BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017;2:17024. [PMID: 29075517 DOI: 10.1038/natrevmats.2017.24] [Cited by in Crossref: 516] [Cited by in F6Publishing: 490] [Article Influence: 103.2] [Reference Citation Analysis]
Number Citing Articles
1 Sánchez-López E, Guerra M, Dias-Ferreira J, Lopez-Machado A, Ettcheto M, Cano A, Espina M, Camins A, Garcia ML, Souto EB. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials (Basel) 2019;9:E821. [PMID: 31159219 DOI: 10.3390/nano9060821] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
2 Lyu Z, Ding L, Tintaru A, Peng L. Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Acc Chem Res 2020;53:2936-49. [PMID: 33275845 DOI: 10.1021/acs.accounts.0c00589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
3 Kang M, Zhou C, Wu S, Yu B, Zhang Z, Song N, Lee MMS, Xu W, Xu FJ, Wang D, Wang L, Tang BZ. Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. J Am Chem Soc 2019;141:16781-9. [PMID: 31553608 DOI: 10.1021/jacs.9b07162] [Cited by in Crossref: 108] [Cited by in F6Publishing: 88] [Article Influence: 36.0] [Reference Citation Analysis]
4 Zeng J, Wang X, Song W, Cheng H, Zhang X. Metal-Organic Framework Mediated Multifunctional Nanoplatforms for Cancer Therapy. Adv Therap 2019;2:1800100. [DOI: 10.1002/adtp.201800100] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
5 Meng Z, Zhang L, He Z, Lian H. Mucosal Penetrating Bioconjugate Coated Upconverting Nanoparticles That Integrate Biological Tracking and Photodynamic Therapy for Gastrointestinal Cancer Treatment. ACS Biomater Sci Eng 2018;4:2203-12. [DOI: 10.1021/acsbiomaterials.8b00359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
6 Shu L, Fu F, Huang Z, Huang Y, Hu P, Pan X. Nanostructure of DiR-Loaded Solid Lipid Nanoparticles with Potential Bioimaging Functions. AAPS PharmSciTech 2020;21. [DOI: 10.1208/s12249-020-01847-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019;14:2487-514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
8 Fathi P, Rao L, Chen X. Extracellular vesicle‐coated nanoparticles. View 2021;2:20200187. [DOI: 10.1002/viw.20200187] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Chen W, Qin M, Chen X, Wang Q, Zhang Z, Sun X. Combining photothermal therapy and immunotherapy against melanoma by polydopamine-coated Al2O3 nanoparticles. Theranostics 2018;8:2229-41. [PMID: 29721075 DOI: 10.7150/thno.24073] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
10 Liu Z, Le Z, Lu L, Zhu Y, Yang C, Zhao P, Wang Z, Shen J, Liu L, Chen Y. Scalable fabrication of metal-phenolic nanoparticles by coordination-driven flash nanocomplexation for cancer theranostics. Nanoscale 2019;11:9410-21. [PMID: 31038500 DOI: 10.1039/c9nr02185j] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
11 Guo P, Huang J, Moses MA. Cancer Nanomedicines in an Evolving Oncology Landscape. Trends Pharmacol Sci 2020;41:730-42. [PMID: 32873407 DOI: 10.1016/j.tips.2020.08.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
12 Zhang H, Wang T, Liu H, Ren F, Qiu W, Sun Q, Yan F, Zheng H, Li Z, Gao M. Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu2-xSe nanoparticles. Nanoscale 2019;11:7600-8. [PMID: 30968107 DOI: 10.1039/c9nr01789e] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 12.3] [Reference Citation Analysis]
13 Shan W, Zhang D, Wu Y, Lv X, Hu B, Zhou X, Ye S, Bi S, Ren L, Zhang X. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomedicine: Nanotechnology, Biology and Medicine 2018;14:725-34. [DOI: 10.1016/j.nano.2017.12.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
14 Chen J, Liu L, Motevalli SM, Wu X, Yang X, Li X, Han L, Magrini A, Guo W, Chang J, Bottini M, Liang X. Light-Triggered Retention and Cascaded Therapy of Albumin-Based Theranostic Nanomedicines to Alleviate Tumor Adaptive Treatment Tolerance. Adv Funct Mater 2018;28:1707291. [DOI: 10.1002/adfm.201707291] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
15 Li X, Kim C, Lee S, Lee D, Chung H, Kim G, Heo S, Kim C, Hong K, Yoon J. Nanostructured Phthalocyanine Assemblies with Protein-Driven Switchable Photoactivities for Biophotonic Imaging and Therapy. J Am Chem Soc 2017;139:10880-6. [DOI: 10.1021/jacs.7b05916] [Cited by in Crossref: 209] [Cited by in F6Publishing: 179] [Article Influence: 41.8] [Reference Citation Analysis]
16 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 21.7] [Reference Citation Analysis]
17 Li X, Zhang D, Yin C, Lu G, Wan Y, Huang Z, Tan J, Li S, Luo J, Lee CS. A Diradicaloid Small Molecular Nanotheranostic with Strong Near-Infrared Absorbance for Effective Cancer Photoacoustic Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2021;13:15983-91. [PMID: 33788531 DOI: 10.1021/acsami.0c21889] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
18 Yu G, Jiang M, Huang F, Chen X. Supramolecular coordination complexes as diagnostic and therapeutic agents. Curr Opin Chem Biol 2021;61:19-31. [PMID: 33147551 DOI: 10.1016/j.cbpa.2020.08.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021;177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Boehnke N, Correa S, Hao L, Wang W, Straehla JP, Bhatia SN, Hammond PT. Theranostic Layer‐by‐Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew Chem 2020;132:2798-805. [DOI: 10.1002/ange.201911762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ling S, Yang X, Li C, Zhang Y, Yang H, Chen G, Wang Q. Tumor Microenvironment‐Activated NIR‐II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angew Chem 2020;132:7286-90. [DOI: 10.1002/ange.202000947] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Yu G, Cen T, He Z, Wang S, Wang Z, Ying X, Li S, Jacobson O, Wang S, Wang L, Lin L, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage‐Embedded Single‐Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem 2019;131:8891-5. [DOI: 10.1002/ange.201903277] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
23 Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater 2021;33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang Y, Ho S, Li B, Nie G, Li S. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Med Res Rev 2020;40:1084-102. [DOI: 10.1002/med.21644] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
25 Niu G, Chen X. When radionuclides meet nanoparticles. Nature Nanotech 2018;13:359-60. [DOI: 10.1038/s41565-018-0103-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Devereux SJ, Cheung S, Daly HC, O'shea DF, Quinn SJ. Multimodal Microscopy Distinguishes Extracellular Aggregation and Cellular Uptake of Single‐Walled Carbon Nanohorns. Chem Eur J 2018;24:14162-70. [DOI: 10.1002/chem.201801532] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
27 Hu C, Lei T, Wang Y, Cao J, Yang X, Qin L, Liu R, Zhou Y, Tong F, Umeshappa CS, Gao H. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 2020;255:120159. [PMID: 32554131 DOI: 10.1016/j.biomaterials.2020.120159] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
28 Chen Q, Luo Y, Du W, Liu Z, Zhang S, Yang J, Yao H, Liu T, Ma M, Chen H. Clearable Theranostic Platform with a pH-Independent Chemodynamic Therapy Enhancement Strategy for Synergetic Photothermal Tumor Therapy. ACS Appl Mater Interfaces 2019;11:18133-44. [PMID: 31046230 DOI: 10.1021/acsami.9b02905] [Cited by in Crossref: 53] [Cited by in F6Publishing: 40] [Article Influence: 17.7] [Reference Citation Analysis]
29 Santana CP, Mansur AA, Carvalho SM, da Silva-cunha A, Mansur HS. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro. Materials Letters 2019;252:333-7. [DOI: 10.1016/j.matlet.2019.06.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
30 Zhang H, Zhang DY, Shen J, Mao ZW. 3D CoPt nanostructures hybridized with iridium complexes for multimodal imaging and combined photothermal-chemotherapy. J Inorg Biochem 2021;219:111429. [PMID: 33780685 DOI: 10.1016/j.jinorgbio.2021.111429] [Reference Citation Analysis]
31 Mu W, Jiang D, Mu S, Liang S, Liu Y, Zhang N. Promoting Early Diagnosis and Precise Therapy of Hepatocellular Carcinoma by Glypican-3-Targeted Synergistic Chemo-Photothermal Theranostics. ACS Appl Mater Interfaces 2019;11:23591-604. [DOI: 10.1021/acsami.9b05526] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
32 Yu G, Zhao X, Zhou J, Mao Z, Huang X, Wang Z, Hua B, Liu Y, Zhang F, He Z, Jacobson O, Gao C, Wang W, Yu C, Zhu X, Huang F, Chen X. Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. J Am Chem Soc 2018;140:8005-19. [DOI: 10.1021/jacs.8b04400] [Cited by in Crossref: 133] [Cited by in F6Publishing: 120] [Article Influence: 33.3] [Reference Citation Analysis]
33 Guo P, Yang J, Liu D, Huang L, Fell G, Huang J, Moses MA, Auguste DT. Dual complementary liposomes inhibit triple-negative breast tumor progression and metastasis. Sci Adv 2019;5:eaav5010. [PMID: 30906868 DOI: 10.1126/sciadv.aav5010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
34 Chen W, Wang Y, Qin M, Zhang X, Zhang Z, Sun X, Gu Z. Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy. ACS Nano 2018;12:5995-6005. [DOI: 10.1021/acsnano.8b02235] [Cited by in Crossref: 108] [Cited by in F6Publishing: 98] [Article Influence: 27.0] [Reference Citation Analysis]
35 Mansur AAP, Carvalho SM, Lobato ZIP, Leite MDF, Cunha ADS, Mansur HS. Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chem 2018;29:1973-2000. [DOI: 10.1021/acs.bioconjchem.8b00208] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
36 Chen J, Zou Z, Ke Z, Zhang X, Feng J, Jing Y, Peng L, Yang J, Dai Y, Zou D. Dimerization of heavy atom free tetraphenylethylene with aggregation induced emission for boosting photodynamic therapy. New J Chem 2020;44:7029-34. [DOI: 10.1039/d0nj01251c] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2020;27:6015-56. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Ye H, Shen Z, Yu L, Wei M, Li Y. Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proc Math Phys Eng Sci 2018;474:20170845. [PMID: 29662344 DOI: 10.1098/rspa.2017.0845] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
39 Gong N, Zhang Y, Zhang Z, Li X, Liang X. Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance. Adv Funct Mater 2019;29:1806087. [DOI: 10.1002/adfm.201806087] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
40 Zhao J, Chen X, Ho K, Cai C, Li C, Yang M, Yi C. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches. Chinese Chemical Letters 2021;32:66-86. [DOI: 10.1016/j.cclet.2020.11.048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
41 Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020;10:5435-88. [PMID: 32373222 DOI: 10.7150/thno.40068] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
42 Lin SL, Chen HC, Chang CA. Enhancing Förster Resonance Energy Transfer (FRET) Efficiency of Titania-Lanthanide Hybrid Upconversion Nanomaterials by Shortening the Donor-Acceptor Distance. Nanomaterials (Basel) 2020;10:E2035. [PMID: 33076441 DOI: 10.3390/nano10102035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Liu B, Wang W, Fan J, Long Y, Xiao F, Daniyal M, Tong C, Xie Q, Jian Y, Li B, Ma X, Wang W. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 2019;217:119301. [PMID: 31279101 DOI: 10.1016/j.biomaterials.2019.119301] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 14.7] [Reference Citation Analysis]
44 He G, Huang P, Chen X. Theranostic multimodal gold nanoclusters. Nat Biomed Eng 2020;4:668-9. [DOI: 10.1038/s41551-020-0588-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
45 Li J, Wang H, Wang Y, Gong X, Xu X, Sha X, Zhang A, Zhang Z, Li Y. Tumor‐Activated Size‐Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Anti‐Tumor Immune Responses. Adv Mater 2020;32:2002380. [DOI: 10.1002/adma.202002380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
46 Wu L, Lin B, Yang H, Chen J, Mao Z, Wang W, Gao C. Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy. Acta Biomaterialia 2019;86:363-72. [DOI: 10.1016/j.actbio.2019.01.026] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
47 Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering: C 2018;83:218-32. [DOI: 10.1016/j.msec.2017.10.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
48 Liu D, Liu L, Liu F, Zhang M, Wei P, Yi T. HOCl-Activated Aggregation of Gold Nanoparticles for Multimodality Therapy of Tumors. Adv Sci (Weinh) 2021;8:e2100074. [PMID: 34235882 DOI: 10.1002/advs.202100074] [Reference Citation Analysis]
49 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
50 Yang H, Tong Z, Sun S, Mao Z. Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. J Control Release 2020;328:28-44. [PMID: 32858072 DOI: 10.1016/j.jconrel.2020.08.024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
51 Zhou Z, Deng H, Yang W, Wang Z, Lin L, Munasinghe J, Jacobson O, Liu Y, Tang L, Ni Q, Kang F, Liu Y, Niu G, Bai R, Qian C, Song J, Chen X. Early stratification of radiotherapy response by activatable inflammation magnetic resonance imaging. Nat Commun 2020;11:3032. [PMID: 32541769 DOI: 10.1038/s41467-020-16771-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
52 Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. Adv Sci (Weinh) 2021;8:e2100460. [PMID: 34494387 DOI: 10.1002/advs.202100460] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T1 MRI activation for cancer theranostics. Biomaterials 2020;244:119979. [PMID: 32200104 DOI: 10.1016/j.biomaterials.2020.119979] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
54 Yan C, Zhang Y, Guo Z. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coordination Chemistry Reviews 2021;427:213556. [DOI: 10.1016/j.ccr.2020.213556] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 18.0] [Reference Citation Analysis]
55 Bose RJ, Paulmurugan R, Moon J, Lee SH, Park H. Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discov Today 2018;23:891-9. [PMID: 29426004 DOI: 10.1016/j.drudis.2018.02.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 15.8] [Reference Citation Analysis]
56 Correa S, Boehnke N, Barberio AE, Deiss-Yehiely E, Shi A, Oberlton B, Smith SG, Zervantonakis I, Dreaden EC, Hammond PT. Tuning Nanoparticle Interactions with Ovarian Cancer through Layer-by-Layer Modification of Surface Chemistry. ACS Nano 2020;14:2224-37. [PMID: 31971772 DOI: 10.1021/acsnano.9b09213] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
57 Li S, Chen H, Liu H, Liu L, Yuan Y, Mao C, Zhang W, Zhang X, Guo W, Lee C, Liang X. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano 2020;14:13681-90. [DOI: 10.1021/acsnano.0c05885] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
58 Golubewa L, Kulahava T, Timoshchenko I, Shuba M, Svirko Y, Kuzhir P. Rapid and delayed effects of single-walled carbon nanotubes in glioma cells. Nanotechnology 2021;32. [PMID: 34547739 DOI: 10.1088/1361-6528/ac28da] [Reference Citation Analysis]
59 Zhang M, Song C, Su S, Du F, Li Z. ROS-Activated Ratiometric Fluorescent Polymeric Nanoparticles for Self-Reporting Drug Delivery. ACS Appl Mater Interfaces 2018;10:7798-810. [DOI: 10.1021/acsami.7b18438] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
60 Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019;48:3771-810. [DOI: 10.1039/c8cs00896e] [Cited by in Crossref: 126] [Cited by in F6Publishing: 30] [Article Influence: 42.0] [Reference Citation Analysis]
61 Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018;118:6844-92. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Cited by in Crossref: 427] [Cited by in F6Publishing: 325] [Article Influence: 106.8] [Reference Citation Analysis]
62 Wu W, Yu L, Pu Y, Yao H, Chen Y, Shi J. Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Adv Mater 2020;32:e2000542. [PMID: 32162734 DOI: 10.1002/adma.202000542] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
63 Wang Y, Li X, Chen P, Dong Y, Liang G, Yu Y. Enzyme-instructed self-aggregation of Fe3O4 nanoparticles for enhanced MRI T2 imaging and photothermal therapy of tumors. Nanoscale 2020;12:1886-93. [PMID: 31904049 DOI: 10.1039/c9nr09235h] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 8.5] [Reference Citation Analysis]
64 Liu B, Thayumanavan S. Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. Chem 2019;5:3166-83. [DOI: 10.1016/j.chempr.2019.09.001] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
65 Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2021;268:120562. [PMID: 33278682 DOI: 10.1016/j.biomaterials.2020.120562] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
66 Li X, Zhao X, Pardhi D, Wu Q, Zheng Y, Zhu H, Mao Z. Folic acid modified cell membrane capsules encapsulating doxorubicin and indocyanine green for highly effective combinational therapy in vivo. Acta Biomaterialia 2018;74:374-84. [DOI: 10.1016/j.actbio.2018.05.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
67 Cui Z, Zhang Y, Xia K, Yan Q, Kong H, Zhang J, Zuo X, Shi J, Wang L, Zhu Y, Fan C. Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun 2018;9:4347. [PMID: 30341298 DOI: 10.1038/s41467-018-06749-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
68 Pinto RJB, Bispo D, Vilela C, Botas AMP, Ferreira RAS, Menezes AC, Campos F, Oliveira H, Abreu MH, Santos SAO, Freire CSR. One-Minute Synthesis of Size-Controlled Fucoidan-Gold Nanosystems: Antitumoral Activity and Dark Field Imaging. Materials (Basel) 2020;13:E1076. [PMID: 32121128 DOI: 10.3390/ma13051076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Liu B, Wu R, Gong S, Xiao H, Thayumanavan S. In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angew Chem Int Ed Engl 2020;59:15135-40. [PMID: 32410309 DOI: 10.1002/anie.202004017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
70 Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W. Size-Tunable Assemblies Based on Ferrocene-Containing DNA Polymers for Spatially Uniform Penetration. Chem 2019;5:1775-92. [DOI: 10.1016/j.chempr.2019.05.024] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
71 Zhu Y, Gu C, Miao Y, Yu B, Shen Y, Cong H. D-A polymers for fluorescence/photoacoustic imaging and characterization of their photothermal properties. J Mater Chem B 2019;7:6576-84. [PMID: 31588950 DOI: 10.1039/c9tb01196j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 5.7] [Reference Citation Analysis]
72 Yang W, Zhu G, Wang S, Yu G, Yang Z, Lin L, Zhou Z, Liu Y, Dai Y, Zhang F, Shen Z, Liu Y, He Z, Lau J, Niu G, Kiesewetter DO, Hu S, Chen X. In Situ Dendritic Cell Vaccine for Effective Cancer Immunotherapy. ACS Nano 2019;13:3083-94. [PMID: 30835435 DOI: 10.1021/acsnano.8b08346] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 23.7] [Reference Citation Analysis]
73 Huang Y, Huang P, Lin J. Plasmonic Gold Nanovesicles for Biomedical Applications. Small Methods 2019;3:1800394. [DOI: 10.1002/smtd.201800394] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
74 Liang C, Zhang X, Yang M, Dong X. Recent Progress in Ferroptosis Inducers for Cancer Therapy. Adv Mater 2019;31:1904197. [DOI: 10.1002/adma.201904197] [Cited by in Crossref: 163] [Cited by in F6Publishing: 157] [Article Influence: 54.3] [Reference Citation Analysis]
75 Lin SX, Pan WL, Niu RJ, Liu Y, Chen JX, Zhang WH, Lang JP, Young DJ. Effective loading of cisplatin into a nanoscale UiO-66 metal-organic framework with preformed defects. Dalton Trans. 2019;48:5308-5314. [PMID: 30938739 DOI: 10.1039/c9dt00719a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 4] [Article Influence: 8.3] [Reference Citation Analysis]
76 Yu Y, Chen Y, Huang J, Wang L, Gu Z, Zhang S. Redox-responsive tetraphenylethylene-buried crosslinked vesicles for enhanced drug loading and efficient drug delivery monitoring. J Mater Chem B 2019;7:7540-7. [DOI: 10.1039/c9tb01639b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front Bioeng Biotechnol. 2017;5:79. [PMID: 29326927 DOI: 10.3389/fbioe.2017.00079] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
78 Cao M, Long M, Chen Q, Lu Y, Luo Q, Zhao Y, Lu A, Ge C, Zhu L, Chen Z. Development of β-elemene and Cisplatin Co-Loaded Liposomes for Effective Lung Cancer Therapy and Evaluation in Patient-Derived Tumor Xenografts. Pharm Res 2019;36:121. [PMID: 31214786 DOI: 10.1007/s11095-019-2656-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
79 Qu J, Teng D, Sui G, Guan S, Wang Y, Wang Q, Lin Y, Ran H, Wang Z, Wang H. A photothermal-hypoxia sequentially activatable phase-change nanoagent for mitochondria-targeting tumor synergistic therapy. Biomater Sci 2020;8:3116-29. [PMID: 32352102 DOI: 10.1039/d0bm00003e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Chen F, Li Y, Lin X, Qiu H, Yin S. Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers (Basel) 2021;13:370. [PMID: 33503965 DOI: 10.3390/polym13030370] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat Commun 2018;9:1848. [PMID: 29748611 DOI: 10.1038/s41467-018-04222-8] [Cited by in Crossref: 172] [Cited by in F6Publishing: 160] [Article Influence: 43.0] [Reference Citation Analysis]
82 Fu D, Ding X, Wu J, Li C, Wang Q, Jiang J. Cationic Polyelectrolyte Mediated Synthesis of MnO 2 -Based Core-Shell Structures as Activatable MRI Theranostic Platform for Tumor Cell Ablation. Part Part Syst Charact 2018;35:1800078. [DOI: 10.1002/ppsc.201800078] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
83 Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. A Magnetofluorescent Carbon Dot Assembly as an Acidic H 2 O 2 ‐Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Adv Mater 2018;30:1706090. [DOI: 10.1002/adma.201706090] [Cited by in Crossref: 216] [Cited by in F6Publishing: 197] [Article Influence: 54.0] [Reference Citation Analysis]
84 Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev 2020;40:909-30. [PMID: 31650619 DOI: 10.1002/med.21642] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
85 Wang Y, Wang B, Zhang L, Huang J, Li P, Zhao Y, Zhou C, Liu M, Li W, He J. Mitochondria-targeted nanospheres with deep tumor penetration for photo/starvation therapy. J Mater Chem B 2020;8:7740-54. [DOI: 10.1039/d0tb00001a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
86 Zou D, Zhang A, Chen J, Chen Z, Deng J, Li G, Zhang S, Feng Z, Feng J, Yang J. Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics. Mater Chem Front 2021;5:2694-701. [DOI: 10.1039/d0qm01016b] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
87 Fan Y, Zhang J, Shi M, Li D, Lu C, Cao X, Peng C, Mignani S, Majoral JP, Shi X. Poly(amidoamine) Dendrimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Lett 2019;19:1216-26. [PMID: 30698017 DOI: 10.1021/acs.nanolett.8b04757] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 14.7] [Reference Citation Analysis]
88 Hai L, Zhang A, Wu X, Cheng H, He D, Wang T, He X, Wang K. Liposome-Stabilized Black Phosphorus for Photothermal Drug Delivery and Oxygen Self-Enriched Photodynamic Therapy. ACS Appl Nano Mater 2020;3:563-75. [DOI: 10.1021/acsanm.9b02119] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
89 Sun T, Zhang G, Wang Q, Guo Z, Chen Q, Chen X, Lu Y, Zhang Y, Zhang Y, Guo Q, Gao X, Cheng Y, Jiang C. Pre-blocked molecular shuttle as an in-situ real-time theranostics. Biomaterials 2019;204:46-58. [PMID: 30878796 DOI: 10.1016/j.biomaterials.2019.02.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Ding L, Lyu Z, Tintaru A, Laurini E, Marson D, Louis B, Bouhlel A, Balasse L, Fernandez S, Garrigue P, Mas E, Giorgio S, Pricl S, Guillet B, Peng L. A self-assembling amphiphilic dendrimer nanotracer for SPECT imaging. Chem Commun 2020;56:301-4. [DOI: 10.1039/c9cc07750b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
91 Lugoloobi I, Maniriho H, Jia L, Namulinda T, Shi X, Zhao Y. Cellulose nanocrystals in cancer diagnostics and treatment. J Control Release 2021;336:207-32. [PMID: 34102221 DOI: 10.1016/j.jconrel.2021.06.004] [Reference Citation Analysis]
92 Wang Y, Shi L, Ma D, Xu S, Wu W, Xu L, Panahandeh-Fard M, Zhu X, Wang B, Liu B. Tumor-Activated and Metal-Organic Framework Assisted Self-Assembly of Organic Photosensitizers. ACS Nano 2020;14:13056-68. [PMID: 33016697 DOI: 10.1021/acsnano.0c04518] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
93 Yu G, Yu S, Saha ML, Zhou J, Cook TR, Yung BC, Chen J, Mao Z, Zhang F, Zhou Z, Liu Y, Shao L, Wang S, Gao C, Huang F, Stang PJ, Chen X. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat Commun 2018;9:4335. [PMID: 30337535 DOI: 10.1038/s41467-018-06574-7] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 20.0] [Reference Citation Analysis]
94 Liu B, Wu R, Gong S, Xiao H, Thayumanavan S. In Situ Formation of Polymeric Nanoassemblies Using an Efficient Reversible Click Reaction. Angew Chem 2020;132:15247-52. [DOI: 10.1002/ange.202004017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Liu G, Zhang S, Shi Y, Huang X, Tang Y, Chen P, Si W, Huang W, Dong X. “Wax-Sealed” Theranostic Nanoplatform for Enhanced Afterglow Imaging-Guided Photothermally Triggered Photodynamic Therapy. Adv Funct Mater 2018;28:1804317. [DOI: 10.1002/adfm.201804317] [Cited by in Crossref: 57] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
96 Sun W, Luo L, Feng Y, Qiu Y, Shi C, Meng S, Chen X, Chen H. Gadolinium–Rose Bengal Coordination Polymer Nanodots for MR‐/Fluorescence‐Image‐Guided Radiation and Photodynamic Therapy. Adv Mater 2020;32:2000377. [DOI: 10.1002/adma.202000377] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
97 Wang Q, Li J, Yu H, Deng K, Zhou W, Wang C, Zhang Y, Li K, Zhuo R, Huang S. Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomater Sci 2018;6:3096-107. [DOI: 10.1039/c8bm00852c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
98 Macharia DK, Ahmed S, Zhu B, Liu Z, Wang Z, Mwasiagi JI, Chen Z, Zhu M. UV/NIR-Light-Triggered Rapid and Reversible Color Switching for Rewritable Smart Fabrics. ACS Appl Mater Interfaces 2019;11:13370-9. [DOI: 10.1021/acsami.8b22443] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 5.3] [Reference Citation Analysis]
99 Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. Small 2021;:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Reference Citation Analysis]
100 Kandasamy G, Soni S, Sushmita K, Veerapu NS, Bose S, Maity D. One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. Journal of Molecular Liquids 2019;274:653-63. [DOI: 10.1016/j.molliq.2018.10.161] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
101 Zhang C, Liu WL, Bai XF, Cheng SX, Zhong ZL, Zhang XZ. A hybrid nanomaterial with NIR-induced heat and associated hydroxyl radical generation for synergistic tumor therapy. Biomaterials 2019;199:1-9. [PMID: 30716690 DOI: 10.1016/j.biomaterials.2019.01.041] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
102 Fernandes RS, de Aguiar Ferreira C, Soares DCF, Maffione AM, Townsend DM, Rubello D, de Barros ALB. The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomed Pharmacother 2017;95:469-76. [PMID: 28865367 DOI: 10.1016/j.biopha.2017.08.079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
103 Lee W, Il An G, Park H, Sarkar S, Ha YS, Huynh PT, Bhise A, Bhatt N, Ahn H, Pandya DN, Kim JY, Kim S, Jun E, Kim SC, Lee KC, Yoo J. Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: Application in Early Detection of Pancreatic Cancer. ACS Nano 2021. [PMID: 34405675 DOI: 10.1021/acsnano.1c05165] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Nicolson F, Kircher MF, Stone N, Matousek P. Spatially offset Raman spectroscopy for biomedical applications. Chem Soc Rev 2021;50:556-68. [PMID: 33169761 DOI: 10.1039/d0cs00855a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
105 Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Song X, Xiong Q, Shi S, Li Z, Tao W, Zhang H, Mei L, Shi J. A Novel Top-Down Synthesis of Ultrathin 2D Boron Nanosheets for Multimodal Imaging-Guided Cancer Therapy. Adv Mater 2018;:e1803031. [PMID: 30019786 DOI: 10.1002/adma.201803031] [Cited by in Crossref: 201] [Cited by in F6Publishing: 147] [Article Influence: 50.3] [Reference Citation Analysis]
106 Xue X, Bo R, Qu H, Jia B, Xiao W, Yuan Y, Vapniarsky N, Lindstrom A, Wu H, Zhang D, Li L, Ricci M, Ma Z, Zhu Z, Lin TY, Louie AY, Li Y. A nephrotoxicity-free, iron-based contrast agent for magnetic resonance imaging of tumors. Biomaterials 2020;257:120234. [PMID: 32736259 DOI: 10.1016/j.biomaterials.2020.120234] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
107 Gao X, He Z, Ni W, Jian X, Hu C, Zhao Y, Yan Y, Wei X. Layer‐by‐Layer Assembly of Functional Nanoparticles for Hepatocellular Carcinoma Therapy. Adv Funct Mater 2019;29:1904246. [DOI: 10.1002/adfm.201904246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
108 Jing X, Zhi Z, Zhang N, Song H, Xu Y, Zhou G, Wang D, Shao Y, Meng L. Multistage tumor microenvironment-responsive theranostic nanopeanuts: Toward multimode imaging guided chemo-photodynamic therapy. Chemical Engineering Journal 2020;385:123893. [DOI: 10.1016/j.cej.2019.123893] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
109 Zhang R, Wang L, Wang X, Jia Q, Chen Z, Yang Z, Ji R, Tian J, Wang Z. Acid‐Induced In Vivo Assembly of Gold Nanoparticles for Enhanced Photoacoustic Imaging‐Guided Photothermal Therapy of Tumors. Adv Healthcare Mater 2020;9:2000394. [DOI: 10.1002/adhm.202000394] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
110 Li S, Zou Q, Xing R, Govindaraju T, Fakhrullin R, Yan X. Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics 2019;9:3249-61. [PMID: 31244952 DOI: 10.7150/thno.31814] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
111 Zhou Z, Chan A, Wang Z, Huang X, Yu G, Jacobson O, Wang S, Liu Y, Shan L, Dai Y, Shen Z, Lin L, Chen W, Chen X. Synchronous Chemoradiation Nanovesicles by X-Ray Triggered Cascade of Drug Release. Angew Chem Int Ed Engl 2018;57:8463-7. [PMID: 29757483 DOI: 10.1002/anie.201802351] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
112 Kim D, Kwon HJ, Hyeon T. Magnetite/Ceria Nanoparticle Assemblies for Extracorporeal Cleansing of Amyloid-β in Alzheimer's Disease. Adv Mater 2019;31:e1807965. [PMID: 30920695 DOI: 10.1002/adma.201807965] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
113 Lin S, Wang Y, Chen Z, Li L, Zeng J, Dong Q, Wang Y, Chai Z. Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chem Eng 2018;6:12061-9. [DOI: 10.1021/acssuschemeng.8b02386] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
114 Zhu C, Ding Z, Guo Z, Guo X, Yang A, Li Z, Jiang B, Shen X. Full-spectrum responsive ZrO 2 -based phototheranostic agent for NIR-II photoacoustic imaging-guided cancer phototherapy. Biomater Sci 2020;8:6515-25. [DOI: 10.1039/d0bm01482f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Ren E, Zhang C, Li D, Pang X, Liu G. Leveraging metal oxide nanoparticles for bacteria tracing and eradicating. View 2020;1:20200052. [DOI: 10.1002/viw.20200052] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
116 Sun S, Zhao S, Jiang K, Wang Y, Shu Q, Jin S, Li Z, Lin H. A Facile Approach to Carbon Dots‐Mesoporous Silica Nanohybrids and Their Applications for Multicolor and Two‐Photon Imaging Guided Chemo‐/Photothermal Synergistic Oncotherapy. ChemNanoMat 2020;6:953-62. [DOI: 10.1002/cnma.202000101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
117 Wang Z, Zhang D, Hemu X, Hu S, To J, Zhang X, Lescar J, Tam JP, Liu CF. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases. Theranostics 2021;11:5863-75. [PMID: 33897886 DOI: 10.7150/thno.53615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
118 Almeida-marrero V, van de Winckel E, Anaya-plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018;47:7369-400. [DOI: 10.1039/c7cs00554g] [Cited by in Crossref: 99] [Cited by in F6Publishing: 13] [Article Influence: 24.8] [Reference Citation Analysis]
119 Duan LY, Wang YJ, Liu JW, Wang YM, Li N, Jiang JH. Tumor-selective catalytic nanosystem for activatable theranostics. Chem Commun (Camb) 2018;54:8214-7. [PMID: 29979458 DOI: 10.1039/c8cc03922d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
120 Carvalho SM, Leonel AG, Mansur AAP, Carvalho IC, Krambrock K, Mansur HS. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci 2019;7:2102-22. [DOI: 10.1039/c8bm01528g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 8.7] [Reference Citation Analysis]
121 Chen J, Cui Y, Xu X, Wang L. Direct and effective preparation of core-shell PCL/PEG nanoparticles based on shell insertion strategy by using coaxial electrospray. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;547:1-7. [DOI: 10.1016/j.colsurfa.2018.03.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
122 Ren E, Chu C, Pang X, Lv P, Lei Z, Liu G. Mineral iron based self-assembling: bridging the small molecular drugs and transformative application. Science Bulletin 2019;64:216-8. [DOI: 10.1016/j.scib.2019.01.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Chen L, Zhang J, Zhou X, Yang S, Zhang Q, Wang W, You Z, Peng C, He C. Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomater 2019;86:406-15. [PMID: 30625415 DOI: 10.1016/j.actbio.2019.01.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 9.7] [Reference Citation Analysis]
124 Meyer CE, Liu J, Craciun I, Wu D, Wang H, Xie M, Fussenegger M, Palivan CG. Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA‐Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. Small 2020;16:1906492. [DOI: 10.1002/smll.201906492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
125 Višnjar T, Romih R, Zupančič D. Lectins as possible tools for improved urinary bladder cancer management. Glycobiology 2019;29:355-65. [PMID: 30689891 DOI: 10.1093/glycob/cwz001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
126 Chen M, Liu D, Liu F, Wu Y, Peng X, Song F. Recent advances of redox-responsive nanoplatforms for tumor theranostics. Journal of Controlled Release 2021;332:269-84. [DOI: 10.1016/j.jconrel.2021.02.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
127 Gao H, Zhang X, Chen C, Li K, Ding D. Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. Adv Biosys 2018;2:1800074. [DOI: 10.1002/adbi.201800074] [Cited by in Crossref: 90] [Cited by in F6Publishing: 71] [Article Influence: 22.5] [Reference Citation Analysis]
128 Wu J, Yuan J, Ye B, Wu Y, Xu Z, Chen J, Chen J. Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Front Pharmacol 2018;9:663. [PMID: 30065648 DOI: 10.3389/fphar.2018.00663] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
129 Cui J, Alt K, Ju Y, Gunawan ST, Braunger JA, Wang T, Dai Y, Dai Q, Richardson JJ, Guo J, Björnmalm M, Hagemeyer CE, Caruso F. Ligand-Functionalized Poly(ethylene glycol) Particles for Tumor Targeting and Intracellular Uptake. Biomacromolecules 2019;20:3592-600. [DOI: 10.1021/acs.biomac.9b00925] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
130 Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. Adv Sci (Weinh) 2021;8:2100540. [PMID: 34306980 DOI: 10.1002/advs.202100540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
131 Xu CM, Tang M, Feng J, Xia HF, Wu LL, Pang DW, Chen G, Zhang ZL. A liquid biopsy-guided drug release system for cancer theranostics: integrating rapid circulating tumor cell detection and precision tumor therapy. Lab Chip 2020;20:1418-25. [PMID: 32195515 DOI: 10.1039/d0lc00149j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
132 Wu H, Su W, Xu H, Zhang Y, Li Y, Li X, Fan L. Applications of carbon dots on tumour theranostics. View 2021;2:20200061. [DOI: 10.1002/viw.20200061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
133 Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019;20:4299-311. [DOI: 10.1021/acs.biomac.9b01291] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
134 Li R, Zheng K, Yuan C, Chen Z, Huang M. Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Nanotheranostics 2017;1:346-57. [PMID: 29071198 DOI: 10.7150/ntno.19380] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
135 Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020;11:10553-70. [PMID: 34094312 DOI: 10.1039/d0sc01721c] [Cited by in Crossref: 11] [Article Influence: 5.5] [Reference Citation Analysis]
136 Wang P, Jiang F, Chen B, Tang H, Zeng X, Cai D, Zhu M, Long R, Yang D, Kankala RK, Wang S, Liu Y. Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces 2020;189:110842. [DOI: 10.1016/j.colsurfb.2020.110842] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
137 Judge N, Wang L, Ho YYL, Wang Y. Molecular Engineering of Metal-Organic Cycles/Cages for Drug Delivery. Macromol Res 2018;26:1074-84. [DOI: 10.1007/s13233-018-6156-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
138 Chatterjee B, Raza A, Ghosh SS. Developing single-entity theranostic: drug-based fluorescent nanoclusters with augmented cytotoxicity. Nanomedicine (Lond) 2018;13:283-95. [PMID: 29345211 DOI: 10.2217/nnm-2017-0275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
139 Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale 2021;13:7590-9. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Reference Citation Analysis]
140 Yang C, Zhang Y, Luo Y, Qiao B, Wang X, Zhang L, Chen Q, Cao Y, Wang Z, Ran H. Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. J Mater Chem B 2020;8:380-90. [PMID: 31868193 DOI: 10.1039/c9tb02198a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
141 Ni J, Song J, Wang B, Hua H, Zhu H, Guo X, Xiong S, Zhao Y. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother 2020;126:110046. [PMID: 32145586 DOI: 10.1016/j.biopha.2020.110046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
142 Zhu H, Qin D, Wu Y, Jing B, Liu J, Hazlewood D, Zhang H, Feng Y, Yang X, Wan M, Wu D. Laser-Activated Bioprobes with High Photothermal Conversion Efficiency for Sensitive Photoacoustic/Ultrasound Imaging and Photothermal Sensing. ACS Appl Mater Interfaces 2018;10:29251-9. [PMID: 30102025 DOI: 10.1021/acsami.8b08190] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
143 Li X, Yu S, Lee Y, Guo T, Kwon N, Lee D, Yeom SC, Cho Y, Kim G, Huang J, Choi S, Nam KT, Yoon J. In Vivo Albumin Traps Photosensitizer Monomers from Self-Assembled Phthalocyanine Nanovesicles: A Facile and Switchable Theranostic Approach. J Am Chem Soc 2019;141:1366-72. [DOI: 10.1021/jacs.8b12167] [Cited by in Crossref: 79] [Cited by in F6Publishing: 68] [Article Influence: 19.8] [Reference Citation Analysis]
144 Nandini DB, Rao RS, Hosmani J, Khan S, Patil S, Awan KH. Novel therapies in the management of oral cancer: An update. Dis Mon 2020;66:101036. [PMID: 32594997 DOI: 10.1016/j.disamonth.2020.101036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Hui Y, Yi X, Hou F, Wibowo D, Zhang F, Zhao D, Gao H, Zhao C. Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano 2019;13:7410-24. [DOI: 10.1021/acsnano.9b03924] [Cited by in Crossref: 84] [Cited by in F6Publishing: 62] [Article Influence: 28.0] [Reference Citation Analysis]
146 Tabish TA, Dey P, Mosca S, Salimi M, Palombo F, Matousek P, Stone N. Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Adv Sci (Weinh) 2020;7:1903441. [PMID: 32775148 DOI: 10.1002/advs.201903441] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 18.5] [Reference Citation Analysis]
147 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
148 Ravichandran G, Rengan AK. Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Appl Nano Mater 2020;3:9542-59. [DOI: 10.1021/acsanm.0c01785] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
149 Zhang J, Misra RDK. Nanomaterials in microfluidics for disease diagnosis and therapy development. Materials Technology 2018;34:92-116. [DOI: 10.1080/10667857.2018.1527803] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
150 Guan Q, Fu DD, Li YA, Kong XM, Wei ZY, Li WY, Zhang SJ, Dong YB. BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. iScience 2019;14:180-98. [PMID: 30981114 DOI: 10.1016/j.isci.2019.03.028] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 20.3] [Reference Citation Analysis]
151 Zhang L, Wang D, Yang K, Sheng D, Tan B, Wang Z, Ran H, Yi H, Zhong Y, Lin H, Chen Y. Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. Adv Sci (Weinh) 2018;5:1800049. [PMID: 30128231 DOI: 10.1002/advs.201800049] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 18.0] [Reference Citation Analysis]
152 Zhou H, Qiu X, Shen Z. [T1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:427-44. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Reference Citation Analysis]
153 Cheng P, Pu K. Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Appl Mater Interfaces 2020;12:5286-99. [PMID: 31730329 DOI: 10.1021/acsami.9b15064] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
154 Lu L, Zhang C, Zou B, Wang Y. Hollow Prussian Blue Nanospheres for Photothermal/Chemo-Synergistic Therapy. Int J Nanomedicine 2020;15:5165-77. [PMID: 32764943 DOI: 10.2147/IJN.S252505] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
155 Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018;130:17-38. [PMID: 30009886 DOI: 10.1016/j.addr.2018.07.007] [Cited by in Crossref: 437] [Cited by in F6Publishing: 405] [Article Influence: 109.3] [Reference Citation Analysis]
156 Saeed M, Gao J, Shi Y, Lammers T, Yu H. Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics 2019;9:7981-8000. [PMID: 31754376 DOI: 10.7150/thno.37568] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 15.3] [Reference Citation Analysis]
157 Xu X, An H, Zhang D, Tao H, Dou Y, Li X, Huang J, Zhang J. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci Adv 2019;5:eaat2953. [PMID: 30662940 DOI: 10.1126/sciadv.aat2953] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 21.3] [Reference Citation Analysis]
158 Li C, Mei E, Chen C, Li Y, Nugasur B, Hou L, Ding X, Hu M, Zhang Y, Su Z, Lin J, Yang Y, Huang P, Li Z. Gold-Nanobipyramid-Based Nanotheranostics for Dual-Modality Imaging-Guided Phototherapy. ACS Appl Mater Interfaces 2020;12:12541-8. [PMID: 32083461 DOI: 10.1021/acsami.0c00112] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
159 Cong Z, Zhang L, Ma SQ, Lam KS, Yang FF, Liao YH. Size-Transformable Hyaluronan Stacked Self-Assembling Peptide Nanoparticles for Improved Transcellular Tumor Penetration and Photo-Chemo Combination Therapy. ACS Nano 2020;14:1958-70. [PMID: 32023048 DOI: 10.1021/acsnano.9b08434] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 16.0] [Reference Citation Analysis]
160 Noh I, Son Y, Jung W, Kim M, Kim D, Shin H, Kim YC, Jon S. Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials 2021;275:120926. [PMID: 34147723 DOI: 10.1016/j.biomaterials.2021.120926] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
161 Singh N, Son S, An J, Kim I, Choi M, Kong N, Tao W, Kim JS. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem Soc Rev 2021;50:12883-96. [PMID: 34608468 DOI: 10.1039/d1cs00559f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Feng H, Sun Y, Zhang J, Deng L, Dong A. Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. Journal of Drug Delivery Science and Technology 2018;45:81-92. [DOI: 10.1016/j.jddst.2018.03.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
163 Dasgupta A, Biancacci I, Kiessling F, Lammers T. Imaging-assisted anticancer nanotherapy. Theranostics 2020;10:956-67. [PMID: 31938045 DOI: 10.7150/thno.38288] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
164 Zeng W, Zhang H, Deng Y, Jiang A, Bao X, Guo M, Li Z, Wu M, Ji X, Zeng X, Mei L. Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal 2020;389:124494. [DOI: 10.1016/j.cej.2020.124494] [Cited by in Crossref: 44] [Cited by in F6Publishing: 18] [Article Influence: 22.0] [Reference Citation Analysis]
165 Boehnke N, Correa S, Hao L, Wang W, Straehla JP, Bhatia SN, Hammond PT. Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew Chem Int Ed Engl 2020;59:2776-83. [PMID: 31747099 DOI: 10.1002/anie.201911762] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
166 Wang D, Zhou J, Shi R, Wu H, Chen R, Duan B, Xia G, Xu P, Wang H, Zhou S, Wang C, Wang H, Guo Z, Chen Q. Biodegradable Core-shell Dual-Metal-Organic-Frameworks Nanotheranostic Agent for Multiple Imaging Guided Combination Cancer Therapy. Theranostics 2017;7:4605-17. [PMID: 29158848 DOI: 10.7150/thno.20363] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
167 Shen J, Lu Z, Wang J, Zhang T, Yang J, Li Y, Liu G, Zhang X. Advances of Nanoparticles for Leukemia Treatment. ACS Biomater Sci Eng 2020;6:6478-89. [PMID: 33320613 DOI: 10.1021/acsbiomaterials.0c01040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
168 Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021;50:3355-423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
169 Zhang X, Du J, Guo Z, Yu J, Gao Q, Yin W, Zhu S, Gu Z, Zhao Y. Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy. Adv Sci (Weinh) 2019;6:1801122. [PMID: 30775223 DOI: 10.1002/advs.201801122] [Cited by in Crossref: 66] [Cited by in F6Publishing: 54] [Article Influence: 16.5] [Reference Citation Analysis]
170 Zhang L, Yi H, Song J, Huang J, Yang K, Tan B, Wang D, Yang N, Wang Z, Li X. Mitochondria-Targeted and Ultrasound-Activated Nanodroplets for Enhanced Deep-Penetration Sonodynamic Cancer Therapy. ACS Appl Mater Interfaces 2019;11:9355-66. [DOI: 10.1021/acsami.8b21968] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 21.7] [Reference Citation Analysis]
171 Shen X, Liu X, Li T, Chen Y, Chen Y, Wang P, Zheng L, Yang H, Wu C, Deng S, Liu Y. Recent Advancements in Serum Albumin-Based Nanovehicles Toward Potential Cancer Diagnosis and Therapy. Front Chem 2021;9:746646. [PMID: 34869202 DOI: 10.3389/fchem.2021.746646] [Reference Citation Analysis]
172 Xu F, Huang X, Wang Y, Zhou S. A Size-Changeable Collagenase-Modified Nanoscavenger for Increasing Penetration and Retention of Nanomedicine in Deep Tumor Tissue. Adv Mater 2020;32:e1906745. [PMID: 32105374 DOI: 10.1002/adma.201906745] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 20.0] [Reference Citation Analysis]
173 Yin T, Wang Y, Chu X, Fu Y, Wang L, Zhou J, Tang X, Liu J, Huo M. Free Adriamycin-Loaded pH/Reduction Dual-Responsive Hyaluronic Acid-Adriamycin Prodrug Micelles for Efficient Cancer Therapy. ACS Appl Mater Interfaces 2018;10:35693-704. [PMID: 30259743 DOI: 10.1021/acsami.8b09342] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
174 Freidus LG, Kumar P, Marimuthu T, Pradeep P, Pillay V, Choonara YE. Synthesis and Properties of CurNQ for the Theranostic Application in Ovarian Cancer Intervention. Molecules 2020;25:E4471. [PMID: 33003358 DOI: 10.3390/molecules25194471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
175 Wei D, Li C, Ye J, Xiang F, Xu Y, Liu J. Codelivery of survivin inhibitor and chemotherapeutics by tumor-derived microparticles to reverse multidrug resistance in osteosarcoma. Cell Biol Int 2021;45:382-93. [PMID: 33135822 DOI: 10.1002/cbin.11494] [Reference Citation Analysis]
176 Wang Y, Shi L, Wu W, Qi G, Zhu X, Liu B. Tumor‐Activated Photosensitization and Size Transformation of Nanodrugs. Adv Funct Mater 2021;31:2010241. [DOI: 10.1002/adfm.202010241] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
177 Liu R, Mu L, Bai J, Du Y, Xie Y, Lu W. Development of double strand RNA mPEI nanoparticles and application in treating invasive breast cancer. RSC Adv 2019;9:13186-200. [DOI: 10.1039/c9ra01889a] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
178 Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020;12:E1902. [PMID: 32846923 DOI: 10.3390/polym12091902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
179 Li D, Song Y, He J, Zhang M, Ni P. Polymer-Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomater Sci Eng 2019;5:2307-15. [PMID: 33405781 DOI: 10.1021/acsbiomaterials.9b00301] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
180 Ji X, Lv H, Guo J, Ding C, Luo X. A DNA Nanotube-Peptide Biocomplex for mRNA Detection and Its Application in Cancer Diagnosis and Targeted Therapy. Chem Eur J 2018;24:10171-7. [DOI: 10.1002/chem.201801347] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
181 Wu L, Zou H, Wang H, Zhang S, Liu S, Jiang Y, Chen J, Li Y, Shao M, Zhang R, Li X, Dong J, Yang L, Wang K, Zhu X, Sun X. Update on the development of molecular imaging and nanomedicine in China: Optical imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1660. [PMID: 32725869 DOI: 10.1002/wnan.1660] [Reference Citation Analysis]
182 Gao D, Zhang P, Liu Y, Sheng Z, Chen H, Yuan Z. Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale 2018;10:19742-8. [DOI: 10.1039/c8nr06197a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
183 Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem 2018;130:11554-8. [DOI: 10.1002/ange.201807602] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
184 Yang W, Deng H, Zhu S, Lau J, Tian R, Wang S, Zhou Z, Yu G, Rao L, He L, Ma Y, Chen X. Size-transformable antigen-presenting cell-mimicking nanovesicles potentiate effective cancer immunotherapy. Sci Adv 2020;6:eabd1631. [PMID: 33310853 DOI: 10.1126/sciadv.abd1631] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
185 Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021;21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Reference Citation Analysis]
186 Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv Mater 2018;30:e1706320. [PMID: 29577458 DOI: 10.1002/adma.201706320] [Cited by in Crossref: 230] [Cited by in F6Publishing: 197] [Article Influence: 57.5] [Reference Citation Analysis]
187 Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. Adv Sci (Weinh) 2020;7:2001669. [PMID: 33304747 DOI: 10.1002/advs.202001669] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
188 Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020;8:1338-49. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
189 Zhang Y, Huang K, Lin J, Huang P. Janus nanoparticles in cancer diagnosis, therapy and theranostics. Biomater Sci 2019;7:1262-75. [DOI: 10.1039/c8bm01523f] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
190 Tao W, Ji X, Xu X, Islam MA, Li Z, Chen S, Saw PE, Zhang H, Bharwani Z, Guo Z, Shi J, Farokhzad OC. Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. Angew Chem Int Ed Engl 2017;56:11896-900. [PMID: 28640986 DOI: 10.1002/anie.201703657] [Cited by in Crossref: 332] [Cited by in F6Publishing: 267] [Article Influence: 66.4] [Reference Citation Analysis]
191 Appidi T, Pemmaraju DB, Khan RA, Alvi SB, Srivastava R, Pal M, Khan N, Rengan AK. Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. Nanoscale 2020;12:2028-39. [PMID: 31912859 DOI: 10.1039/c9nr05211a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
192 Wang H, Zhou L, Xie K, Wu J, Song P, Xie H, Zhou L, Liu J, Xu X, Shen Y, Zheng S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 2018;8:3949-63. [PMID: 30083272 DOI: 10.7150/thno.26161] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
193 Liu J, Iqbal S, Du XJ, Yuan Y, Yang X, Li HJ, Wang J. Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomater Sci 2018;6:350-5. [PMID: 29265134 DOI: 10.1039/c7bm01025g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
194 Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020;27:1248-62. [PMID: 32865029 DOI: 10.1080/10717544.2020.1809559] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
195 Zeng M, Shu Y, Parra-Robert M, Desai D, Zhou H, Li Q, Rong Z, Karaman DŞ, Yang H, Peng J, Fernandez-Varo G, Jiménez W, Casals G, Puntes V, Rosenholm JM, Casals E. Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. Mater Sci Eng C Mater Biol Appl 2021;128:112272. [PMID: 34474831 DOI: 10.1016/j.msec.2021.112272] [Reference Citation Analysis]
196 Liu X, Liu Z, Dong K, Wu S, Sang Y, Cui T, Zhou Y, Ren J, Qu X. Tumor-activatable ultrasmall nanozyme generator for enhanced penetration and deep catalytic therapy. Biomaterials 2020;258:120263. [DOI: 10.1016/j.biomaterials.2020.120263] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
197 Yu L, Chen Y, Lin H, Gao S, Chen H, Shi J. Magnesium-Engineered Silica Framework for pH-Accelerated Biodegradation and DNAzyme-Triggered Chemotherapy. Small 2018;14:1800708. [DOI: 10.1002/smll.201800708] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
198 Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosensors and Bioelectronics 2019;138:111314. [DOI: 10.1016/j.bios.2019.05.019] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 18.3] [Reference Citation Analysis]
199 Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small 2020;16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
200 Yin J, Zhang Y, Ma D, Yang R, Xu F, Wu H, He C, Liu L, Dong J, Shao Y. Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics. ACS Appl Mater Interfaces 2019;11:41069-81. [DOI: 10.1021/acsami.9b14668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
201 Wang W, Jin Y, Liu X, Chen F, Zheng X, Liu T, Yang Y, Yu H. Endogenous Stimuli‐Activatable Nanomedicine for Immune Theranostics for Cancer. Adv Funct Mater 2021;31:2100386. [DOI: 10.1002/adfm.202100386] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
202 Qiu J, Liu Y, Xia Y. Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Image-Guided Therapy. Adv Healthc Mater 2021;10:e2002031. [PMID: 33470560 DOI: 10.1002/adhm.202002031] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
203 Cook AB, Perrier S. Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Adv Funct Mater 2019;30:1901001. [DOI: 10.1002/adfm.201901001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 20] [Article Influence: 13.7] [Reference Citation Analysis]
204 Liu H, Mai J, Shen J, Wolfram J, Li Z, Zhang G, Xu R, Li Y, Mu C, Zu Y, Li X, Lokesh GL, Thiviyanathan V, Volk DE, Gorenstein DG, Ferrari M, Hu Z, Shen H. A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Theranostics 2018;8:31-44. [PMID: 29290791 DOI: 10.7150/thno.21342] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
205 Jc Bose R, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, Willmann JK, Massoud TF, Gambhir SS, Paulmurugan R. Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano. 2018;12:10817-10832. [PMID: 30346694 DOI: 10.1021/acsnano.8b02587] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 16.3] [Reference Citation Analysis]
206 Xu J, Wang J, Ye J, Jiao J, Liu Z, Zhao C, Li B, Fu Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. Adv Sci (Weinh) 2021;8:e2101101. [PMID: 34145984 DOI: 10.1002/advs.202101101] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
207 Huff ME, Gökmen FÖ, Barrera JS, Lara EJ, Tunnell J, Irvin J, Betancourt T. Induction of Immunogenic Cell Death in Breast Cancer by Conductive Polymer Nanoparticle-Mediated Photothermal Therapy. ACS Appl Polym Mater 2020;2:5602-20. [DOI: 10.1021/acsapm.0c00938] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Thakkar S, Sharma D, Kalia K, Tekade RK. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomaterialia 2020;101:43-68. [DOI: 10.1016/j.actbio.2019.09.009] [Cited by in Crossref: 88] [Cited by in F6Publishing: 71] [Article Influence: 44.0] [Reference Citation Analysis]
209 Xue X, Huang Y, Bo R, Jia B, Wu H, Yuan Y, Wang Z, Ma Z, Jing D, Xu X, Yu W, Lin TY, Li Y. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat Commun 2018;9:3653. [PMID: 30194413 DOI: 10.1038/s41467-018-06093-5] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 19.8] [Reference Citation Analysis]
210 Gao P, Shen X, Liu X, Chen Y, Pan W, Li N, Tang B. Nucleic Acid-Gated Covalent Organic Frameworks for Cancer-Specific Imaging and Drug Release. Anal Chem 2021;93:11751-7. [PMID: 34398599 DOI: 10.1021/acs.analchem.1c02105] [Reference Citation Analysis]
211 Ma Z, Li J, Lin K, Ramachandran M, Zhang D, Showalter M, De Souza C, Lindstrom A, Solano LN, Jia B, Urayama S, Duan Y, Fiehn O, Lin TY, Li M, Li Y. Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy. Nat Commun 2020;11:4615. [PMID: 32934241 DOI: 10.1038/s41467-020-18399-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
212 Ding Y, Du C, Qian J, Dong C. Zwitterionic polypeptide nanomedicine with dual NIR/reduction-responsivity for synergistic cancer photothermal-chemotherapy. Polym Chem 2019;10:4825-36. [DOI: 10.1039/c9py00986h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
213 Zheng X, Ge J, Wu J, Liu W, Guo L, Jia Q, Ding Y, Zhang H, Wang P. Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials 2018;185:133-41. [DOI: 10.1016/j.biomaterials.2018.09.021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
214 Zhang Y, Wan Y, Liao Y, Hu Y, Jiang T, He T, Bi W, Lin J, Gong P, Tang L, Huang P. Janus γ-Fe2O3/SiO2-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/chemodynamic therapy. Science Bulletin 2020;65:564-72. [DOI: 10.1016/j.scib.2019.12.024] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 19.5] [Reference Citation Analysis]
215 Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg 2021;8:34. [PMID: 34727233 DOI: 10.1186/s40580-021-00282-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
216 Xu Z, Ni K, Mao J, Luo T, Lin W. Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal-Organic Frameworks. Adv Mater 2021;33:e2104249. [PMID: 34432917 DOI: 10.1002/adma.202104249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
217 Jiang Y, Pu K. Molecular Fluorescence and Photoacoustic Imaging in the Second Near‐Infrared Optical Window Using Organic Contrast Agents. Adv Biosys 2018;2:1700262. [DOI: 10.1002/adbi.201700262] [Cited by in Crossref: 99] [Cited by in F6Publishing: 78] [Article Influence: 24.8] [Reference Citation Analysis]
218 Hu C, Cun X, Ruan S, Liu R, Xiao W, Yang X, Yang Y, Yang C, Gao H. Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials 2018;168:64-75. [DOI: 10.1016/j.biomaterials.2018.03.046] [Cited by in Crossref: 142] [Cited by in F6Publishing: 140] [Article Influence: 35.5] [Reference Citation Analysis]
219 Xu W, Qian J, Hou G, Wang Y, Wang J, Sun T, Ji L, Suo A, Yao Y. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer. Acta Biomaterialia 2018;82:171-83. [DOI: 10.1016/j.actbio.2018.10.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
220 Chen C, Gao K, Lian H, Chen C, Yan X. Single-particle characterization of theranostic liposomes with stimulus sensing and controlled drug release properties. Biosensors and Bioelectronics 2019;131:185-92. [DOI: 10.1016/j.bios.2019.02.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
221 Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021;9:629054. [PMID: 34327190 DOI: 10.3389/fchem.2021.629054] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
222 Su H, Cui Y, Wang F, Zhang W, Zhang C, Wang R, Cui H. Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomater Sci 2021;9:463-70. [DOI: 10.1039/d0bm00827c] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
223 Cong Z, Yang F, Cao L, Wen H, Fu T, Ma S, Liu C, Quan L, Liao Y. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int J Nanomedicine 2018;13:8549-60. [PMID: 30587977 DOI: 10.2147/IJN.S185726] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
224 Zhang K, Lin H, Mao J, Luo X, Wei R, Su Z, Zhou B, Li D, Gao J, Shan H. An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomater Sci 2019;7:2480-90. [PMID: 30957825 DOI: 10.1039/c9bm00216b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
225 Guo W, Chen J, Liu L, Eltahan AS, Rosato N, Yu J, Wang D, Chen J, Bottini M, Liang X. Laser-Induced Transformable BiS@HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Appl Mater Interfaces 2018;10:41167-77. [DOI: 10.1021/acsami.8b16395] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
226 Wang Z, Wang Y, Jia X, Han Q, Qian Y, Li Q, Xiang J, Wang Q, Hu Z, Wang W. MMP-2-Controlled Transforming Micelles for Heterogeneic Targeting and Programmable Cancer Therapy. Theranostics 2019;9:1728-40. [PMID: 31037134 DOI: 10.7150/thno.30915] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
227 Mansur AAP, Mansur HS, Carvalho SM, Caires AJ. One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells. Contrast Media Mol Imaging 2017;2017:3896107. [PMID: 29259535 DOI: 10.1155/2017/3896107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
228 Tao W, Ji X, Xu X, Islam MA, Li Z, Chen S, Saw PE, Zhang H, Bharwani Z, Guo Z, Shi J, Farokhzad OC. Antimonene Quantum Dots: Synthesis and Application as Near-Infrared Photothermal Agents for Effective Cancer Therapy. Angew Chem 2017;129:12058-62. [DOI: 10.1002/ange.201703657] [Cited by in Crossref: 65] [Cited by in F6Publishing: 44] [Article Influence: 13.0] [Reference Citation Analysis]
229 Lee SS, Bindokas VP, Kron SJ. Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Mol Cancer Ther 2019;18:213-26. [PMID: 30322947 DOI: 10.1158/1535-7163.MCT-18-0554] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
230 Jiang Z, He L, Yu X, Yang Z, Wu W, Wang X, Mao R, Cui D, Chen X, Li W. Antiangiogenesis Combined with Inhibition of the Hypoxia Pathway Facilitates Low-Dose, X-ray-Induced Photodynamic Therapy. ACS Nano 2021. [PMID: 34170115 DOI: 10.1021/acsnano.1c01063] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
231 Wang Q, Xia B, Xu J, Niu X, Cai J, Shen Q, Wang W, Huang W, Fan Q. Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Mater Chem Front 2019;3:650-5. [DOI: 10.1039/c9qm00036d] [Cited by in Crossref: 71] [Cited by in F6Publishing: 1] [Article Influence: 23.7] [Reference Citation Analysis]
232 Gao D, Zhang B, Liu Y, Hu D, Sheng Z, Zhang X, Yuan Z. Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics 2019;9:5315-31. [PMID: 31410217 DOI: 10.7150/thno.34418] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
233 Liu Y, Sun D, Fan Q, Ma Q, Dong Z, Tao W, Tao H, Liu Z, Wang C. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res 2020;13:564-9. [DOI: 10.1007/s12274-020-2655-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 9.5] [Reference Citation Analysis]
234 Veroniaina H, Pan X, Wu Z, Qi X. Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Rev Anticancer Ther 2021;21:901-13. [PMID: 33844625 DOI: 10.1080/14737140.2021.1910027] [Reference Citation Analysis]
235 Zhao H, Xu J, Huang W, Zhao Y, Yang X. Thermosensitive Nanogels with Cross-Linked Pd(II) Ions for Improving Therapeutic Effects on Platinum-Resistant Cancers via Intratumoral Formation of Hydrogels. Chem Mater 2019;31:5089-103. [DOI: 10.1021/acs.chemmater.9b00986] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
236 Son S, Deepagan VG, Shin S, Ko H, Min J, Um W, Jeon J, Kwon S, Lee ES, Suh M, Lee DS, Park JH. Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration. Acta Biomater 2018;79:294-305. [PMID: 30134209 DOI: 10.1016/j.actbio.2018.08.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
237 Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil Membrane-Derived Nanovesicles Alleviate Inflammation To Protect Mouse Brain Injury from Ischemic Stroke. ACS Nano 2019;13:1272-83. [PMID: 30673266 DOI: 10.1021/acsnano.8b06572] [Cited by in Crossref: 25] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
238 Gomes BS, Simões B, Mendes PM. The increasing dynamic, functional complexity of bio-interface materials. Nat Rev Chem 2018;2. [DOI: 10.1038/s41570-018-0120] [Cited by in Crossref: 52] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
239 Yang Y, He Y, Deng Z, Li J, Huang J, Zhong S. Intelligent Nanoprobe: Acid-Responsive Drug Release and In Situ Evaluation of Its Own Therapeutic Effect. Anal Chem 2020;92:12371-8. [PMID: 32786256 DOI: 10.1021/acs.analchem.0c02099] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
240 Fenton GE, Nath K, Malkemper EP. Electrophysiology and the magnetic sense: a guide to best practice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021. [PMID: 34713390 DOI: 10.1007/s00359-021-01517-y] [Reference Citation Analysis]
241 Wang L, Li S, Zhong L, Li Q, Liu S, Zheng W, Jiang X. Evaluation of the in vivo behavior of antibacterial gold nanoparticles for potential biomedical applications. J Mater Chem B 2021;9:3025-31. [PMID: 33885664 DOI: 10.1039/d1tb00128k] [Reference Citation Analysis]
242 Jia T, Xu J, Dong S, He F, Zhong C, Yang G, Bi H, Xu M, Hu Y, Yang D, Yang P, Lin J. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem Sci 2019;10:8618-33. [DOI: 10.1039/c9sc01615e] [Cited by in Crossref: 45] [Cited by in F6Publishing: 2] [Article Influence: 15.0] [Reference Citation Analysis]
243 Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. Adv Sci (Weinh) 2021;8:2003572. [PMID: 33854892 DOI: 10.1002/advs.202003572] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
244 Mansur AAP, Mansur HS, Leonel AG, Carvalho IC, Lage MCG, Carvalho SM, Krambrock K, Lobato ZIP. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. J Mater Chem B 2020;8:7166-88. [PMID: 32614035 DOI: 10.1039/d0tb01175d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
245 Cai Y, Ni D, Cheng W, Ji C, Wang Y, Müllen K, Su Z, Liu Y, Chen C, Yin M. Enzyme‐Triggered Disassembly of Perylene Monoimide‐based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angew Chem Int Ed 2020;59:14014-8. [DOI: 10.1002/anie.202001107] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
246 Jeong C, Uthaman S, Bagheri B, Kim J, Pillarisetti S, Park IK, Kim YC. Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy. J Control Release 2021;329:50-62. [PMID: 33259849 DOI: 10.1016/j.jconrel.2020.11.046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
247 Akpe V, Kim TH, Brown CL, Cock IE. Circulating tumour cells: a broad perspective. J R Soc Interface 2020;17:20200065. [DOI: 10.1098/rsif.2020.0065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
248 Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021;6:4301-18. [PMID: 33997507 DOI: 10.1016/j.bioactmat.2021.04.030] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
249 Yang B, Yin J, Chen Y, Pan S, Yao H, Gao Y, Shi J. 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Adv Mater 2018;30:1705611. [DOI: 10.1002/adma.201705611] [Cited by in Crossref: 161] [Cited by in F6Publishing: 136] [Article Influence: 40.3] [Reference Citation Analysis]
250 Dehvari K, Lin P, Chang J. Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. J Mater Chem B 2018;6:4676-86. [DOI: 10.1039/c8tb00734a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
251 Sun W, Zhou Z, Pratx G, Chen X, Chen H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020;10:1296-318. [PMID: 31938066 DOI: 10.7150/thno.41578] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 20.0] [Reference Citation Analysis]
252 Woythe L, Tito NB, Albertazzi L. A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021;169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
253 Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020;12:E526. [PMID: 32521800 DOI: 10.3390/pharmaceutics12060526] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
254 Zhang W, Wen Y, He DX, Wang YF, Liu XL, Li C, Liang XJ. Near-infrared AIEgens as transformers to enhance tumor treatment efficacy with controllable self-assembled redox-responsive carrier-free nanodrug. Biomaterials 2019;193:12-21. [PMID: 30550999 DOI: 10.1016/j.biomaterials.2018.12.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
255 Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. Small Methods 2021;:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Reference Citation Analysis]
256 Charron DM, Zheng G. Nanomedicine development guided by FRET imaging. Nano Today 2018;18:124-36. [DOI: 10.1016/j.nantod.2017.12.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
257 Winckel E, Mascaraque M, Zamarrón A, Juarranz de la Fuente Á, Torres T, Escosura A. Dual Role of Subphthalocyanine Dyes for Optical Imaging and Therapy of Cancer. Adv Funct Mater 2017;28:1705938. [DOI: 10.1002/adfm.201705938] [Cited by in Crossref: 26] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
258 Domingues C, Alvarez-lorenzo C, Concheiro A, Veiga F, Figueiras A. Nanotheranostic Pluronic-Like Polymeric Micelles: Shedding Light into the Dark Shadows of Tumors. Mol Pharmaceutics 2019;16:4757-74. [DOI: 10.1021/acs.molpharmaceut.9b00945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
259 Sheng D, Liu T, Deng L, Zhang L, Li X, Xu J, Hao L, Li P, Ran H, Chen H, Wang Z. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018;165:1-13. [PMID: 29500978 DOI: 10.1016/j.biomaterials.2018.02.041] [Cited by in Crossref: 104] [Cited by in F6Publishing: 100] [Article Influence: 26.0] [Reference Citation Analysis]
260 Xu Y, Shan Y, Zhang Y, Yu B, Shen Y, Cong H. Multifunctional Fe 3 O 4 @C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. Nanotechnology 2019;30:425102. [DOI: 10.1088/1361-6528/ab2e40] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
261 Duverger E, Picaud F. Theoretical study of ciprofloxacin antibiotic trapping on graphene or boron nitride oxide nanoflakes. J Mol Model 2020;26. [DOI: 10.1007/s00894-020-04410-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
262 Parekh G, Shi Y, Zheng J, Zhang X, Leporatti S. Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther Deliv 2018;9:451-68. [PMID: 29722631 DOI: 10.4155/tde-2018-0013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
263 Ling X, Jin Z, Jiang Q, Wang X, Wei B, Wang Z, Xu Y, Ca T, Engle JW, Cai W, Su C, He Q. Engineering biocompatible TeSex nano-alloys as a versatile theranostic nanoplatform. Natl Sci Rev 2021;8:nwaa156. [PMID: 34262791 DOI: 10.1093/nsr/nwaa156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
264 Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 2017;46:7438-68. [PMID: 29071327 DOI: 10.1039/c7cs00316a] [Cited by in Crossref: 197] [Cited by in F6Publishing: 41] [Article Influence: 49.3] [Reference Citation Analysis]
265 Shevtsov M, Stangl S, Nikolaev B, Yakovleva L, Marchenko Y, Tagaeva R, Sievert W, Pitkin E, Mazur A, Tolstoy P, Galibin O, Ryzhov V, Steiger K, Smirnov O, Khachatryan W, Chester K, Multhoff G. Granzyme B Functionalized Nanoparticles Targeting Membrane Hsp70-Positive Tumors for Multimodal Cancer Theranostics. Small 2019;15:e1900205. [PMID: 30828968 DOI: 10.1002/smll.201900205] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
266 Ayyanaar S, Balachandran C, Bhaskar RC, Kesavan MP, Aoki S, Raja RP, Rajesh J, Webster TJ, Rajagopal G. ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy. Int J Nanomedicine 2020;15:3333-46. [PMID: 32494133 DOI: 10.2147/IJN.S249240] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
267 Pan J, Ouyang A, Fang W, Cheng G, Liu W, Wang F, Zhao D, Le K, Jiang J. cis-Silicon phthalocyanine conformation endows J-aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. J Mater Chem B 2020;8:2895-908. [PMID: 32195527 DOI: 10.1039/d0tb00192a] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
268 Wan J, Qiao Y, Chen X, Wu J, Zhou L, Zhang J, Fang S, Wang H. Structure-Guided Engineering of Cytotoxic Cabazitaxel for an Adaptive Nanoparticle Formulation: Enhancing the Drug Safety and Therapeutic Efficacy. Adv Funct Mater 2018;28:1804229. [DOI: 10.1002/adfm.201804229] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
269 Yang ZS, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang BW, Gao S, Sessler JL, Zhang JL. Rational design of an "all-in-one" phototheranostic. Chem Sci 2020;11:8204-13. [PMID: 34123091 DOI: 10.1039/d0sc03368e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
270 Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019;7:1228-39. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
271 Melnychuk N, Ashokkumar P, Aparin IO, Klymchenko AS. Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.1c00819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
272 Li H, Liang X, Duan J, Chen Y, Tian X, Wang J, Zhang H, Liu Q, Yang J. ROS-responsive EPO nanoparticles ameliorate ionizing radiation-induced hematopoietic injury. Biomater Sci 2021;9:6474-85. [PMID: 34582522 DOI: 10.1039/d1bm00919b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
273 Kim J, Manspeaker MP, Thomas SN. Augmenting the synergies of chemotherapy and immunotherapy through drug delivery. Acta Biomater 2019;88:1-14. [PMID: 30769136 DOI: 10.1016/j.actbio.2019.02.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
274 Zeng JY, Zou MZ, Zhang M, Wang XS, Zeng X, Cong H, Zhang XZ. π-Extended Benzoporphyrin-Based Metal-Organic Framework for Inhibition of Tumor Metastasis. ACS Nano 2018;12:4630-40. [PMID: 29584395 DOI: 10.1021/acsnano.8b01186] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 20.3] [Reference Citation Analysis]
275 Ling S, Yang X, Li C, Zhang Y, Yang H, Chen G, Wang Q. Tumor Microenvironment‐Activated NIR‐II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angew Chem Int Ed 2020;59:7219-23. [DOI: 10.1002/anie.202000947] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
276 Mansur AAP, Caires AJ, Carvalho SM, Capanema NSV, Carvalho IC, Mansur HS. Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro. Colloids Surf B Biointerfaces 2019;184:110507. [PMID: 31542643 DOI: 10.1016/j.colsurfb.2019.110507] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
277 Li D, Zhang R, Liu G, Kang Y, Wu J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv Healthc Mater 2020;9:e2000605. [PMID: 32893506 DOI: 10.1002/adhm.202000605] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
278 Zhou Y, Wu W, Bi H, Yang D, Zhang C. Glioblastoma precision therapy: From the bench to the clinic. Cancer Letters 2020;475:79-91. [DOI: 10.1016/j.canlet.2020.01.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
279 Fan K, Jia X, Zhou M, Wang K, Conde J, He J, Tian J, Yan X. Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano 2018;12:4105-15. [DOI: 10.1021/acsnano.7b06969] [Cited by in Crossref: 110] [Cited by in F6Publishing: 104] [Article Influence: 27.5] [Reference Citation Analysis]
280 Tang W, Fan W, Wang Z, Zhang W, Zhou S, Liu Y, Yang Z, Shao E, Zhang G, Jacobson O, Shan L, Tian R, Cheng S, Lin L, Dai Y, Shen Z, Niu G, Xie J, Chen X. Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano 2018;12:12269-83. [PMID: 30418749 DOI: 10.1021/acsnano.8b06058] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 11.8] [Reference Citation Analysis]
281 Duverger E, Balme S, Bechelany M, Miele P, Picaud F. Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Applied Surface Science 2019;475:666-75. [DOI: 10.1016/j.apsusc.2018.12.273] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
282 Zhang S, Li Q, Yang N, Shi Y, Ge W, Wang W, Huang W, Song X, Dong X. Phase‐Change Materials Based Nanoparticles for Controlled Hypoxia Modulation and Enhanced Phototherapy. Adv Funct Mater 2019;29:1906805. [DOI: 10.1002/adfm.201906805] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 16.0] [Reference Citation Analysis]
283 Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano‐Photosensitizers for Anticancer Phototherapies. Small 2019;15:1804927. [DOI: 10.1002/smll.201804927] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 20.7] [Reference Citation Analysis]
284 Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, Fan W, Zhu S, Zhang M, Tian R, Lang L, Niu G, Zhang X, Chen X. A Logic-Gated Modular Nanovesicle Enables Programmable Drug Release for On-Demand Chemotherapy. Theranostics 2019;9:1358-68. [PMID: 30867836 DOI: 10.7150/thno.32106] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
285 Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 2020;25:107-25. [DOI: 10.1016/j.drudis.2019.09.017] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
286 Liu Y, Li Z, Fan F, Zhu X, Jia L, Chen M, Du P, Yang L, Yang S. Boosting Antitumor Sonodynamic Therapy Efficacy of Black Phosphorus via Covalent Functionalization. Adv Sci (Weinh) 2021;:e2102422. [PMID: 34390202 DOI: 10.1002/advs.202102422] [Reference Citation Analysis]
287 Wang J, Tao W, Chen X, Farokhzad OC, Liu G. Emerging Advances in Nanotheranostics with Intelligent Bioresponsive Systems. Theranostics 2017;7:3915-9. [PMID: 29109787 DOI: 10.7150/thno.21317] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
288 Zhang Y, Bo S, Feng T, Qin X, Wan Y, Jiang S, Li C, Lin J, Wang T, Zhou X, Jiang Z, Huang P. A Versatile Theranostic Nanoemulsion for Architecture‐Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. Adv Mater 2019;31:1806444. [DOI: 10.1002/adma.201806444] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 22.3] [Reference Citation Analysis]
289 Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021:j. [PMID: 33861527 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Reference Citation Analysis]
290 Li D, Qin J, Sun M, Yan G, Tang R. pH-sensitive, dynamic graft polymer micelles via simple synthesis for enhanced chemotherapeutic efficacy. J Biomater Appl 2020;34:1059-70. [DOI: 10.1177/0885328219894695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
291 Li Z, Zhang H, Han J, Chen Y, Lin H, Yang T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv Mater 2018;30:e1706981. [PMID: 29663543 DOI: 10.1002/adma.201706981] [Cited by in Crossref: 76] [Cited by in F6Publishing: 65] [Article Influence: 19.0] [Reference Citation Analysis]
292 Matsumoto MM, Kim DH, Larson AC, Mouli SK. Interventional Nanotheranostics: Advancing Nanotechnology Applications with IR. J Vasc Interv Radiol 2019;30:1824-1829.e1. [PMID: 31655765 DOI: 10.1016/j.jvir.2019.07.026] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
293 Huang X, Deng G, Han Y, Yang G, Zou R, Zhang Z, Sun S, Hu J. Right Cu2- x S@MnS Core-Shell Nanoparticles as a Photo/H2O2-Responsive Platform for Effective Cancer Theranostics. Adv Sci (Weinh) 2019;6:1901461. [PMID: 31637173 DOI: 10.1002/advs.201901461] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
294 Yu G, Zhang M, Saha ML, Mao Z, Chen J, Yao Y, Zhou Z, Liu Y, Gao C, Huang F, Chen X, Stang PJ. Antitumor Activity of a Unique Polymer That Incorporates a Fluorescent Self-Assembled Metallacycle. J Am Chem Soc 2017;139:15940-9. [PMID: 29019660 DOI: 10.1021/jacs.7b09224] [Cited by in Crossref: 146] [Cited by in F6Publishing: 117] [Article Influence: 29.2] [Reference Citation Analysis]
295 Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 2018;3:358-74. [DOI: 10.1038/s41578-018-0038-3] [Cited by in Crossref: 157] [Cited by in F6Publishing: 86] [Article Influence: 39.3] [Reference Citation Analysis]
296 Li Y, Han W, He C, Jiang X, Fan Y, Lin W. Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer. Bioconjug Chem 2021;32:2318-26. [PMID: 34607430 DOI: 10.1021/acs.bioconjchem.1c00362] [Reference Citation Analysis]
297 Liu Z, Gao Y, Jin X, Deng Q, Yin Z, Tong S, Qing W, Huang Y. Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics. J Mater Chem B 2020;8:5535-44. [PMID: 32495813 DOI: 10.1039/d0tb00566e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
298 Cai R, Xiang H, Yang D, Lin KT, Wu Y, Zhou R, Gu Z, Yan L, Zhao Y, Tan W. Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. J Am Chem Soc 2021;143:16113-27. [PMID: 34582167 DOI: 10.1021/jacs.1c06652] [Reference Citation Analysis]
299 Zhao X, Zhao H, Wang S, Fan Z, Ma Y, Yin Y, Wang W, Xi R, Meng M. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J Am Chem Soc 2021;143:20828-36. [PMID: 34860505 DOI: 10.1021/jacs.1c09155] [Reference Citation Analysis]
300 Zhang J, An X, Zheng Y, Chen Y, Wu C, Wang S. Injectable Ovalbumin‐Based Composite Implant for Photothermal Tumor Therapy. ChemBioChem 2019;21:865-73. [DOI: 10.1002/cbic.201900556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
301 Damasco JA, Ohulchanskyy TY, Mahajan S, Chen G, Singh A, Kutscher HL, Huang H, Turowski SG, Spernyak JA, Singh AK, Lovell JF, Seshadri M, Prasad PN. Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnol 2021;12:4. [PMID: 33603920 DOI: 10.1186/s12645-021-00075-x] [Reference Citation Analysis]
302 Panikar SS, Ramírez-García G, Vallejo-Cardona AA, Banu N, Patrón-Soberano OA, Cialla-May D, Camacho-Villegas TA, de la Rosa E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4:Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale 2019;11:20598-613. [PMID: 31641713 DOI: 10.1039/c9nr06535k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 5.7] [Reference Citation Analysis]
303 Du X, Kleitz F, Li X, Huang H, Zhang X, Qiao S. Disulfide‐Bridged Organosilica Frameworks: Designed, Synthesis, Redox‐Triggered Biodegradation, and Nanobiomedical Applications. Adv Funct Mater 2018;28:1707325. [DOI: 10.1002/adfm.201707325] [Cited by in Crossref: 91] [Cited by in F6Publishing: 48] [Article Influence: 22.8] [Reference Citation Analysis]
304 Singh D, Mohapatra P, Kumar S, Behera S, Dixit A, Sahoo SK. Nimbolide-encapsulated PLGA nanoparticles induces Mesenchymal-to-Epithelial Transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells. Toxicol In Vitro 2021;79:105293. [PMID: 34883246 DOI: 10.1016/j.tiv.2021.105293] [Reference Citation Analysis]
305 Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020;83:106446. [PMID: 32244048 DOI: 10.1016/j.intimp.2020.106446] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
306 Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020;84-85:63-72. [PMID: 32135473 DOI: 10.1016/j.nucmedbio.2020.02.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
307 Wu MX, Gao J, Wang F, Yang J, Song N, Jin X, Mi P, Tian J, Luo J, Liang F, Yang YW. Multistimuli Responsive Core-Shell Nanoplatform Constructed from Fe3 O4 @MOF Equipped with Pillar[6]arene Nanovalves. Small 2018;14:e1704440. [PMID: 29611291 DOI: 10.1002/smll.201704440] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 21.0] [Reference Citation Analysis]
308 Li Z, Xu H, Shao J, Jiang C, Zhang F, Lin J, Zhang H, Li J, Huang P. Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Applied Materials Today 2019;15:297-304. [DOI: 10.1016/j.apmt.2019.02.002] [Cited by in Crossref: 57] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
309 Li X, Huang Y, Jin Q, Ji J. Mixed-charge modification as a robust method to realize the antiviral ability of gold nanoparticles in a high protein environment. Nanoscale 2021;13:19857-63. [PMID: 34825689 DOI: 10.1039/d1nr06756g] [Reference Citation Analysis]
310 Yosri N, Khalifa SAM, Guo Z, Xu B, Zou X, El-Seedi HR. Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. Int J Biol Macromol 2021:S0141-8130(21)02410-7. [PMID: 34752793 DOI: 10.1016/j.ijbiomac.2021.10.229] [Reference Citation Analysis]
311 Sun T, Xia R, Zhou J, Zheng X, Liu S, Xie Z. Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Mater Chem Front 2020;4:2346-56. [DOI: 10.1039/d0qm00274g] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
312 Yang G, Zhou D, Pan Z, Yang J, Zhang D, Cao Q, Ji L, Mao Z. Multifunctional low-temperature photothermal nanodrug with in vivo clearance, ROS-Scavenging and anti-inflammatory abilities. Biomaterials 2019;216:119280. [DOI: 10.1016/j.biomaterials.2019.119280] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 10.3] [Reference Citation Analysis]
313 Zhang L, Xie L, Xu S, Kuchel RP, Dai Y, Jung K, Boyer C. Dual Role of Doxorubicin for Photopolymerization and Therapy. Biomacromolecules 2020;21:3887-97. [PMID: 32786533 DOI: 10.1021/acs.biomac.0c01025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
314 Xue S, Gu X, Zhang J, Sun H, Deng C, Zhong Z. Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules 2018;19:3586-93. [PMID: 30025206 DOI: 10.1021/acs.biomac.8b00835] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
315 Chen F, Liu L, Zhang W, Wu W, Zhao X, Chen N, Zhang M, Guo F, Qin Y. Visual determination of azodicarbonamide in flour by label-free silver nanoparticle colorimetry. Food Chem 2021;337:127990. [PMID: 32919272 DOI: 10.1016/j.foodchem.2020.127990] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
316 Dai W, Dong H, Zhang X. A Semimetal-Like Molybdenum Carbide Quantum Dots Photoacoustic Imaging and Photothermal Agent with High Photothermal Conversion Efficiency. Materials (Basel) 2018;11:E1776. [PMID: 30235806 DOI: 10.3390/ma11091776] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
317 Li W, Wang H, Li Z, Wang T, Zhao C. Numerical investigation of drug transport from blood vessels to tumour tissue using a Tumour-Vasculature-on-a-Chip. Chemical Engineering Science 2019;208:115155. [DOI: 10.1016/j.ces.2019.115155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
318 Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew Chem Int Ed 2018;57:11384-8. [DOI: 10.1002/anie.201807602] [Cited by in Crossref: 125] [Cited by in F6Publishing: 105] [Article Influence: 31.3] [Reference Citation Analysis]
319 Xu J, Gulzar A, Yang P, Bi H, Yang D, Gai S, He F, Lin J, Xing B, Jin D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coordination Chemistry Reviews 2019;381:104-34. [DOI: 10.1016/j.ccr.2018.11.014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 70] [Article Influence: 42.7] [Reference Citation Analysis]
320 Ghosh A, Xu W, Gupta N, Gracias DH. Active matter therapeutics. Nano Today 2020;31:100836. [PMID: 32346389 DOI: 10.1016/j.nantod.2019.100836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
321 Shi Y, Pang X, Wang J, Liu G. NanoTRAIL-Oncology: A Strategic Approach in Cancer Research and Therapy. Adv Healthcare Mater 2018;7:1800053. [DOI: 10.1002/adhm.201800053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
322 Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials (Basel) 2020;10:E2186. [PMID: 33147800 DOI: 10.3390/nano10112186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
323 Ben-David-Naim M, Dagan A, Grad E, Aizik G, Nordling-David MM, Morss Clyne A, Granot Z, Golomb G. Targeted siRNA Nanoparticles for Mammary Carcinoma Therapy. Cancers (Basel) 2019;11:E442. [PMID: 30934857 DOI: 10.3390/cancers11040442] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
324 Peng J, Xiao Y, Yang Q, Liu Q, Chen Y, Shi K, Hao Y, Han R, Qian Z. Intracellular aggregation of peptide-reprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy. Acta Pharm Sin B 2021;11:1069-82. [PMID: 33996418 DOI: 10.1016/j.apsb.2020.06.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
325 Su YL, Hu SH. Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics 2018;10:E193. [PMID: 30340364 DOI: 10.3390/pharmaceutics10040193] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
326 Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co-assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021;60:21033-9. [PMID: 34278702 DOI: 10.1002/anie.202108658] [Reference Citation Analysis]
327 Zhang DY, Zheng Y, Zhang H, Sun JH, Tan CP, He L, Zhang W, Ji LN, Mao ZW. Delivery of Phosphorescent Anticancer Iridium(III) Complexes by Polydopamine Nanoparticles for Targeted Combined Photothermal-Chemotherapy and Thermal/Photoacoustic/Lifetime Imaging. Adv Sci (Weinh) 2018;5:1800581. [PMID: 30356964 DOI: 10.1002/advs.201800581] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 12.0] [Reference Citation Analysis]
328 Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials 2017;145:168-77. [PMID: 28866477 DOI: 10.1016/j.biomaterials.2017.08.037] [Cited by in Crossref: 116] [Cited by in F6Publishing: 111] [Article Influence: 23.2] [Reference Citation Analysis]
329 Zhang W, Wang M, Tang W, Wen R, Zhou S, Lee C, Wang H, Jiang W, Delahunty IM, Zhen Z, Chen H, Chapman M, Wu Z, Howerth EW, Cai H, Li Z, Xie J. Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery. Adv Mater 2018;30:e1805557. [PMID: 30368972 DOI: 10.1002/adma.201805557] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 14.8] [Reference Citation Analysis]
330 Chen F, Goel S, Shi S, Barnhart TE, Lan X, Cai W. General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res 2018;11:4890-904. [PMID: 30410684 DOI: 10.1007/s12274-018-2078-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
331 Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021. [PMID: 34861053 DOI: 10.1111/php.13570] [Reference Citation Analysis]
332 Wu C, Wu Y, Zhu X, Zhang J, Liu J, Zhang Y. Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today 2021;36:100963. [DOI: 10.1016/j.nantod.2020.100963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
333 Peng J, Yang Q, Shi K, Xiao Y, Wei X, Qian Z. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev 2019;143:37-67. [PMID: 31276708 DOI: 10.1016/j.addr.2019.06.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
334 Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2020;8:631351. [PMID: 33585406 DOI: 10.3389/fchem.2020.631351] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
335 Prasad R, Jain N, Conde J, Srivastava R. Localized nanotheranostics: recent developments in cancer nanomedicine. Materials Today Advances 2020;8:100087. [DOI: 10.1016/j.mtadv.2020.100087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
336 Zhao Z, Zhang Y, Tian C, Yin T, Zhang C. Facile dynamic one-step modular assembly based on boronic acid-diol for construction of a micellar drug delivery system. Biomater Sci 2018;6:2605-18. [DOI: 10.1039/c8bm00712h] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
337 Zhang S, Ma X, Sha D, Qian J, Yuan Y, Liu C. A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine. J Mater Chem B 2020;8:9589-600. [PMID: 33006361 DOI: 10.1039/d0tb01603a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
338 Yang Z, Du Y, Sun Q, Peng Y, Wang R, Zhou Y, Wang Y, Zhang C, Qi X. Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS Nano 2020;14:6191-212. [PMID: 32320600 DOI: 10.1021/acsnano.0c02249] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
339 Fan K, Yan X. Bioengineered Ferritin Nanoprobes for Cancer Theranostics. Handbook of Nanomaterials for Cancer Theranostics. Elsevier; 2018. pp. 143-75. [DOI: 10.1016/b978-0-12-813339-2.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
340 Meir R, Shamalov K, Sadan T, Motiei M, Yaari G, Cohen CJ, Popovtzer R. Fast Image-Guided Stratification Using Anti-Programmed Death Ligand 1 Gold Nanoparticles for Cancer Immunotherapy. ACS Nano 2017;11:11127-34. [PMID: 29028305 DOI: 10.1021/acsnano.7b05299] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 12.2] [Reference Citation Analysis]
341 Duan D, Liu H, Xu M, Chen M, Han Y, Shi Y, Liu Z. Size-Controlled Synthesis of Drug-Loaded Zeolitic Imidazolate Framework in Aqueous Solution and Size Effect on Their Cancer Theranostics in Vivo. ACS Appl Mater Interfaces 2018;10:42165-74. [DOI: 10.1021/acsami.8b17660] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
342 Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021;9:629635. [PMID: 33708759 DOI: 10.3389/fchem.2021.629635] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
343 Huo D, Zhu J, Chen G, Chen Q, Zhang C, Luo X, Jiang W, Jiang X, Gu Z, Hu Y. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat Commun 2019;10:3051. [PMID: 31296864 DOI: 10.1038/s41467-019-11082-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
344 Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, Yu B, Wong W. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. Journal of Inorganic Biochemistry 2019;192:72-81. [DOI: 10.1016/j.jinorgbio.2018.12.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
345 Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Adv Sci (Weinh) 2020;7:2001060. [PMID: 32995124 DOI: 10.1002/advs.202001060] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
346 Wang X, Jia P, Sun S, He X, Lu TJ, Xu F, Feng S. Evaporation-Induced Diffusion Acceleration in Liquid-Filled Porous Materials. ACS Omega 2021;6:21646-54. [PMID: 34471768 DOI: 10.1021/acsomega.1c03052] [Reference Citation Analysis]
347 Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. Nano Today 2018;23:59-72. [PMID: 31186672 DOI: 10.1016/j.nantod.2018.11.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
348 Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews 2021;426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
349 Marin R, Lifante J, Besteiro LV, Wang Z, Govorov AO, Rivero F, Alfonso F, Sanz-Rodríguez F, Jaque D. Plasmonic Copper Sulfide Nanoparticles Enable Dark Contrast in Optical Coherence Tomography. Adv Healthc Mater 2020;9:e1901627. [PMID: 31977166 DOI: 10.1002/adhm.201901627] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
350 Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu Y, Chen X. Biomechano-Interactive Materials and Interfaces. Adv Mater 2018;30:1800572. [DOI: 10.1002/adma.201800572] [Cited by in Crossref: 64] [Cited by in F6Publishing: 51] [Article Influence: 16.0] [Reference Citation Analysis]
351 Jiang Y, Pu K. Molecular Probes for Autofluorescence-Free Optical Imaging. Chem Rev 2021;121:13086-131. [PMID: 34558282 DOI: 10.1021/acs.chemrev.1c00506] [Reference Citation Analysis]
352 Chen H, Qiu Y, Ding D, Lin H, Sun W, Wang GD, Huang W, Zhang W, Lee D, Liu G, Xie J, Chen X. Gadolinium-Encapsulated Graphene Carbon Nanotheranostics for Imaging-Guided Photodynamic Therapy. Adv Mater 2018;:e1802748. [PMID: 30035840 DOI: 10.1002/adma.201802748] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 18.0] [Reference Citation Analysis]
353 Dey P, Blakey I, Stone N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem Sci 2020;11:8671-85. [PMID: 34123125 DOI: 10.1039/d0sc01926g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
354 Mansur AAP, Mansur HS, Carvalho SM, Lobato ZIP, Leite MF, Mansur LL. Fluorescent ZnS Quantum Dots-Phosphoethanolamine Nanoconjugates for Bioimaging Live Cells in Cancer Research. ACS Omega 2018;3:15679-91. [PMID: 30556011 DOI: 10.1021/acsomega.8b02098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
355 Yang B, Chen Y, Shi J. Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. Chem 2018;4:1284-313. [DOI: 10.1016/j.chempr.2018.02.012] [Cited by in Crossref: 88] [Cited by in F6Publishing: 57] [Article Influence: 22.0] [Reference Citation Analysis]
356 Zhou L, Xie H, Chen X, Wan J, Xu S, Han Y, Chen D, Qiao Y, Zhou L, Zheng S, Wang H. Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index. Acta Biomater 2020;113:464-77. [PMID: 32652227 DOI: 10.1016/j.actbio.2020.07.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
357 Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, Xie H, He L, Long Z, Lu X, Xiao M, Zhu Y, Bo H, Cao K. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. Sci Adv 2019;5:eaaw6499. [PMID: 31579820 DOI: 10.1126/sciadv.aaw6499] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
358 Zhang R, Qiao C, Jia Q, Wang Y, Huang H, Chang W, Wang H, Zhang H, Wang Z. Highly Stable and Long-Circulating Metal-Organic Frameworks Nanoprobes for Sensitive Tumor Detection In Vivo. Adv Healthc Mater 2019;8:e1900761. [PMID: 31368240 DOI: 10.1002/adhm.201900761] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
359 Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019;9:2572-94. [PMID: 31131054 DOI: 10.7150/thno.32424] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
360 Li W, Jing Z, Wang S, Li Q, Xing Y, Shi H, Li S, Hong Z. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials 2021;271:120726. [PMID: 33636548 DOI: 10.1016/j.biomaterials.2021.120726] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
361 Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021;13:3539. [PMID: 34298753 DOI: 10.3390/cancers13143539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
362 Valenzuela C, Chen C, Sun M, Ye Z, Zhang J. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 2021;9:3450-83. [PMID: 33909746 DOI: 10.1039/d1tb00041a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
363 He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu WG, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020;10:2453-62. [PMID: 32194812 DOI: 10.7150/thno.42981] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 17.5] [Reference Citation Analysis]
364 Zhang X, Zhang C, Li N, Pan W, Fu M, Ong'achwa Machuki J, Ge K, Liu Z, Gao F. Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Anal Chem 2021;93:12103-15. [PMID: 34428035 DOI: 10.1021/acs.analchem.1c02625] [Reference Citation Analysis]
365 Cao J, Li X, Tian H. Metal-Organic Framework (MOF)-Based Drug Delivery. CMC 2020;27:5949-69. [DOI: 10.2174/0929867326666190618152518] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 15.5] [Reference Citation Analysis]
366 Clement S, Campbell JM, Deng W, Guller A, Nisar S, Liu G, Wilson BC, Goldys EM. Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Adv Sci (Weinh) 2020;7:2003584. [PMID: 33344143 DOI: 10.1002/advs.202003584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
367 Dai X, Ren L, Liu M, Cai H, Zhang H, Gong Q, Gu Z, Luo K. Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today 2021;39:101163. [DOI: 10.1016/j.nantod.2021.101163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
368 Zhou Z, Chan A, Wang Z, Huang X, Yu G, Jacobson O, Wang S, Liu Y, Shan L, Dai Y, Shen Z, Lin L, Chen W, Chen X. Synchronous Chemoradiation Nanovesicles by X‐Ray Triggered Cascade of Drug Release. Angew Chem 2018;130:8599-603. [DOI: 10.1002/ange.201802351] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
369 Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. Nanoparticles for Biomedical Applications. Elsevier; 2020. pp. 37-53. [DOI: 10.1016/b978-0-12-816662-8.00004-7] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
370 Li S, Xing R, Chang R, Zou Q, Yan X. Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. Current Opinion in Colloid & Interface Science 2018;35:17-25. [DOI: 10.1016/j.cocis.2017.12.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
371 Lin H, Chen Y, Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv Sci (Weinh) 2018;5:1800518. [PMID: 30356929 DOI: 10.1002/advs.201800518] [Cited by in Crossref: 164] [Cited by in F6Publishing: 117] [Article Influence: 41.0] [Reference Citation Analysis]
372 Cui M, Liu S, Song B, Guo D, Wang J, Hu G, Su Y, He Y. Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy. Nanomicro Lett 2019;11:73. [PMID: 34138032 DOI: 10.1007/s40820-019-0306-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
373 Qi C, He J, Fu LH, He T, Blum NT, Yao X, Lin J, Huang P. Tumor-Specific Activatable Nanocarriers with Gas-Generation and Signal Amplification Capabilities for Tumor Theranostics. ACS Nano 2021;15:1627-39. [PMID: 33356128 DOI: 10.1021/acsnano.0c09223] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
374 Kim D, Shin K, Kwon SG, Hyeon T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv Mater. 2018;30:e1802309. [PMID: 30133009 DOI: 10.1002/adma.201802309] [Cited by in Crossref: 120] [Cited by in F6Publishing: 98] [Article Influence: 30.0] [Reference Citation Analysis]
375 Fadeel B, Alexiou C. Brave new world revisited: Focus on nanomedicine. Biochem Biophys Res Commun 2020;533:36-49. [PMID: 32921412 DOI: 10.1016/j.bbrc.2020.08.046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
376 Kumar A, Chaudhary RK, Singh R, Singh SP, Wang SY, Hoe ZY, Pan CT, Shiue YL, Wei DQ, Kaushik AC, Dai X. Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Front Neurosci 2020;14:305. [PMID: 32425743 DOI: 10.3389/fnins.2020.00305] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
377 Vlamidis Y, Voliani V. Bringing Again Noble Metal Nanoparticles to the Forefront of Cancer Therapy. Front Bioeng Biotechnol 2018;6:143. [PMID: 30349817 DOI: 10.3389/fbioe.2018.00143] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
378 Tao Y, Wang J, Xu X. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Front Bioeng Biotechnol 2020;8:184. [PMID: 32211399 DOI: 10.3389/fbioe.2020.00184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
379 Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1624. [PMID: 32162485 DOI: 10.1002/wnan.1624] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
380 Zhang H, Liu XL, Zhang YF, Gao F, Li GL, He Y, Peng ML, Fan HM. Magnetic nanoparticles based cancer therapy: current status and applications. Sci China Life Sci 2018;61:400-14. [DOI: 10.1007/s11427-017-9271-1] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
381 Chang R, Nikoloudakis E, Zou Q, Mitraki A, Coutsolelos AG, Yan X. Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid–Photosensitizer Conjugates for Photodynamic Therapy. ACS Appl Bio Mater 2020;3:2-9. [DOI: 10.1021/acsabm.9b00558] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
382 Wang L, Chen S, Zhu Y, Zhang M, Tang S, Li J, Pei W, Huang B, Niu C. Triple-Modal Imaging-Guided Chemo-Photothermal Synergistic Therapy for Breast Cancer with Magnetically Targeted Phase-Shifted Nanoparticles. ACS Appl Mater Interfaces 2018;10:42102-14. [PMID: 30431261 DOI: 10.1021/acsami.8b16323] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
383 Cheng YH, He C, Riviere JE, Monteiro-Riviere NA, Lin Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano 2020;14:3075-95. [PMID: 32078303 DOI: 10.1021/acsnano.9b08142] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
384 Peng J, Yang Q, Xiao Y, Shi K, Liu Q, Hao Y, Yang F, Han R, Qian Z. Tumor Microenvironment Responsive Drug‐Dye‐Peptide Nanoassembly for Enhanced Tumor‐Targeting, Penetration, and Photo‐Chemo‐Immunotherapy. Adv Funct Mater 2019;29:1900004. [DOI: 10.1002/adfm.201900004] [Cited by in Crossref: 68] [Cited by in F6Publishing: 43] [Article Influence: 22.7] [Reference Citation Analysis]
385 Jia Q, Zhao Z, Liang K, Nan F, Li Y, Wang J, Ge J, Wang P. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater Chem Front 2020;4:449-71. [DOI: 10.1039/c9qm00667b] [Cited by in Crossref: 38] [Article Influence: 19.0] [Reference Citation Analysis]
386 Gao Y, Shi X, Shen M. Intelligent Design of Ultrasmall Iron Oxide Nanoparticle-Based Theranostics. ACS Appl Mater Interfaces 2021;13:45119-29. [PMID: 34530608 DOI: 10.1021/acsami.1c13341] [Reference Citation Analysis]
387 Wang X, Yan J, Wang L, Pan D, Yang R, Xu Y, Sheng J, Huang Q, Zhao H, Yang M. Rational Design of Polyphenol-Poloxamer Nanovesicles for Targeting Inflammatory Bowel Disease Therapy. Chem Mater 2018;30:4073-80. [DOI: 10.1021/acs.chemmater.8b01173] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 8.8] [Reference Citation Analysis]
388 Leonel AG, Mansur HS, Mansur AA, Caires A, Carvalho SM, Krambrock K, Outon LEF, Ardisson JD. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. International Journal of Biological Macromolecules 2019;132:677-91. [DOI: 10.1016/j.ijbiomac.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
389 Vishwakarma SK, Lakkireddy C, Marjan T, Fatima A, Bardia A, Paspala SAB, Habeeb MA, Khan AA. Bimetallic redox nanoprobe enhances the therapeutic efficacy of hyperthermia in drug-resistant cancer cells. Appl Nanosci 2018;8:1493-504. [DOI: 10.1007/s13204-018-0814-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
390 Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
391 Ke Z, Xie A, Chen J, Zou Z, Shen L, Dai Y, Zou D. Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomater Sci 2020;8:2481-7. [PMID: 32202278 DOI: 10.1039/d0bm00021c] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
392 Buddolla AL, Kim S. Recent insights into the development of nucleic acid-based nanoparticles for tumor-targeted drug delivery. Colloids and Surfaces B: Biointerfaces 2018;172:315-22. [DOI: 10.1016/j.colsurfb.2018.08.057] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
393 Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 2018;102:9449-70. [DOI: 10.1007/s00253-018-9352-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
394 Guo Z, Zhou X, Hou C, Ding Z, Wen C, Zhang L, Jiang B, Shen X. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomater Sci 2019;7:3886-97. [DOI: 10.1039/c9bm00762h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
395 Xu J, Yu S, Wang X, Qian Y, Wu W, Zhang S, Zheng B, Wei G, Gao S, Cao Z, Fu W, Xiao Z, Lu W. High Affinity of Chlorin e6 to Immunoglobulin G for Intraoperative Fluorescence Image-Guided Cancer Photodynamic and Checkpoint Blockade Therapy. ACS Nano 2019;13:10242-60. [DOI: 10.1021/acsnano.9b03466] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
396 Gu X, Qiu M, Sun H, Zhang J, Cheng L, Deng C, Zhong Z. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomater Sci 2018;6:1526-34. [PMID: 29666858 DOI: 10.1039/c8bm00243f] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
397 Hui Y, Wibowo D, Liu Y, Ran R, Wang H, Seth A, Middelberg APJ, Zhao C. Understanding the Effects of Nanocapsular Mechanical Property on Passive and Active Tumor Targeting. ACS Nano 2018;12:2846-57. [DOI: 10.1021/acsnano.8b00242] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 15.3] [Reference Citation Analysis]
398 Wang Y, Li Y, Zhang Z, Wang L, Wang D, Tang BZ. Triple-Jump Photodynamic Theranostics: MnO2 Combined Upconversion Nanoplatforms Involving a Type-I Photosensitizer with Aggregation-Induced Emission Characteristics for Potent Cancer Treatment. Adv Mater 2021;33:e2103748. [PMID: 34423484 DOI: 10.1002/adma.202103748] [Reference Citation Analysis]
399 Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019;11:E1441. [PMID: 31480780 DOI: 10.3390/polym11091441] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
400 Detappe A, Bustoros M, Mouhieddine TH, Ghoroghchian PP. Advancements in Nanomedicine for Multiple Myeloma. Trends in Molecular Medicine 2018;24:560-74. [DOI: 10.1016/j.molmed.2018.04.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
401 Xing R, Zou Q, Yuan C, Zhao L, Chang R, Yan X. Self‐Assembling Endogenous Biliverdin as a Versatile Near‐Infrared Photothermal Nanoagent for Cancer Theranostics. Adv Mater 2019;31:1900822. [DOI: 10.1002/adma.201900822] [Cited by in Crossref: 135] [Cited by in F6Publishing: 120] [Article Influence: 45.0] [Reference Citation Analysis]
402 Liu Z, Dai X, Sun Y, Liu Y. Organic supramolecular aggregates based on water‐soluble cyclodextrins and calixarenes. Aggregate 2020;1:31-44. [DOI: 10.1002/agt2.3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
403 Liu Y, Zhao Y, Chen X. Bioengineering of Metal-organic Frameworks for Nanomedicine. Theranostics 2019;9:3122-33. [PMID: 31244945 DOI: 10.7150/thno.31918] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 16.3] [Reference Citation Analysis]
404 Gao Y, Wang X, He X, He Z, Yang X, Tian S, Meng F, Ding D, Luo L, Tang BZ. A Dual‐Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. Adv Funct Mater 2019;29:1902673. [DOI: 10.1002/adfm.201902673] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 14.7] [Reference Citation Analysis]
405 Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics 2020;10:1213-29. [PMID: 31938061 DOI: 10.7150/thno.38900] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
406 Li X, Zhao Z, Yang Y, Liu Z, Wang J, Xu Y, Zhang Y. Novel β-1,3- d -glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots. J Mater Chem B 2020;8:2307-20. [DOI: 10.1039/c9tb02674f] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
407 Wu Z, Ma X, Ma Y, Yang Z, Yuan Y, Liu C. Core/Shell PEGS/HA Hybrid Nanoparticle Via Micelle-Coordinated Mineralization for Tumor-Specific Therapy. ACS Appl Mater Interfaces 2020;12:12109-19. [DOI: 10.1021/acsami.0c00068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
408 Chen S, Sun B, Miao H, Wang G, Sun P, Li J, Wang W, Fan Q, Huang W. NIR-II Dye-Based Multifunctional Telechelic Glycopolymers for NIR-IIa Fluorescence Imaging-Guided Stimuli-Responsive Chemo-Photothermal Combination Therapy. ACS Materials Lett 2020;2:174-83. [DOI: 10.1021/acsmaterialslett.9b00480] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
409 Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021;11:6370-92. [PMID: 33995663 DOI: 10.7150/thno.57828] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
410 Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2019;119:1519-624. [DOI: 10.1021/acs.chemrev.8b00396] [Cited by in Crossref: 108] [Cited by in F6Publishing: 91] [Article Influence: 27.0] [Reference Citation Analysis]
411 Amirshaghaghi A, Altun B, Nwe K, Yan L, Stein JM, Cheng Z, Tsourkas A. Site-Specific Labeling of Cyanine and Porphyrin Dye-Stabilized Nanoemulsions with Affibodies for Cellular Targeting. J Am Chem Soc 2018;140:13550-3. [PMID: 30351141 DOI: 10.1021/jacs.8b07866] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
412 Qiu W, Liang M, Gao Y, Yang X, Zhang X, Zhang X, Xue P, Kang Y, Xu Z. Polyamino acid calcified nanohybrids induce immunogenic cell death for augmented chemotherapy and chemo-photodynamic synergistic therapy. Theranostics 2021;11:9652-66. [PMID: 34646391 DOI: 10.7150/thno.64354] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
413 Zhang F, Khan S, Li R, Smolen JA, Zhang S, Zhu G, Su L, Jahnke AA, Elsabahy M, Chen X, Wooley KL. Design and development of multifunctional polyphosphoester-based nanoparticles for ultrahigh paclitaxel dual loading. Nanoscale 2017;9:15773-7. [DOI: 10.1039/c7nr05935c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 3.6] [Reference Citation Analysis]
414 Wang X, Qi Y, Liu L, Ganbold T, Baigude H, Han J. Preparation and cell activities of lactosylated curdlan-triornithine nanoparticles for enhanced DNA/siRNA delivery in hepatoma cells. Carbohydrate Polymers 2019;225:115252. [DOI: 10.1016/j.carbpol.2019.115252] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
415 Guan C, Zhu X, Feng C. DNA Nanodevice-Based Drug Delivery Systems. Biomolecules 2021;11:1855. [PMID: 34944499 DOI: 10.3390/biom11121855] [Reference Citation Analysis]
416 Gutiérrez-Lovera C, Vázquez-Ríos AJ, Guerra-Varela J, Sánchez L, de la Fuente M. The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes (Basel) 2017;8:E349. [PMID: 29182542 DOI: 10.3390/genes8120349] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
417 Yang Z, Zhang Z, Sun Y, Lei Z, Wang D, Ma H, Tang BZ. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Biomaterials 2021;275:120934. [PMID: 34217019 DOI: 10.1016/j.biomaterials.2021.120934] [Reference Citation Analysis]
418 Zhang Z, Xu W, Kang M, Wen H, Guo H, Zhang P, Xi L, Li K, Wang L, Wang D, Tang BZ. An All‐Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging‐Guided Synergistic Therapy. Adv Mater . [DOI: 10.1002/adma.202003210] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 33.5] [Reference Citation Analysis]
419 Wang Y, Wu W, Mao D, Teh C, Wang B, Liu B. Metal–Organic Framework Assisted and Tumor Microenvironment Modulated Synergistic Image‐Guided Photo‐Chemo Therapy. Adv Funct Mater 2020;30:2002431. [DOI: 10.1002/adfm.202002431] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
420 Yang Z, Chen X. Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Acc Chem Res 2019;52:1245-54. [PMID: 30977625 DOI: 10.1021/acs.accounts.9b00064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
421 Zhou B, Guo Z, Lin Z, Jiang BP, Shen XC. Stimuli-Responsive Nanomaterials for Smart Tumor-Specific Phototherapeutics. ChemMedChem 2021;16:919-31. [PMID: 33345434 DOI: 10.1002/cmdc.202000831] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
422 Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. Adv Therap 2021;4:2000159. [DOI: 10.1002/adtp.202000159] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
423 Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews 2020;158:73-90. [DOI: 10.1016/j.addr.2020.06.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
424 Wang Y, Du W, Zhang T, Zhu Y, Ni Y, Wang C, Sierra Raya FM, Zou L, Wang L, Liang G. A Self-Evaluating Photothermal Therapeutic Nanoparticle. ACS Nano 2020;14:9585-93. [PMID: 32806081 DOI: 10.1021/acsnano.9b10144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
425 Chen C, Su W, Liu Y, Zhang J, Zuo C, Yao Z, Bu W. Artificial anaerobic cell dormancy for tumor gaseous microenvironment regulation therapy. Biomaterials 2019;200:48-55. [DOI: 10.1016/j.biomaterials.2019.02.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
426 Wu L, Wen X, Wang X, Wang C, Sun X, Wang K, Zhang H, Williams T, Stacy AJ, Chen J, Schmieder AH, Lanza GM, Shen B. Local Intratracheal Delivery of Perfluorocarbon Nanoparticles to Lung Cancer Demonstrated with Magnetic Resonance Multimodal Imaging. Theranostics. 2018;8:563-574. [PMID: 29290827 DOI: 10.7150/thno.21466] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
427 Gu Z, Yan S, Cheong S, Cao Z, Zuo H, Thomas AC, Rolfe BE, Xu ZP. Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system. Journal of Colloid and Interface Science 2018;512:404-10. [DOI: 10.1016/j.jcis.2017.10.069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
428 Yi S, Lu Z, Zhang J, Wang J, Xie Z, Hou L. Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:15276-89. [DOI: 10.1021/acsami.9b01205] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
429 Bor G, Mat Azmi ID, Yaghmur A. Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery 2019;10:113-32. [DOI: 10.4155/tde-2018-0062] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 17.7] [Reference Citation Analysis]
430 Zhang L, Sheng D, Wang D, Yao Y, Yang K, Wang Z, Deng L, Chen Y. Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics 2018;8:1591-606. [PMID: 29556343 DOI: 10.7150/thno.22430] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
431 Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00086-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
432 Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Reference Citation Analysis]
433 Zhou J, Yu G, Yang J, Shi B, Ye B, Wang M, Huang F, Stang PJ. Polymeric Nanoparticles Integrated from Discrete Organoplatinum(II) Metallacycle by Stepwise Post-assembly Polymerization for Synergistic Cancer Therapy. Chem Mater 2020;32:4564-73. [DOI: 10.1021/acs.chemmater.0c00615] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
434 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 215] [Cited by in F6Publishing: 155] [Article Influence: 53.8] [Reference Citation Analysis]
435 Horo H, Saha M, Das H, Mandal B, Kundu LM. Synthesis of highly fluorescent, amine-functionalized carbon dots from biotin-modified chitosan and silk-fibroin blend for target-specific delivery of antitumor agents. Carbohydr Polym 2022;277:118862. [PMID: 34893267 DOI: 10.1016/j.carbpol.2021.118862] [Reference Citation Analysis]
436 Tang W, Tang W, Li S. Cancer theranostic applications of lipid-based nanoparticles. Drug Discovery Today 2018;23:1159-66. [DOI: 10.1016/j.drudis.2018.04.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
437 Wen H, Zhang Z, Kang M, Li H, Xu W, Guo H, Li Y, Tan Y, Wen Z, Wu Q, Huang J, Xi L, Li K, Wang L, Wang D, Tang BZ. One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy. Biomaterials 2021;274:120892. [PMID: 34020267 DOI: 10.1016/j.biomaterials.2021.120892] [Reference Citation Analysis]
438 Meng QF, Zhao Y, Dong C, Liu L, Pan Y, Lai J, Liu Z, Yu GT, Chen X, Rao L. Genetically Programmable Fusion Cellular Vesicles for Cancer Immunotherapy. Angew Chem Int Ed Engl 2021;60:26320-6. [PMID: 34661332 DOI: 10.1002/anie.202108342] [Reference Citation Analysis]
439 Zhang J, Lin Y, Zhou H, He H, Ma J, Luo M, Zhang Z, Pang D. Cell Membrane‐Camouflaged NIR II Fluorescent Ag 2 Te Quantum Dots‐Based Nanobioprobes for Enhanced In Vivo Homotypic Tumor Imaging. Adv Healthcare Mater 2019;8:1900341. [DOI: 10.1002/adhm.201900341] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
440 Yao Y, Dai X, Tan Y, Chen Y, Liao C, Yang T, Chen Y, Yu Y, Zhang S. Deep Drug Penetration of Nanodrug Aggregates at Tumor Tissues by Fast Extracellular Drug Release. Adv Healthc Mater 2021;10:e2001430. [PMID: 33274859 DOI: 10.1002/adhm.202001430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
441 Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS Nano 2017;11:9594-613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Cited by in Crossref: 179] [Cited by in F6Publishing: 162] [Article Influence: 35.8] [Reference Citation Analysis]
442 Xu X, Zeng Z, Huang Z, Sun Y, Huang Y, Chen J, Ye J, Yang H, Yang C, Zhao C. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr Polym 2020;229:115394. [PMID: 31826406 DOI: 10.1016/j.carbpol.2019.115394] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
443 Sun Y, Zhang Y, Gao Y, Wang P, He G, Blum NT, Lin J, Liu Q, Wang X, Huang P. Six Birds with One Stone: Versatile Nanoporphyrin for Single‐Laser‐Triggered Synergistic Phototheranostics and Robust Immune Activation. Adv Mater 2020;32:2004481. [DOI: 10.1002/adma.202004481] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
444 Gazzi A, Fusco L, Orecchioni M, Ferrari S, Franzoni G, Yan JS, Rieckher M, Peng G, Lucherelli MA, Vacchi IA, Chau NDQ, Criado A, Istif A, Mancino D, Dominguez A, Eckert H, Vázquez E, Ros TD, Nicolussi P, Palermo V, Schumacher B, Cuniberti G, Mai Y, Clementi C, Pasquali M, Feng X, Kostarelos K, Yilmazer A, Bedognetti D, Fadeel B, Prato M, Bianco A, Delogu LG. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. J Phys Mater 2020;3:034009. [DOI: 10.1088/2515-7639/ab9317] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
445 Meng J, Jin Z, Zhao P, Zhao B, Fan M, He Q. A multistage assembly/disassembly strategy for tumor-targeted CO delivery. Sci Adv 2020;6:eaba1362. [PMID: 32440551 DOI: 10.1126/sciadv.aba1362] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
446 Fan J, He Q, Jin Z, Chen W, Huang W. A novel phosphoester-based cationic co-polymer nanocarrier delivers chimeric antigen receptor plasmid and exhibits anti-tumor effect. RSC Adv 2018;8:14975-82. [DOI: 10.1039/c8ra02133c] [Cited by in Crossref: 8] [Article Influence: 2.0] [Reference Citation Analysis]
447 Wang J, Sang W, Yang Z, Shen Z, Wang Z, Jacobson O, Chen Y, Wang Y, Shao M, Niu G, Dai Y, Chen X. Polyphenol-based nanoplatform for MRI/PET dual-modality imaging guided effective combination chemotherapy. J Mater Chem B 2019;7:5688-94. [PMID: 31475276 DOI: 10.1039/c9tb01597c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
448 Zhang T, Zhang Q, Tian J, Xing J, Guo W, Liang X. Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Communications 2018;8:303-13. [DOI: 10.1557/mrc.2018.49] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
449 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
450 Xu Z, Huang H, Xiong X, Wei X, Guo X, Zhao J, Zhou S. A near-infrared light-responsive extracellular vesicle as a "Trojan horse" for tumor deep penetration and imaging-guided therapy. Biomaterials 2021;269:120647. [PMID: 33450584 DOI: 10.1016/j.biomaterials.2020.120647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
451 Cai Y, Ni D, Cheng W, Ji C, Wang Y, Müllen K, Su Z, Liu Y, Chen C, Yin M. Enzyme‐Triggered Disassembly of Perylene Monoimide‐based Nanoclusters for Activatable and Deep Photodynamic Therapy. Angew Chem 2020;132:14118-22. [DOI: 10.1002/ange.202001107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
452 Albuquerque LJC, Sincari V, Jäger A, Konefał R, Pánek J, Černoch P, Pavlova E, Štěpánek P, Giacomelli FC, Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019. [DOI: 10.1021/acs.langmuir.9b01009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
453 Nguyen HV, Detappe A, Harvey P, Gallagher N, Mathieu C, Agius MP, Zavidij O, Wang W, Jiang Y, Rajca A, Jasanoff A, Ghobrial IM, Ghoroghchian PP, Johnson JA. Pro-organic radical contrast agents ("pro-ORCAs") for real-time MRI of pro-drug activation in biological systems. Polym Chem 2020;11:4768-79. [PMID: 33790990 DOI: 10.1039/d0py00558d] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
454 Zheng K, Huang Z, Huang J, Liu X, Ban J, Huang X, Luo H, Chen Z, Xie Q, Chen Y, Lu Z. Effect of a 2-HP-β-Cyclodextrin Formulation on the Biological Transport and Delivery of Chemotherapeutic PLGA Nanoparticles. Drug Des Devel Ther 2021;15:2605-18. [PMID: 34168432 DOI: 10.2147/DDDT.S314361] [Reference Citation Analysis]
455 Hu C, Yang X, Liu R, Ruan S, Zhou Y, Xiao W, Yu W, Yang C, Gao H. Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Appl Mater Interfaces 2018;10:22571-9. [DOI: 10.1021/acsami.8b04847] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 16.3] [Reference Citation Analysis]
456 Tian Q, Li Y, Jiang S, An L, Lin J, Wu H, Huang P, Yang S. Tumor pH‐Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy. Small 2019;15:1902926. [DOI: 10.1002/smll.201902926] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
457 Yang B, Chen Y, Shi J. Exogenous/Endogenous-Triggered Mesoporous Silica Cancer Nanomedicine. Adv Healthcare Mater 2018;7:1800268. [DOI: 10.1002/adhm.201800268] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
458 Zhang P, Wang J, Chen H, Zhao L, Chen B, Chu C, Liu H, Qin Z, Liu J, Tan Y, Chen X, Liu G. Tumor Microenvironment-Responsive Ultrasmall Nanodrug Generators with Enhanced Tumor Delivery and Penetration. J Am Chem Soc 2018;140:14980-9. [DOI: 10.1021/jacs.8b09396] [Cited by in Crossref: 112] [Cited by in F6Publishing: 95] [Article Influence: 28.0] [Reference Citation Analysis]
459 Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021;121:1746-803. [PMID: 33445874 DOI: 10.1021/acs.chemrev.0c00779] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
460 Liu Y, Yang Z, Huang X, Yu G, Wang S, Zhou Z, Shen Z, Fan W, Liu Y, Davisson M, Kalish H, Niu G, Nie Z, Chen X. Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano 2018;12:8129-37. [DOI: 10.1021/acsnano.8b02980] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
461 Tang L, Wang Z, Mu Q, Yu Z, Jacobson O, Li L, Yang W, Huang C, Kang F, Fan W, Ma Y, Wang M, Zhou Z, Chen X. Targeting Neutrophils for Enhanced Cancer Theranostics. Adv Mater 2020;32:2002739. [DOI: 10.1002/adma.202002739] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
462 Bartoň Tománková K, Opletalová A, Poláková K, Kalytchuk S, Jiravová J, Malohlava J, Malina L, Kolářová H. Size-Selected Graphene Oxide Loaded with Photosensitizer (TMPyP) for Targeting Photodynamic Therapy In Vitro. Processes 2020;8:251. [DOI: 10.3390/pr8020251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
463 Maity D, Kandasamy G. Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. In: Kumar CS, editor. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Berlin: Springer Berlin Heidelberg; 2019. pp. 299-332. [DOI: 10.1007/978-3-662-59596-1_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
464 Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 123] [Cited by in F6Publishing: 49] [Article Influence: 41.0] [Reference Citation Analysis]
465 Cheng Y, Lu T, Wang Y, Song Y, Wang S, Lu Q, Yang L, Tan F, Li J, Li N. Glutathione-Mediated Clearable Nanoparticles Based on Ultrasmall Gd 2 O 3 for MSOT/CT/MR Imaging Guided Photothermal/Radio Combination Cancer Therapy. Mol Pharmaceutics 2019;16:3489-501. [DOI: 10.1021/acs.molpharmaceut.9b00332] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
466 Su YL, Kuo LW, Hsu CH, Chiang CS, Lu YJ, Chang SJ, Hu SH. Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. J Control Release 2020;321:159-73. [PMID: 32045622 DOI: 10.1016/j.jconrel.2020.02.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
467 Mu J, He L, Fan W, Tang W, Wang Z, Jiang C, Zhang D, Liu Y, Deng H, Zou J, Jacobson O, Qu J, Huang P, Chen X. Cascade Reactions Catalyzed by Planar Metal-Organic Framework Hybrid Architecture for Combined Cancer Therapy. Small 2020;16:e2004016. [PMID: 32985099 DOI: 10.1002/smll.202004016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
468 Xue X, Ricci M, Qu H, Lindstrom A, Zhang D, Wu H, Lin TY, Li Y. Iron-crosslinked Rososome with robust stability and high drug loading for synergistic cancer therapy. J Control Release 2021;329:794-804. [PMID: 33039481 DOI: 10.1016/j.jconrel.2020.10.013] [Reference Citation Analysis]
469 Conejos-sánchez I, Đorđević S, Medel M, Vicent MJ. Polypeptides as building blocks for image-guided nanotherapies. Current Opinion in Biomedical Engineering 2021;20:100323. [DOI: 10.1016/j.cobme.2021.100323] [Reference Citation Analysis]
470 Deng C, Zhang Q, Guo J, Zhao X, Zhong Z. Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv Drug Deliv Rev 2020;160:199-211. [PMID: 33137364 DOI: 10.1016/j.addr.2020.10.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
471 Yan D, Xie W, Zhang J, Wang L, Wang D, Tang BZ. Donor/π-Bridge Manipulation for Constructing a Stable NIR-II Aggregation-Induced Emission Luminogen with Balanced Phototheranostic Performance*. Angew Chem Int Ed Engl 2021;60:26769-76. [PMID: 34626441 DOI: 10.1002/anie.202111767] [Reference Citation Analysis]
472 Jiang S, Huang K, Qu J, Lin J, Huang P. Cancer nanotheranostics in the second near‐infrared window. View 2021;2:20200075. [DOI: 10.1002/viw.20200075] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
473 Yu Y, Zhang L, Wang M, Yang Z, Lin L, Xiong Y, Xu Z, Wang J. H2O2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine (Lond) 2019;14:2189-207. [PMID: 31411542 DOI: 10.2217/nnm-2019-0043] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
474 Goos JACM, Cho A, Carter LM, Dilling TR, Davydova M, Mandleywala K, Puttick S, Gupta A, Price WS, Quinn JF, Whittaker MR, Lewis JS, Davis TP. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics 2020;10:567-84. [PMID: 31903138 DOI: 10.7150/thno.36777] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
475 Chen H, Chen Y, Wu H, Xu JF, Sun Z, Zhang X. Supramolecular polymeric chemotherapy based on cucurbit[7]uril-PEG copolymer. Biomaterials 2018;178:697-705. [PMID: 29545011 DOI: 10.1016/j.biomaterials.2018.02.051] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 9.8] [Reference Citation Analysis]
476 Xiang M, Li N, Liu J, Yu R, Jiang J. A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. Nanoscale 2020;12:8727-31. [DOI: 10.1039/d0nr00941e] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
477 He J, Fu LH, Qi C, Lin J, Huang P. Metal peroxides for cancer treatment. Bioact Mater 2021;6:2698-710. [PMID: 33665502 DOI: 10.1016/j.bioactmat.2021.01.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
478 Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Adv Funct Mater 2020;30:1910402. [PMID: 34093104 DOI: 10.1002/adfm.201910402] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
479 Mansur AAP, Amaral-Júnior JC, Carvalho SM, Carvalho IC, Mansur HS. Cu-In-S/ZnS@carboxymethylcellulose supramolecular structures: Fluorescent nanoarchitectures for targeted-theranostics of cancer cells. Carbohydr Polym 2020;247:116703. [PMID: 32829831 DOI: 10.1016/j.carbpol.2020.116703] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
480 Kim K, Kang SJ, Lee A, Hwang D, Park M, Park H, Kim S, Hur K, Chung HS, Mao C, Ahn D. Highly tumor-specific DNA nanostructures discovered by in vivo screening of a nucleic acid cage library and their applications in tumor-targeted drug delivery. Biomaterials 2019;195:1-12. [DOI: 10.1016/j.biomaterials.2018.12.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
481 Misra R, Acharya S. Smart nanotheranostic hydrogels for on-demand cancer management. Drug Discov Today 2021;26:344-59. [PMID: 33212236 DOI: 10.1016/j.drudis.2020.11.010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
482 Zhang W, Deng G, Li B, Zhao X, Ji T, Song G, Xiao Z, Cao Q, Xiao J, Huang X, Guan G, Zou R, Lu X, Hu J. Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 2018;159:68-81. [PMID: 29316453 DOI: 10.1016/j.biomaterials.2017.12.021] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
483 Lin J, Yin Q, Chen B, Zhang H, Mei D, Fu J, He B, Zhang H, Dai W, Wang X, Wang Y, Zhang Q. A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharm Sin B 2020;10:1549-62. [PMID: 32963949 DOI: 10.1016/j.apsb.2019.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
484 Yan C, Wang Y, Tian Q, Wu H, Yang S. Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering: C 2018;87:120-7. [DOI: 10.1016/j.msec.2018.02.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
485 Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020;10:4557-88. [PMID: 32292515 DOI: 10.7150/thno.38069] [Cited by in Crossref: 85] [Cited by in F6Publishing: 75] [Article Influence: 42.5] [Reference Citation Analysis]
486 Li F, Liang Z, Liu J, Sun J, Hu X, Zhao M, Liu J, Bai R, Kim D, Sun X, Hyeon T, Ling D. Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Lett 2019;19:4213-20. [PMID: 30719918 DOI: 10.1021/acs.nanolett.8b04411] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 19.3] [Reference Citation Analysis]
487 Liu R, Liu X, Zhou J, Nie Q, Meng J, Lin J, Wang S. Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Adv Mater Interfaces 2019;6:1801569. [DOI: 10.1002/admi.201801569] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
488 Liao J, Jia Y, Wu Y, Shi K, Yang D, Li P, Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
489 Meng QF, Tian R, Long H, Wu X, Lai J, Zharkova O, Wang JW, Chen X, Rao L. Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVID-19 Cytokine Storm. Adv Mater 2021;33:e2100012. [PMID: 33837596 DOI: 10.1002/adma.202100012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
490 Hu Q, Chen Q, Gu Z. Advances in transformable drug delivery systems. Biomaterials 2018;178:546-58. [DOI: 10.1016/j.biomaterials.2018.03.056] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
491 Su Y, Wang T, Su Y, Li M, Zhou J, Zhang W, Wang W. A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Mater Horiz 2020;7:574-85. [DOI: 10.1039/c9mh01068h] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
492 Zhao Z, Kantamneni H, He S, Pelka S, Venkataraman AS, Kwon M, Libutti SK, Pierce M, Moghe PV, Ganapathy V, Tan MC. Surface-Modified Shortwave-Infrared-Emitting Nanophotonic Reporters for Gene-Therapy Applications. ACS Biomater Sci Eng 2018;4:2305-63. [PMID: 30417087 DOI: 10.1021/acsbiomaterials.8b00378] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
493 Yang Z, Zhang Z, Lei Z, Wang D, Ma H, Tang BZ. Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. ACS Nano 2021;15:7328-39. [DOI: 10.1021/acsnano.1c00585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
494 Shi H, Wang Y, Huang X, Liang P, Tang Y, Zhang Y, Fu N, Huang W, Dong X. NIR-Absorbing water-soluble conjugated polymer dots for photoacoustic imaging-guided photothermal/photodynamic synergetic cancer therapy. J Mater Chem B 2018;6:7402-10. [PMID: 32254741 DOI: 10.1039/c8tb02349b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
495 Gu X, Zhu Z, Fan Q, Wei Y, Wang G, Meng F, Zhong Z, Deng C. Nanoagents Based on Poly(ethylene glycol)‐ b ‐Poly( l ‐thyroxine) Block Copolypeptide for Enhanced Dual‐Modality Imaging and Targeted Tumor Radiotherapy. Small 2019;15:1902577. [DOI: 10.1002/smll.201902577] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
496 Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. Mater Horiz 2020;7:1474-94. [PMID: 33777400 DOI: 10.1039/d0mh00012d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
497 Carvalho AM, Teixeira R, Novoa-carballal R, Pires RA, Reis RL, Pashkuleva I. Redox-Responsive Micellar Nanoparticles from Glycosaminoglycans for CD44 Targeted Drug Delivery. Biomacromolecules 2018;19:2991-9. [DOI: 10.1021/acs.biomac.8b00561] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
498 Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, Li S, Jacobson O, Wang S, Wang L, Lin LS, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage-Embedded Single-Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem Int Ed Engl 2019;58:8799-803. [PMID: 31034679 DOI: 10.1002/anie.201903277] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
499 Gao Y, Zhang H, He Z, Fang F, Wang C, Zeng K, Gao S, Meng F, Luo L, Tang BZ. Multicationic AIEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. Mater Chem Front 2020;4:1623-33. [DOI: 10.1039/d0qm00119h] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
500 Li K, Liu CJ, Zhang XZ. Multifunctional peptides for tumor therapy. Adv Drug Deliv Rev 2020;160:36-51. [PMID: 33080257 DOI: 10.1016/j.addr.2020.10.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
501 Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2021;329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
502 Gu X, Liao K, Lu X, Huang W, Fan Q. Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Front Bioeng Biotechnol 2021;9:780993. [PMID: 34805127 DOI: 10.3389/fbioe.2021.780993] [Reference Citation Analysis]
503 Cook AB, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021;15:2068-98. [PMID: 33555171 DOI: 10.1021/acsnano.0c09115] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
504 Cao M, Xing R, Chang R, Wang Y, Yan X. Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coordination Chemistry Reviews 2019;397:14-27. [DOI: 10.1016/j.ccr.2019.06.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
505 Zhang T, Zhang J, Wang F, Cao H, Zhu D, Chen X, Xu C, Yang X, Huang W, Wang Z, Wang J, He Z, Zheng Z, Lam JWY, Tang BZ. Mitochondria‐Targeting Phototheranostics by Aggregation‐Induced NIR‐II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multi‐Modal Synergistic Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202110526] [Reference Citation Analysis]
506 Singh D, Dilnawaz F, Sahoo SK. Challenges of moving theranostic nanomedicine into the clinic. Nanomedicine 2020;15:111-4. [DOI: 10.2217/nnm-2019-0401] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 13.5] [Reference Citation Analysis]
507 Nagachinta S, Bouzo BL, Vazquez-Rios AJ, Lopez R, Fuente M. Sphingomyelin-Based Nanosystems (SNs) for the Development of Anticancer miRNA Therapeutics. Pharmaceutics 2020;12:E189. [PMID: 32098309 DOI: 10.3390/pharmaceutics12020189] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
508 Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 2020;8:7253-63. [PMID: 32638824 DOI: 10.1039/d0tb01063d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
509 Wang Y, Sun Z, Chen Z, Wu Y, Gu Y, Lin S, Wang Y. In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Anal Chem 2019;91:2128-34. [DOI: 10.1021/acs.analchem.8b04585] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
510 Xu X, Wu Y, Qian X, Wang Y, Wang J, Li J, Li Y, Zhang Z. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Adv Healthc Mater 2021;:e2101428. [PMID: 34706400 DOI: 10.1002/adhm.202101428] [Reference Citation Analysis]
511 Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, Cheng S, Wang Z, Lu N, Yung BC, Wang Z, Lang L, Fu X, Jin A, Weiss ID, Vishwasrao H, Niu G, Shroff H, Klinman DM, Seder RA, Chen X. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun 2017;8:1954. [PMID: 29203865 DOI: 10.1038/s41467-017-02191-y] [Cited by in Crossref: 133] [Cited by in F6Publishing: 131] [Article Influence: 26.6] [Reference Citation Analysis]
512 Shin JM, Choi GH, Song SH, Ko H, Lee ES, Lee JA, Yoo PJ, Park JH. Metal-Phenolic Network-Coated Hyaluronic Acid Nanoparticles for pH-Responsive Drug Delivery. Pharmaceutics 2019;11:E636. [PMID: 31795253 DOI: 10.3390/pharmaceutics11120636] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
513 Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 17.0] [Reference Citation Analysis]
514 Ding L, Lyu Z, Louis B, Tintaru A, Laurini E, Marson D, Zhang M, Shao W, Jiang Y, Bouhlel A, Balasse L, Garrigue P, Mas E, Giorgio S, Iovanna J, Huang Y, Pricl S, Guillet B, Peng L. Surface Charge of Supramolecular Nanosystems for In Vivo Biodistribution: A MicroSPECT/CT Imaging Study. Small 2020;16:e2003290. [PMID: 32794645 DOI: 10.1002/smll.202003290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
515 Sousa AA. Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Adv 2019;9:26927-41. [DOI: 10.1039/c9ra04718b] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
516 Su L, Li R, Khan S, Clanton R, Zhang F, Lin YN, Song Y, Wang H, Fan J, Hernandez S, Butters AS, Akabani G, MacLoughlin R, Smolen J, Wooley KL. Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. J Am Chem Soc 2018;140:1438-46. [PMID: 29350522 DOI: 10.1021/jacs.7b11462] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 15.5] [Reference Citation Analysis]
517 Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, Chen W, Zhao B, Wang J, Dai Z. Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS Nano 2018;12:7312-26. [PMID: 29901986 DOI: 10.1021/acsnano.8b03674] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
518 He Z, Liu K, Byrne HJ, Cullen PJ, Tian F, Curtin JF. Combination Strategies for Targeted Delivery of Nanoparticles for Cancer Therapy. Applications of Targeted Nano Drugs and Delivery Systems. Elsevier; 2019. pp. 191-219. [DOI: 10.1016/b978-0-12-814029-1.00008-9] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
519 He X, Luo Q, Zhang J, Chen P, Wang H, Luo K, Yu X. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale 2019;11:12973-82. [DOI: 10.1039/c9nr03988k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]