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sena‐torralba A, Torné‐morató H, Parolo C, Ranjbar S, Farahmand Nejad MA, Álvarez‐diduk R, Idili A, Hormozi‐nezhad MR, Merkoçi A. A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Adv Materials Technologies. [DOI: 10.1002/admt.202101450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
33 Geng H, Vilms Pedersen S, Ma Y, Haghighi T, Dai H, Howes PD, Stevens MM. Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Acc Chem Res 2022;55:593-604. [PMID: 35138817 DOI: 10.1021/acs.accounts.1c00598] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
34 Oh HK, Kim K, Park J, Im H, Maher S, Kim MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022;205:114094. [PMID: 35202985 DOI: 10.1016/j.bios.2022.114094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022;11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kim SH, Kearns FL, Rosenfeld MA, Casalino L, Papanikolas MJ, Simmerling C, Amaro RE, Freeman R. GlycoGrip: Cell Surface-Inspired Universal Sensor for Betacoronaviruses. ACS Cent Sci 2022;8:22-42. [PMID: 35106370 DOI: 10.1021/acscentsci.1c01080] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
37 Biby A, Wang X, Liu X, Roberson O, Henry A, Xia X. Rapid testing for coronavirus disease 2019 (COVID-19). MRS Communications. [DOI: 10.1557/s43579-021-00146-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
38 Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022;6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Torné-Morató H, Donati P, Pompa PP. Nanoplasmonic Strip Test for Salivary Glucose Monitoring. Nanomaterials (Basel) 2021;12:105. [PMID: 35010055 DOI: 10.3390/nano12010105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Gao F, Liu C, Yao Y, Lei C, Li S, Yuan L, Song H, Yang Y, Wan J, Yu C. Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosens Bioelectron 2021;199:113892. [PMID: 34933225 DOI: 10.1016/j.bios.2021.113892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Numan A, Singh S, Zhan Y, Li L, Khalid M, Rilla K, Ranjan S, Cinti S. Advanced nanoengineered-customized point-of-care tools for prostate-specific antigen. Mikrochim Acta 2021;189:27. [PMID: 34905090 DOI: 10.1007/s00604-021-05127-y] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
42 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
43 Tng DJH, Yin BCY, Cao J, Ko KKK, Goh KCM, Chua DXW, Zhang Y, Chua MLK, Low JGH, Ooi EE, Soo KC. Amplified parallel antigen rapid test for point-of-care salivary detection of SARS-CoV-2 with improved sensitivity. Mikrochim Acta 2021;189:14. [PMID: 34870771 DOI: 10.1007/s00604-021-05113-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Razo SC, Elovenkova AI, Safenkova IV, Drenova NV, Varitsev YA, Zherdev AV, Dzantiev BB. Comparative Study of Four Coloured Nanoparticle Labels in Lateral Flow Immunoassay. Nanomaterials (Basel) 2021;11:3277. [PMID: 34947626 DOI: 10.3390/nano11123277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
46 Zvereva EA, Sotnikov DV, Belichenko KA, Hendrickson OD, Shanin IA, Zherdev AV, Dzantiev BB. Development of Immunochromatographic Test System for Detection of Antibiotic Clinafloxacin and Its Application for Honey Control. Appl Biochem Microbiol 2021;57:778-85. [DOI: 10.1134/s0003683821060144] [Reference Citation Analysis]
47 Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. Lab Chip 2021;21:4517-48. [PMID: 34778896 DOI: 10.1039/d1lc00627d] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
48 Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Retention of Activity by Antibodies Immobilized on Gold Nanoparticles of Different Sizes: Fluorometric Method of Determination and Comparative Evaluation. Nanomaterials (Basel) 2021;11:3117. [PMID: 34835881 DOI: 10.3390/nano11113117] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
49 Zou S, Wu L, Li G, Wang J, Cao D, Xu T, Jia A, Tang Y. Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. Anim Dis 2021;1:27. [PMID: 34778887 DOI: 10.1186/s44149-021-00029-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
50 Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. Plants (Basel) 2021;10:2424. [PMID: 34834787 DOI: 10.3390/plants10112424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Farahmand Nejad MA, Ranjbar S, Parolo C, Nguyen EP, Álvarez-diduk R, Hormozi-nezhad MR, Merkoçi A. Electrochromism: An emerging and promising approach in (bio)sensing technology. Materials Today 2021;50:476-98. [DOI: 10.1016/j.mattod.2021.06.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
52 Rosati G, Idili A, Parolo C, Fuentes-Chust C, Calucho E, Hu L, Castro E Silva CC, Rivas L, Nguyen EP, Bergua JF, Alvárez-Diduk R, Muñoz J, Junot C, Penon O, Monferrer D, Delamarche E, Merkoçi A. Nanodiagnostics to Face SARS-CoV-2 and Future Pandemics: From an Idea to the Market and Beyond. ACS Nano 2021. [PMID: 34705433 DOI: 10.1021/acsnano.1c06839] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
53 Deng Y, Jiang H, Li X, Lv X. Recent advances in sensitivity enhancement for lateral flow assay. Mikrochim Acta 2021;188:379. [PMID: 34647157 DOI: 10.1007/s00604-021-05037-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
54 Zhou Y, Wu Y, Ding L, Huang X, Xiong Y. Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends Analyt Chem 2021;145:116452. [PMID: 34629572 DOI: 10.1016/j.trac.2021.116452] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
55 Ganguly A, Ebrahimzadeh T, Zimmern PE, De Nisco NJ, Prasad S. Label Free, Lateral Flow Prostaglandin E2 Electrochemical Immunosensor for Urinary Tract Infection Diagnosis. Chemosensors 2021;9:271. [DOI: 10.3390/chemosensors9090271] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Wang Z, Xing K, Ding N, Wang S, Zhang G, Lai W. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. J Hazard Mater 2021;423:127204. [PMID: 34555767 DOI: 10.1016/j.jhazmat.2021.127204] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
57 Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
58 Miglione A, Napoletano M, Cinti S. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Biosensors (Basel) 2021;11:315. [PMID: 34562905 DOI: 10.3390/bios11090315] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
59 Idili A, Parolo C, Alvarez-Diduk R, Merkoçi A. Rapid and Efficient Detection of the SARS-CoV-2 Spike Protein Using an Electrochemical Aptamer-Based Sensor. ACS Sens 2021;6:3093-101. [PMID: 34375076 DOI: 10.1021/acssensors.1c01222] [Cited by in Crossref: 35] [Cited by in F6Publishing: 44] [Article Influence: 35.0] [Reference Citation Analysis]
60 Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors (Basel) 2021;21:5185. [PMID: 34372422 DOI: 10.3390/s21155185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 48] [Article Influence: 1.0] [Reference Citation Analysis]
61 Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021;204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
62 Yang SZ, Liu QA, Liu YL, Weng GJ, Zhu J, Li JJ. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim Acta 2021;188:258. [PMID: 34268648 DOI: 10.1007/s00604-021-04885-z] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
63 Panferov VG, Byzova NA, Biketov SF, Zherdev AV, Dzantiev BB. Comparative Study of In Situ Techniques to Enlarge Gold Nanoparticles for Highly Sensitive Lateral Flow Immunoassay of SARS-CoV-2. Biosensors (Basel) 2021;11:229. [PMID: 34356700 DOI: 10.3390/bios11070229] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
64 Wang C, Yang X, Zheng S, Cheng X, Xiao R, Li Q, Wang W, Liu X, Wang S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens Actuators B Chem 2021;345:130372. [PMID: 34219970 DOI: 10.1016/j.snb.2021.130372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
65 Bergua JF, Hu L, Fuentes-Chust C, Álvarez-Diduk R, Hassan AHA, Parolo C, Merkoçi A. Lateral flow device for water fecal pollution assessment: from troubleshooting of its microfluidics using bioluminescence to colorimetric monitoring of generic Escherichia coli. Lab Chip 2021;21:2417-26. [PMID: 33973613 DOI: 10.1039/d1lc00090j] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
66 de Freitas Martins E, Pinotti LF, de Carvalho Castro Silva C, Rocha AR. Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. Chemosensors 2021;9:162. [DOI: 10.3390/chemosensors9070162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
67 Yue H, Huang M, Tian T, Xiong E, Zhou X. Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies. ACS Nano 2021;15:7848-59. [PMID: 33961413 DOI: 10.1021/acsnano.1c02372] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 22.0] [Reference Citation Analysis]
68 Dubrovsky M, Blevins M, Boriskina SV, Vermeulen D. High contrast cleavage detection. Opt Lett 2021;46:2593-6. [PMID: 34061064 DOI: 10.1364/OL.424858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
69 Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. Adv Mater 2021;33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
70 Flores-Hernandez DR, Santamaria-Garcia VJ, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Bonilla-Rios J. Paper and Other Fibrous Materials-A Complete Platform for Biosensing Applications. Biosensors (Basel) 2021;11:128. [PMID: 33919464 DOI: 10.3390/bios11050128] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
71 Qin J, Lu Q, Wang C, Luo J, Yang M. Colloidal gold-based lateral flow immunoassay with inline cleanup for rapid on-site screening of carbendazim in functional foods. Anal Bioanal Chem 2021;413:3725-35. [PMID: 33851226 DOI: 10.1007/s00216-021-03321-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. Biosensors (Basel) 2021;11:110. [PMID: 33917183 DOI: 10.3390/bios11040110] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 27.0] [Reference Citation Analysis]
73 Wang S, Shen W, Zheng S, Li Z, Wang C, Zhang L, Liu Y. Dual-signal lateral flow assay using vancomycin-modified nanotags for rapid and sensitive detection of Staphylococcus aureus. RSC Adv 2021;11:13297-303. [PMID: 35423879 DOI: 10.1039/d1ra01085a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
74 Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 63] [Cited by in F6Publishing: 72] [Article Influence: 63.0] [Reference Citation Analysis]
75 Loeffler CR, Tartaglione L, Friedemann M, Spielmeyer A, Kappenstein O, Bodi D. Ciguatera Mini Review: 21st Century Environmental Challenges and the Interdisciplinary Research Efforts Rising to Meet Them. Int J Environ Res Public Health 2021;18:3027. [PMID: 33804281 DOI: 10.3390/ijerph18063027] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
76 Du Y, Liu D, Wang M, Guo F, Lin JS. Preparation of DNA aptamer and development of lateral flow aptasensor combining recombinase polymerase amplification for detection of erythromycin. Biosens Bioelectron 2021;181:113157. [PMID: 33756378 DOI: 10.1016/j.bios.2021.113157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
77 Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021;180:113112. [PMID: 33706158 DOI: 10.1016/j.bios.2021.113112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
78 Sena-Torralba A, Alvarez-Diduk R, Parolo C, Torné-Morató H, Müller A, Merkoçi A. Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Anal Chem 2021;93:3112-21. [PMID: 33534544 DOI: 10.1021/acs.analchem.0c04330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
79 Tortorella S, Cinti S. How Can Chemometrics Support the Development of Point of Need Devices? Anal Chem 2021;93:2713-22. [DOI: 10.1021/acs.analchem.0c04151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]