BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gabrieli T, Sharim H, Nifker G, Jeffet J, Shahal T, Arielly R, Levi-Sakin M, Hoch L, Arbib N, Michaeli Y, Ebenstein Y. Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS Nano 2018;12:7148-58. [PMID: 29924591 DOI: 10.1021/acsnano.8b03023] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Varapula D, LaBouff E, Raseley K, Uppuluri L, Ehrlich GD, Noh M, Xiao M. A micropatterned substrate for on-surface enzymatic labelling of linearized long DNA molecules. Sci Rep 2019;9:15059. [PMID: 31636335 DOI: 10.1038/s41598-019-51507-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Heck C, Michaeli Y, Bald I, Ebenstein Y. Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Curr Opin Biotechnol 2019;55:151-8. [PMID: 30326408 DOI: 10.1016/j.copbio.2018.09.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang Y, Hu X, Long J, Diao J. Epigenetic optical sensing of 5-hydroxymethylcytosine at the single-molecule level. Sensors and Actuators B: Chemical 2022;358:131500. [DOI: 10.1016/j.snb.2022.131500] [Reference Citation Analysis]
4 Sima F, Sugioka K. Ultrafast laser manufacturing of nanofluidic systems. Nanophotonics 2021;10:2389-406. [DOI: 10.1515/nanoph-2021-0159] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Singh V, Johansson P, Torchinsky D, Lin YL, Öz R, Ebenstein Y, Hammarsten O, Westerlund F. Quantifying DNA damage induced by ionizing radiation and hyperthermia using single DNA molecule imaging. Transl Oncol 2020;13:100822. [PMID: 32652469 DOI: 10.1016/j.tranon.2020.100822] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mahmood AM, Dunwell JM. Evidence for novel epigenetic marks within plants. AIMS Genet 2019;6:70-87. [PMID: 31922011 DOI: 10.3934/genet.2019.4.70] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
7 Sharma M, Verma RK, Kumar S, Kumar V. Computational challenges in detection of cancer using cell-free DNA methylation. Comput Struct Biotechnol J 2022;20:26-39. [PMID: 34976309 DOI: 10.1016/j.csbj.2021.12.001] [Reference Citation Analysis]
8 Torchinsky D, Michaeli Y, Gassman NR, Ebenstein Y. Simultaneous detection of multiple DNA damage types by multi-colour fluorescent labelling. Chem Commun (Camb) 2019;55:11414-7. [PMID: 31482872 DOI: 10.1039/c9cc05198h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
9 Asenso J, Wang L, Du Y, Liu QH, Xu BJ, Guo MZ, Tang DQ. Advances in detection and quantification of methylcytosine and its derivatives. J Sep Sci 2019;42:1105-16. [PMID: 30575277 DOI: 10.1002/jssc.201801100] [Reference Citation Analysis]
10 Du Y, Wang Y, Hu X, Liu J, Diao J. Single‐molecule quantification of 5‐methylcytosine and 5‐hydroxymethylcytosine in cancer genome. View 2020;1. [DOI: 10.1002/viw2.9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Luo X, Jiang L, Kang T, Xing Y, Zheng E, Wu P, Cai C, Yu Q. Label-Free Raman Observation of TET1 Protein-Mediated Epigenetic Alterations in DNA. Anal Chem 2019;91:7304-12. [DOI: 10.1021/acs.analchem.9b01004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
12 Gilboa T, Garden PM, Cohen L. Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020;1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
13 Gabrieli T, Michaeli Y, Avraham S, Torchinsky D, Margalit S, Schütz L, Juhasz M, Coruh C, Arbib N, Zhou ZS, Law JA, Weinhold E, Ebenstein Y. Chemoenzymatic labeling of DNA methylation patterns for single-molecule epigenetic mapping. Nucleic Acids Res 2022:gkac460. [PMID: 35657088 DOI: 10.1093/nar/gkac460] [Reference Citation Analysis]
14 Li C, Chen H, Dong Y, Luo X, Hu J, Zhang C. Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. Acta Chimica Sinica 2021;79:614. [DOI: 10.6023/a20120564] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jeffet J, Margalit S, Michaeli Y, Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays Biochem 2021;65:51-66. [PMID: 33739394 DOI: 10.1042/EBC20200021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Schotzinger RM, Menard LD, Ramsey JM. Single-Molecule DNA Extension in Rectangular and Square Profile Nanochannels in the Extended de Gennes Regime. Macromolecules 2020;53:1950-6. [DOI: 10.1021/acs.macromol.9b02249] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Margalit S, Avraham S, Shahal T, Michaeli Y, Gilat N, Magod P, Caspi M, Loewenstein S, Lahat G, Friedmann-Morvinski D, Kariv R, Rosin-Arbesfeld R, Zirkin S, Ebenstein Y. 5-Hydroxymethylcytosine as a clinical biomarker: Fluorescence-based assay for high-throughput epigenetic quantification in human tissues. Int J Cancer 2020;146:115-22. [PMID: 31211411 DOI: 10.1002/ijc.32519] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
18 Müller V, Dvirnas A, Andersson J, Singh V, Kk S, Johansson P, Ebenstein Y, Ambjörnsson T, Westerlund F. Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Res 2019;47:e89. [PMID: 31165870 DOI: 10.1093/nar/gkz489] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Kk S, Lin YL, Sewunet T, Wrande M, Sandegren L, Giske CG, Westerlund F. A Parallelized Nanofluidic Device for High-Throughput Optical DNA Mapping of Bacterial Plasmids. Micromachines (Basel) 2021;12:1234. [PMID: 34683285 DOI: 10.3390/mi12101234] [Reference Citation Analysis]
20 Yuan Y, Chung CY, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020;18:2051-62. [PMID: 32802277 DOI: 10.1016/j.csbj.2020.07.018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
21 Tomkuvienė M, Mickutė M, Vilkaitis G, Klimašauskas S. Repurposing enzymatic transferase reactions for targeted labeling and analysis of DNA and RNA. Curr Opin Biotechnol 2019;55:114-23. [PMID: 30296696 DOI: 10.1016/j.copbio.2018.09.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
22 Jain N, Shahal T, Gabrieli T, Gilat N, Torchinsky D, Michaeli Y, Vogel V, Ebenstein Y. Global modulation in DNA epigenetics during pro-inflammatory macrophage activation. Epigenetics 2019;14:1183-93. [PMID: 31262215 DOI: 10.1080/15592294.2019.1638700] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
23 Zrehen A, Huttner D, Meller A. On-Chip Stretching, Sorting, and Electro-Optical Nanopore Sensing of Ultralong Human Genomic DNA. ACS Nano 2019;13:14388-98. [PMID: 31756076 DOI: 10.1021/acsnano.9b07873] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]