BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L, Jing D, Jiang N, Rojalin T, Baehr CM, Zhang D, Xiao W, Wu Y, Cong Z, Li JJ, Li Y, Wang L, Lam KS. Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nat Nanotechnol 2020;15:145-53. [PMID: 31988501 DOI: 10.1038/s41565-019-0626-4] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, Ren F, Zhang X, Shi X, Gao F, Chang J, Wang S. Programmed Size-Changeable Nanotheranostic Agents for Enhanced Imaging-Guided Chemo/Photodynamic Combination Therapy and Fast Elimination. Adv Mater 2021;33:e2100398. [PMID: 33876500 DOI: 10.1002/adma.202100398] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
2 Zhao D, Jiang K, Wang Y, Cheng J, Mo F, Luo T, Guo Y, Zhang C, Song J. Out-of-the-Box Nanocapsules Packed with On-Demand Hydrophobic Anticancer Drugs for Lung Targeting, Esterase Triggering, and Synergy Therapy. Adv Healthc Mater 2021;10:e2001803. [PMID: 33433961 DOI: 10.1002/adhm.202001803] [Reference Citation Analysis]
3 Jiang Q, Liu X, Liang G, Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021;13:15142-50. [PMID: 34494635 DOI: 10.1039/d1nr04992e] [Reference Citation Analysis]
4 Bayram NN, Ulu GT, Topuzoğulları M, Baran Y, Dinçer İşoğlu S. HER2-Targeted, Degradable Core Cross-Linked Micelles for Specific and Dual pH-Sensitive DOX Release. Macromol Biosci 2021;:e2100375. [PMID: 34708562 DOI: 10.1002/mabi.202100375] [Reference Citation Analysis]
5 Huang Z, Song W, Chen X. Supramolecular Self-Assembled Nanostructures for Cancer Immunotherapy. Front Chem 2020;8:380. [PMID: 32528926 DOI: 10.3389/fchem.2020.00380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Sheng Q, Li T, Tang X, Zhao W, Guo R, Cun X, Zang S, Zhang Z, Li M, He Q. Comprehensively enhanced delivery cascade by transformable beaded nanofibrils for pancreatic cancer therapy. Nanoscale 2021;13:13328-43. [PMID: 34477739 DOI: 10.1039/d1nr02017j] [Reference Citation Analysis]
7 Zhang X, Chen X, Song J, Zhang J, Ren X, Zhao Y. Size‐Transformable Nanostructures: From Design to Biomedical Applications. Adv Mater 2020;32:2003752. [DOI: 10.1002/adma.202003752] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
8 Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021;11:5863-75. [PMID: 33897886 DOI: 10.7150/thno.53615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Zheng X, Pan D, Chen X, Wu L, Chen M, Wang W, Zhang H, Gong Q, Gu Z, Luo K. Self-Stabilized Supramolecular Assemblies Constructed from PEGylated Dendritic Peptide Conjugate for Augmenting Tumor Retention and Therapy. Adv Sci (Weinh) 2021;8:e2102741. [PMID: 34623034 DOI: 10.1002/advs.202102741] [Reference Citation Analysis]
10 Wang Y, Shi L, Ma D, Xu S, Wu W, Xu L, Panahandeh-Fard M, Zhu X, Wang B, Liu B. Tumor-Activated and Metal-Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano 2020;14:13056-68. [PMID: 33016697 DOI: 10.1021/acsnano.0c04518] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, Hest JCM. Acid‐Activatable Transmorphic Peptide‐Based Nanomaterials for Photodynamic Therapy. Angew Chem 2020;132:20763-9. [DOI: 10.1002/ange.202008708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
12 Jia W, Wang Y, Liu R, Yu X, Gao H. Shape Transformable Strategies for Drug Delivery. Adv Funct Mater 2021;31:2009765. [DOI: 10.1002/adfm.202009765] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
13 Liu N, Zhu L, Li Z, Liu W, Sun M, Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater Sci 2021;9:5427-36. [PMID: 34319316 DOI: 10.1039/d1bm00782c] [Reference Citation Analysis]
14 Mamuti M, Zheng R, An H, Wang H. In vivo self-assembled nanomedicine. Nano Today 2021;36:101036. [DOI: 10.1016/j.nantod.2020.101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wang Y, Li S, Wang X, Chen Q, He Z, Luo C, Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021;271:120737. [PMID: 33690103 DOI: 10.1016/j.biomaterials.2021.120737] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Li RS, Liu J, Shi H, Hu PP, Wang Y, Gao PF, Wang J, Jia M, Li H, Li YF, Mao C, Li N, Huang CZ. Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. Nano Lett 2021;21:8455-65. [PMID: 34569805 DOI: 10.1021/acs.nanolett.1c03112] [Reference Citation Analysis]
17 Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2021;26:1319-29. [PMID: 33359114 DOI: 10.1016/j.drudis.2020.12.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, van Hest JCM. Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. Angew Chem Int Ed Engl 2020;59:20582-8. [PMID: 32687653 DOI: 10.1002/anie.202008708] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
19 Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Reference Citation Analysis]
20 Li J, Fang Y, Zhang Y, Wang H, Yang Z, Ding D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Adv Mater 2021;33:e2008518. [PMID: 33734518 DOI: 10.1002/adma.202008518] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
21 Zhang X, Chen Y, He X, Zhang Y, Zhou M, Peng C, He Z, Gui S, Li Z. Smart Nanogatekeepers for Tumor Theranostics. Small 2021;17:e2103712. [PMID: 34677898 DOI: 10.1002/smll.202103712] [Reference Citation Analysis]
22 Baehr CM, Zhang L, Wu Y, Domokos A, Xiao W, Wang L, Lam KS. Transformable amyloid-beta mimetic peptide amphiphiles for lysosomal disruption in non-small cell lung cancer. Biomaterials 2021;277:121078. [PMID: 34461458 DOI: 10.1016/j.biomaterials.2021.121078] [Reference Citation Analysis]
23 Teng F, Fussenegger M. Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Adv Sci (Weinh) 2020;8:2003505. [PMID: 33437589 DOI: 10.1002/advs.202003505] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
24 Zhang Q, Zheng D, Dong X, Pan P, Zeng S, Gao F, Cheng S, Zhang X. A Strategy Based on the Enzyme-Catalyzed Polymerization Reaction of Asp-Phe-Tyr Tripeptide for Cancer Immunotherapy. J Am Chem Soc 2021;143:5127-40. [DOI: 10.1021/jacs.1c00945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020;11:8644-56. [PMID: 34123123 DOI: 10.1039/d0sc02937h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
26 Yang PP, Li YJ, Cao Y, Zhang L, Wang JQ, Lai Z, Zhang K, Shorty D, Xiao W, Cao H, Wang L, Wang H, Liu R, Lam KS. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library. Nat Commun 2021;12:4494. [PMID: 34301935 DOI: 10.1038/s41467-021-24597-5] [Reference Citation Analysis]
27 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020;17:1597-613. [PMID: 32835538 DOI: 10.1080/17425247.2020.1814733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
29 Guo Y, Hu Y, Zheng X, Cao X, Li Q, Wei Z, Zhu Z, Zhang S. Self-assembled peptide nanoparticles with endosome escaping permits for co-drug delivery. Talanta 2021;221:121572. [DOI: 10.1016/j.talanta.2020.121572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Fan JQ, Li YJ, Wei ZJ, Fan Y, Li XD, Chen ZM, Hou DY, Xiao WY, Ding MR, Wang H, Wang L. Binding-Induced Fibrillogenesis Peptides Recognize and Block Intracellular Vimentin Skeletonization against Breast Cancer. Nano Lett 2021;21:6202-10. [PMID: 34259530 DOI: 10.1021/acs.nanolett.1c01950] [Reference Citation Analysis]
31 Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2021;:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Reference Citation Analysis]
32 Chang R, Yan X. Supramolecular Immunotherapy of Cancer Based on the Self‐Assembling Peptide Design. Small Structures 2020;1:2000068. [DOI: 10.1002/sstr.202000068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
33 Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, Huang Z, Wang Z, Tang Z, Song W, Chen X. Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Adv Mater 2021;33:e2007293. [PMID: 33448050 DOI: 10.1002/adma.202007293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
34 Zhang L, Wu Y, Yin X, Zhu Z, Rojalin T, Xiao W, Zhang D, Huang Y, Li L, Baehr CM, Yu X, Ajena Y, Li Y, Wang L, Lam KS. Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and Pharmacokinetics of Smart Nanomaterials. ACS Nano 2021;15:468-79. [PMID: 33332957 DOI: 10.1021/acsnano.0c05065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
35 Tian Y, Zhang L, Liu F, Wang M, Li L, Guo M, Xu H, Yu Z, Wang W. Multi-stage responsive peptide nanosensor: Anchoring EMT and mitochondria with enhanced fluorescence and boosting tumor apoptosis. Biosens Bioelectron 2021;184:113235. [PMID: 33887614 DOI: 10.1016/j.bios.2021.113235] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Ma S, Xu Y, Song W. Functional bionanomaterials for cell surface engineering in cancer immunotherapy. APL Bioeng 2021;5:021506. [PMID: 33981940 DOI: 10.1063/5.0045945] [Reference Citation Analysis]
37 Jiang L, Chen D, Jin Z, Xia C, Xu Q, Fan M, Dai Y, Liu J, Li Y, He Q. Light-triggered nitric oxide release and structure transformation of peptide for enhanced intratumoral retention and sensitized photodynamic therapy. Bioactive Materials 2022;12:303-13. [DOI: 10.1016/j.bioactmat.2021.09.035] [Reference Citation Analysis]